Citation: | SUN Chensong, WANG Shuo, WANG Yidi, et al. Research Progress on the Functional Characteristics of Chitooligosaccharides [J]. Science and Technology of Food Industry, 2021, 42(16): 438−446. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090280. |
[1] |
Dutta J, Tripathi S, Dutta P K. Progress in antimicrobial activities of chitin, chitosan and its oligosaccharides: A systematic study needs for food applications[J]. Food Science and Technology International,2012,18(1):3−34. doi: 10.1177/1082013211399195
|
[2] |
Mohammedi, Zohra. Chitosan and chitosan oligosaccharides: Applications in medicine, agriculture and biotechnology[J]. International Journal of Bioorganic Chemistry,2017,2(3):102−106.
|
[3] |
Yuan X, Zheng J, Jiao S, et al. A review on the preparation of chitosan oligosaccharides and application to human health, animal husbandry and agricultural production[J]. Carbohydrate Polymers,2019,220:60−70. doi: 10.1016/j.carbpol.2019.05.050
|
[4] |
Liaqat F, Eltem R. Chitooligosaccharides and their biological activities: A comprehensive review[J]. Carbohydrate Polymers,2018,184:243−259. doi: 10.1016/j.carbpol.2017.12.067
|
[5] |
Kumar A, Kumar A. The virtuous potential of chitosan oligosaccharide for promising biomedical applications[J]. Journal of Materials Research,2020,35(9):1123−1134. doi: 10.1557/jmr.2020.76
|
[6] |
Marmouzi I, Ezzat S M, Salama M M, et al. Recent updates in pharmacological properties of chitooligosaccharides[J]. BioMed Research International,2019,2019:1−16.
|
[7] |
Zheng J, Yuan X, Cheng G, et al. Chitosan oligosaccharides improve the disturbance in glucose metabolism and reverse the dysbiosis of gut microbiota in diabetic mice[J]. Carbohydrate Polymers,2018,190:77−86. doi: 10.1016/j.carbpol.2018.02.058
|
[8] |
Wang Q, Jiang Y, Luo X, et al. Chitooligosaccharides modulate glucose-lipid metabolism by suppressing SMYD3 pathways and regulating gut microflora[J]. Marine Drugs,2020,18(1):69. doi: 10.3390/md18010069
|
[9] |
Wu X, Wang J, Shi Y, et al. N-Acetyl-chitobiose ameliorates metabolism dysfunction through Erk/p38 MAPK and histone H3 phosphorylation in type 2 diabetes mice[J]. Journal of Functional Foods,2017,28:96−105. doi: 10.1016/j.jff.2016.11.012
|
[10] |
Kim H J, Ahn H Y, Kwak J H, et al. The effects of chitosan oligosaccharide (GO2KA1) supplementation on glucose control in subjects with prediabetes[J]. Food & Function,2014,5(1):2662−2669.
|
[11] |
Jeong S, Min C J, Kwon Y, et al. Chitosan oligosaccharide (GO2KA1) improves postprandial glycemic response in subjects with impaired glucose tolerance and impaired fasting glucose and in healthy subjects: A crossover, randomized controlled trial[J]. Nutrition & Diabetes,2019,9(1).
|
[12] |
Wang L, Liu Z, Liu X, et al. Microwave-assisted synthesis of chitooligosaccharide guanidine and its effect on GLUT4-dependent glucose uptake through an Akt-activated protein kinase signaling pathway in L6 skeletal muscle cells[J]. RSC Advances,2016,6(93):90777−90785. doi: 10.1039/C6RA17654B
|
[13] |
Zhang H, Zhang S, Wang L, et al. Chitooligosaccharide guanidine inhibits high glucose-induced activation of DAG/PKC pathway by regulating expression of GLUT2 in type 2 diabetic nephropathy rats[J]. Journal of Functional Foods,2018,41:41−47. doi: 10.1016/j.jff.2017.12.032
|
[14] |
Zou Y, Wang Y, Zhang S, et al. Chitooligosaccharide biguanide repairs islet β-cell dysfunction by activating the IRS-2/PI3K/Akt signaling pathway in type 2 diabetic rats[J]. Advanced Therapeutics,2019,2(5):1800136. doi: 10.1002/adtp.201800136
|
[15] |
姜雅杰, 王畅, 席茂盛, 等. 壳寡糖复合固体饮料对Ⅱ型糖尿病小鼠肠道菌群结构的影响[J]. 食品工业科技,2020,41(8):301−306.
|
[16] |
Sumiyoshi M, Kimura Y. Low molecular weight chitosan inhibits obesity induced by feeding a high-fat diet long-term in mice[J]. Journal of Pharmacy and Pharmacology,2006,58(2):201−207.
