SUN Chensong, WANG Shuo, WANG Yidi, et al. Research Progress on the Functional Characteristics of Chitooligosaccharides [J]. Science and Technology of Food Industry, 2021, 42(16): 438−446. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090280.
Citation: SUN Chensong, WANG Shuo, WANG Yidi, et al. Research Progress on the Functional Characteristics of Chitooligosaccharides [J]. Science and Technology of Food Industry, 2021, 42(16): 438−446. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090280.

Research Progress on the Functional Characteristics of Chitooligosaccharides

More Information
  • Received Date: September 26, 2020
  • Available Online: June 07, 2021
  • Chitooligosaccharides are natural oligosaccharides composed by β-1, 4-linked homopolymer of 2~10 units of glucosamine (GlcN), and usually prepared by chemical, physical or enzymatic hydrolysis of chitosan. Chitooligosaccharides have many important biological activities, such as preventing and treating metabolic related diabetes, hyperlipidemia, anti-tumor, alleviating degenerative diseases such as Alzheimer’s disease, osteoarthritis, and improving immunity. Many researchers have conducted preliminary explorations on the functional characteristics of chitooligosaccharides and obtained a large amount of effective data, so it has broad development prospects. In this paper, the research on the functional characteristics and mechanism of chitooligosaccharides in recent years are reviewed, and the existing problems in the research are analyzed, so as to provide reference for the further research.
  • [1]
    Dutta J, Tripathi S, Dutta P K. Progress in antimicrobial activities of chitin, chitosan and its oligosaccharides: A systematic study needs for food applications[J]. Food Science and Technology International,2012,18(1):3−34. doi: 10.1177/1082013211399195
    [2]
    Mohammedi, Zohra. Chitosan and chitosan oligosaccharides: Applications in medicine, agriculture and biotechnology[J]. International Journal of Bioorganic Chemistry,2017,2(3):102−106.
    [3]
    Yuan X, Zheng J, Jiao S, et al. A review on the preparation of chitosan oligosaccharides and application to human health, animal husbandry and agricultural production[J]. Carbohydrate Polymers,2019,220:60−70. doi: 10.1016/j.carbpol.2019.05.050
    [4]
    Liaqat F, Eltem R. Chitooligosaccharides and their biological activities: A comprehensive review[J]. Carbohydrate Polymers,2018,184:243−259. doi: 10.1016/j.carbpol.2017.12.067
    [5]
    Kumar A, Kumar A. The virtuous potential of chitosan oligosaccharide for promising biomedical applications[J]. Journal of Materials Research,2020,35(9):1123−1134. doi: 10.1557/jmr.2020.76
    [6]
    Marmouzi I, Ezzat S M, Salama M M, et al. Recent updates in pharmacological properties of chitooligosaccharides[J]. BioMed Research International,2019,2019:1−16.
    [7]
    Zheng J, Yuan X, Cheng G, et al. Chitosan oligosaccharides improve the disturbance in glucose metabolism and reverse the dysbiosis of gut microbiota in diabetic mice[J]. Carbohydrate Polymers,2018,190:77−86. doi: 10.1016/j.carbpol.2018.02.058
    [8]
    Wang Q, Jiang Y, Luo X, et al. Chitooligosaccharides modulate glucose-lipid metabolism by suppressing SMYD3 pathways and regulating gut microflora[J]. Marine Drugs,2020,18(1):69. doi: 10.3390/md18010069
    [9]
    Wu X, Wang J, Shi Y, et al. N-Acetyl-chitobiose ameliorates metabolism dysfunction through Erk/p38 MAPK and histone H3 phosphorylation in type 2 diabetes mice[J]. Journal of Functional Foods,2017,28:96−105. doi: 10.1016/j.jff.2016.11.012
    [10]
    Kim H J, Ahn H Y, Kwak J H, et al. The effects of chitosan oligosaccharide (GO2KA1) supplementation on glucose control in subjects with prediabetes[J]. Food & Function,2014,5(1):2662−2669.
    [11]
    Jeong S, Min C J, Kwon Y, et al. Chitosan oligosaccharide (GO2KA1) improves postprandial glycemic response in subjects with impaired glucose tolerance and impaired fasting glucose and in healthy subjects: A crossover, randomized controlled trial[J]. Nutrition & Diabetes,2019,9(1).
    [12]
    Wang L, Liu Z, Liu X, et al. Microwave-assisted synthesis of chitooligosaccharide guanidine and its effect on GLUT4-dependent glucose uptake through an Akt-activated protein kinase signaling pathway in L6 skeletal muscle cells[J]. RSC Advances,2016,6(93):90777−90785. doi: 10.1039/C6RA17654B
    [13]
    Zhang H, Zhang S, Wang L, et al. Chitooligosaccharide guanidine inhibits high glucose-induced activation of DAG/PKC pathway by regulating expression of GLUT2 in type 2 diabetic nephropathy rats[J]. Journal of Functional Foods,2018,41:41−47. doi: 10.1016/j.jff.2017.12.032
    [14]
    Zou Y, Wang Y, Zhang S, et al. Chitooligosaccharide biguanide repairs islet β-cell dysfunction by activating the IRS-2/PI3K/Akt signaling pathway in type 2 diabetic rats[J]. Advanced Therapeutics,2019,2(5):1800136. doi: 10.1002/adtp.201800136
    [15]
    姜雅杰, 王畅, 席茂盛, 等. 壳寡糖复合固体饮料对Ⅱ型糖尿病小鼠肠道菌群结构的影响[J]. 食品工业科技,2020,41(8):301−306.
    [16]
    Sumiyoshi M, Kimura Y. Low molecular weight chitosan inhibits obesity induced by feeding a high-fat diet long-term in mice[J]. Journal of Pharmacy and Pharmacology,2006,58(2):201−207.
    [17]
    Huang L, Chen J, Cao P, et al. Anti-obese effect of glucosamine and chitosan oligosaccharide in high-fat diet-induced obese rats[J]. Marine Drugs,2015,13(5):2732−2756. doi: 10.3390/md13052732
    [18]
    Li X, Zhao M, Fan L, et al. Chitobiose alleviates oleic acid-induced lipid accumulation by decreasing fatty acid uptake and triglyceride synthesis in HepG2 cells[J]. Journal of Functional Foods,2018,46:202−211. doi: 10.1016/j.jff.2018.04.058
    [19]
    Zhao M, Shen X, Li X, et al. Chitooligosaccharide supplementation prevents the development of high fat diet-induced non-alcoholic fatty liver disease (NAFLD) in mice via the inhibition of cluster of differentiation 36 (CD36)[J]. Journal of Functional Foods,2019,57:7−18. doi: 10.1016/j.jff.2019.03.048
    [20]
    Qian M, Lyu Q, Liu Y, et al. Chitosan oligosaccharide ameliorates nonalcoholic fatty liver disease (NAFLD) in diet-induced obese mice[J]. Marine Drugs,2019,17(7):391. doi: 10.3390/md17070391
    [21]
    Chiu C, Yen T, Liu S, et al. Comparative effects and mechanisms of chitosan and its derivatives on hypercholesterolemia in high-fat diet-fed rats[J]. International Journal of Molecular Sciences,2020,21(1):92.
    [22]
    Yu Y, Luo T, Liu S, et al. Chitosan oligosaccharides attenuate atherosclerosis and decrease Non-HDL in ApoE-/-mice[J]. Journal of Atherosclerosis and Thrombosis,2015,22(9):926−941. doi: 10.5551/jat.22939
    [23]
    Jiang T, Xing X, Zhang L, et al. Chitosan oligosaccharides show protective effects in coronary heart disease by improving antioxidant capacity via the increase in intestinal probiotics[J]. Oxidative Medicine and Cellular Longevity,2019,2019:7658052.
    [24]
    Yao H, Luo M, Hung L, et al. Effects of chitosan oligosaccharides on drug-metabolizing enzymes in rat liver and kidneys[J]. Food and Chemical Toxicology,2012,50(5):1171−1177. doi: 10.1016/j.fct.2012.02.022
    [25]
    丁荣荣, 姜启兴, 王斌, 等. 壳寡糖对小鼠急性酒精性肝损伤的保护作用[J]. 食品科学,2019,40(13):161−165. doi: 10.7506/spkx1002-6630-20180601-006
    [26]
    Shi L, Fang B, Yong Y, et al. Chitosan oligosaccharide-mediated attenuation of LPS-induced inflammation in IPEC-J2 cells is related to the TLR4/NF-κB signaling pathway[J]. Carbohydrate Polymers,2019,219:269−279. doi: 10.1016/j.carbpol.2019.05.036
    [27]
    徐颖. 壳寡糖对大鼠酒精性肠道损伤的影响研究[D]. 无锡: 江南大学, 2020.
    [28]
    Lodhi G, Kim Y, Hwang J, et al. Chitooligosaccharide and its derivatives: Preparation and biological applications[J]. BioMed Research International,2014,2014:1−13.
    [29]
    Qin C, Du Y, Xiao L, et al. Enzymic preparation of water-soluble chitosan and their antitumor activity[J]. International Journal of Biological Macromolecules,2002,31(1-3):111−117. doi: 10.1016/S0141-8130(02)00064-8
    [30]
    Zhao M, Gu L, Li Y, et al. Chitooligosaccharides display anti-tumor effects against human cervical cancer cells via the apoptotic and autophagic pathways[J]. Carbohydrate Polymers,2019,224:115171. doi: 10.1016/j.carbpol.2019.115171
    [31]
    Zou P, Yuan S, Yang X, et al. Chitosan oligosaccharides with degree of polymerization 2–6 induces apoptosis in human colon carcinoma HCT116 cells[J]. Chemico-Biological Interactions,2018,279:129−135. doi: 10.1016/j.cbi.2017.11.010
    [32]
    Han F, Cui B, You X, et al. Anti-proliferation and radiosensitization effects of chitooligosaccharides on human lung cancer line HepG2[J]. Asian Pacific Journal of Tropical Medicine,2015,8(9):757−761. doi: 10.1016/j.apjtm.2015.07.025
    [33]
    Luo Y, Deng L, Deng Q, et al. Comparative study of the chitooligosaccharides effect on the proliferation inhibition and radiosensitization of three types of human gastric cancer cell line[J]. Asian Pacific Journal of Tropical Medicine,2016,9(6):601−605. doi: 10.1016/j.apjtm.2016.04.014
    [34]
    Prescott S M, Fitzpatrick F A. Cyclooxygenase-2 and carcinogenesis[J]. Biochimica et Biophysica Acta,2000,1470(2):69−78.
    [35]
    Nam K, Kim M, Shon Y. Chemopreventive effect of chitosan oligosaccharide against colon carcinogenesis[J]. Journal of Microbiology and Biotechnology,2007,17(9):1546−1549.
    [36]
    Wu M, Li J, An Y, et al. Chitooligosaccharides prevents the development of colitis-associated colorectal cancer by modulating the intestinal microbiota and mycobiota[J]. Frontiers in Microbiology,2019,10:2101. doi: 10.3389/fmicb.2019.02101
    [37]
    Muanprasat C, Chatsudthipong V. Chitosan oligosaccharide: Biological activities and potential therapeutic applications[J]. Pharmacology & Therapeutics,2017,170:80−97.
    [38]
    Cummings J L, Cole G. Alzheimer disease[J]. Jama,2002,287(18):2335−2338. doi: 10.1001/jama.287.18.2335
    [39]
    李筱筱, 武雪玲, 贾世亮, 等. 壳寡糖对Amyloid-β-(1-42)致痴呆大鼠的学习记忆及血清抗氧化功能的影响[J]. 食品科学,2017,38(1):220−225. doi: 10.7506/spkx1002-6630-201701037
    [40]
    Jiang Z, Liu G, Yang Y, et al. N-Acetyl chitooligosaccharides attenuate amyloid β-induced damage in animal and cell models of Alzheimer’s disease[J]. Process Biochemistry,2019,84:161−171. doi: 10.1016/j.procbio.2019.06.014
    [41]
    Huang H, Hong L, Chang P, et al. Chitooligosaccharides attenuate Cu2+-induced cellular oxidative damage and cell apoptosis involving Nrf2 activation[J]. Neurotoxicity Research,2015,27(4):411−420. doi: 10.1007/s12640-014-9512-x
    [42]
    Kunanusornchai W, Witoonpanich B, Tawonsawatruk T, et al. Chitosan oligosaccharide suppresses synovial inflammation via AMPK activation: An in vitro and in vivo study[J]. Pharmacological Research,2016,113:458−467. doi: 10.1016/j.phrs.2016.09.016
    [43]
    Zhang C, Yu L, Zhou Y, et al. Chitosan oligosaccharides inhibit IL-1β-induced chondrocyte apoptosis via the P38 MAPK signaling pathway[J]. Glycoconjugate Journal,2016,33(5):735−744. doi: 10.1007/s10719-016-9667-1
    [44]
    Dang Y, Li S, Wang W, et al. The effects of chitosan oligosaccharide on the activation of murine spleen CD11c+ dendritic cells via Toll-like receptor 4[J]. Carbohydrate Polymers,2011,83(3):1075−1081. doi: 10.1016/j.carbpol.2010.08.071
    [45]
    Xing R, Liu Y, Li K, et al. Monomer composition of chitooligosaccharides obtained by different degradation methods and their effects on immunomodulatory activities[J]. Carbohydrate Polymers,2017,157:1288−1297. doi: 10.1016/j.carbpol.2016.11.001
    [46]
    Zhai X, Yang X, Zou P, et al. Protective effect of chitosan oligosaccharides against cyclophosphamide-induced immunosuppression and irradiation injury in mice[J]. Journal of Food Science,2018,83(2):535−542. doi: 10.1111/1750-3841.14048
    [47]
    Kong S, Li J, Li S, et al. Anti-aging effect of chitosan oligosaccharide on d-galactose-induced subacute aging in mice[J]. Marine Drugs,2018,16(6):181. doi: 10.3390/md16060181
    [48]
    Chung M J, Park J K, Park Y I. Anti-inflammatory effects of low-molecular weight chitosan oligosaccharides in IgE-antigen complex-stimulated RBL-2H3 cells and asthma model mice[J]. International Immunopharmacology,2012,12(2):453−459. doi: 10.1016/j.intimp.2011.12.027
    [49]
    Jiang T, Ji H, Zhang L, et al. Chitosan oligosaccharide exerts anti-allergic effect against shrimp tropomyosin-induced food allergy by affecting Th1 and Th2 cytokines[J]. International Archives of Allergy and Immunology,2019,180(1):10−16. doi: 10.1159/000500720
    [50]
    Karin M, Clevers H. Reparative inflammation takes charge of tissue regeneration[J]. Nature,2016,529(7586):307−315. doi: 10.1038/nature17039
    [51]
    Minagawa T, Okamura Y, Shigemasa Y, et al. Effects of molecular weight and deacetylation degree of chitin/chitosan on wound healing[J]. Carbohydrate Polymers,2007,67(4):640−644. doi: 10.1016/j.carbpol.2006.07.007
    [52]
    Wang Y, Zhao Y, Sun C, et al. Chitosan degradation products promote nerve regeneration by stimulating schwann cell proliferation via miR-27a/FOXO1 axis[J]. Molecular Neurobiology,2016,53(1):28−39. doi: 10.1007/s12035-014-8968-2
    [53]
    李小燕, 曹璇, 刘心悦, 等. 壳寡糖对病理性卵巢衰退小鼠免疫功能和生殖功能的作用[J]. 中国应用生理学杂志,2017,33(2):97−102. doi: 10.12047/j.cjap.5457.2017.025
    [54]
    Kim S, Rajapakse N. Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review[J]. Carbohydrate Polymers,2005,62(4):357−368. doi: 10.1016/j.carbpol.2005.08.012
    [55]
    Mei Y, Dai X, Yang W, et al. Antifungal activity of chitooligosaccharides against the dermatophyte Trichophyton rubrum[J]. International Journal of Biological Macromolecules,2015,77:330−335. doi: 10.1016/j.ijbiomac.2015.03.042
    [56]
    姚萍, 江文, 王江, 等. 接枝壳寡糖抗菌粘胶纤维的制备及其抗菌性与染色效果[J]. 纺织学报,2018,39(4):9−13.
    [57]
    Cerdá C, Sánchez C, Climent B, et al. Oxidative stress and DNA damage in obesity-related tumorigenesis[M]//Oxidative Stress and Inflammation in Non-communicable Diseases-Molecular Mechanisms and Perspectives in Therapeutics. Springer, 2014: 5−17.
    [58]
    Chang S, Wu C, Tsai G. Effects of chitosan molecular weight on its antioxidant and antimutagenic properties[J]. Carbohydrate Polymers,2018,181:1026−1032. doi: 10.1016/j.carbpol.2017.11.047
    [59]
    Zhang Y, Ahmad K A, Khan F U, et al. Chitosan oligosaccharides prevent doxorubicin-induced oxidative stress and cardiac apoptosis through activating p38 and JNK MAPK mediated Nrf2/ARE pathway[J]. Chemico-Biological Interactions,2019,305:54−65. doi: 10.1016/j.cbi.2019.03.027
    [60]
    Lan R, Chang Q, An L, et al. Dietary supplementation with chitosan oligosaccharides alleviates oxidative stress in rats challenged with hydrogen peroxide[J]. Animals,2020,10(1):55.
    [61]
    Qiao J, Liu Y, Jiang Z, et al. Preparation and renoprotective effects of carboxymethyl chitosan oligosaccharide on adriamycin nephropathy[J]. Carbohydrate Polymers,2018,201:347−356. doi: 10.1016/j.carbpol.2018.06.109
    [62]
    Gao Y, He L, Katsumi H, et al. Improvement of intestinal absorption of insulin and water-soluble macromolecular compounds by chitosan oligomers in rats[J]. International Journal of Pharmaceutics,2008,359(1-2):70−78. doi: 10.1016/j.ijpharm.2008.03.016
    [63]
    Zhang H, Huang X, Sun Y, et al. Absorption-improving effects of chitosan oligomers based on their mucoadhesive properties: A comparative study on the oral and pulmonary delivery of calcitonin[J]. Drug Delivery,2016,23(7):2419−2427. doi: 10.3109/10717544.2014.1002946
    [64]
    Zhou W, Wang H, Zhu X, et al. Improvement of intestinal absorption of forsythoside A and chlorogenic acid by different carboxymethyl chitosan and chito-oligosaccharide, application to flos lonicerae-fructus forsythiae herb couple preparations[J]. PloS One,2013,8(5):e63348. doi: 10.1371/journal.pone.0063348

Catalog

    Article Metrics

    Article views (790) PDF downloads (85) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return