|
[17] |
Huang L, Chen J, Cao P, et al. Anti-obese effect of glucosamine and chitosan oligosaccharide in high-fat diet-induced obese rats[J]. Marine Drugs,2015,13(5):2732−2756. doi: 10.3390/md13052732
|
[18] |
Li X, Zhao M, Fan L, et al. Chitobiose alleviates oleic acid-induced lipid accumulation by decreasing fatty acid uptake and triglyceride synthesis in HepG2 cells[J]. Journal of Functional Foods,2018,46:202−211. doi: 10.1016/j.jff.2018.04.058
|
[19] |
Zhao M, Shen X, Li X, et al. Chitooligosaccharide supplementation prevents the development of high fat diet-induced non-alcoholic fatty liver disease (NAFLD) in mice via the inhibition of cluster of differentiation 36 (CD36)[J]. Journal of Functional Foods,2019,57:7−18. doi: 10.1016/j.jff.2019.03.048
|
[20] |
Qian M, Lyu Q, Liu Y, et al. Chitosan oligosaccharide ameliorates nonalcoholic fatty liver disease (NAFLD) in diet-induced obese mice[J]. Marine Drugs,2019,17(7):391. doi: 10.3390/md17070391
|
[21] |
Chiu C, Yen T, Liu S, et al. Comparative effects and mechanisms of chitosan and its derivatives on hypercholesterolemia in high-fat diet-fed rats[J]. International Journal of Molecular Sciences,2020,21(1):92.
|
[22] |
Yu Y, Luo T, Liu S, et al. Chitosan oligosaccharides attenuate atherosclerosis and decrease Non-HDL in ApoE-/-mice[J]. Journal of Atherosclerosis and Thrombosis,2015,22(9):926−941. doi: 10.5551/jat.22939
|
[23] |
Jiang T, Xing X, Zhang L, et al. Chitosan oligosaccharides show protective effects in coronary heart disease by improving antioxidant capacity via the increase in intestinal probiotics[J]. Oxidative Medicine and Cellular Longevity,2019,2019:7658052.
|
[24] |
Yao H, Luo M, Hung L, et al. Effects of chitosan oligosaccharides on drug-metabolizing enzymes in rat liver and kidneys[J]. Food and Chemical Toxicology,2012,50(5):1171−1177. doi: 10.1016/j.fct.2012.02.022
|
[25] |
丁荣荣, 姜启兴, 王斌, 等. 壳寡糖对小鼠急性酒精性肝损伤的保护作用[J]. 食品科学,2019,40(13):161−165. doi: 10.7506/spkx1002-6630-20180601-006
|
[26] |
Shi L, Fang B, Yong Y, et al. Chitosan oligosaccharide-mediated attenuation of LPS-induced inflammation in IPEC-J2 cells is related to the TLR4/NF-κB signaling pathway[J]. Carbohydrate Polymers,2019,219:269−279. doi: 10.1016/j.carbpol.2019.05.036
|
[27] |
徐颖. 壳寡糖对大鼠酒精性肠道损伤的影响研究[D]. 无锡: 江南大学, 2020.
|
[28] |
Lodhi G, Kim Y, Hwang J, et al. Chitooligosaccharide and its derivatives: Preparation and biological applications[J]. BioMed Research International,2014,2014:1−13.
|
[29] |
Qin C, Du Y, Xiao L, et al. Enzymic preparation of water-soluble chitosan and their antitumor activity[J]. International Journal of Biological Macromolecules,2002,31(1-3):111−117. doi: 10.1016/S0141-8130(02)00064-8
|
[30] |
Zhao M, Gu L, Li Y, et al. Chitooligosaccharides display anti-tumor effects against human cervical cancer cells via the apoptotic and autophagic pathways[J]. Carbohydrate Polymers,2019,224:115171. doi: 10.1016/j.carbpol.2019.115171
|
[31] |
Zou P, Yuan S, Yang X, et al. Chitosan oligosaccharides with degree of polymerization 2–6 induces apoptosis in human colon carcinoma HCT116 cells[J]. Chemico-Biological Interactions,2018,279:129−135. doi: 10.1016/j.cbi.2017.11.010
|
[32] |
Han F, Cui B, You X, et al. Anti-proliferation and radiosensitization effects of chitooligosaccharides on human lung cancer line HepG2[J]. Asian Pacific Journal of Tropical Medicine,2015,8(9):757−761. doi: 10.1016/j.apjtm.2015.07.025
|
[33] |
Luo Y, Deng L, Deng Q, et al. Comparative study of the chitooligosaccharides effect on the proliferation inhibition and radiosensitization of three types of human gastric cancer cell line[J]. Asian Pacific Journal of Tropical Medicine,2016,9(6):601−605. doi: 10.1016/j.apjtm.2016.04.014
|
[34] |
Prescott S M, Fitzpatrick F A. Cyclooxygenase-2 and carcinogenesis[J]. Biochimica et Biophysica Acta,2000,1470(2):69−78.
|
[35] |
Nam K, Kim M, Shon Y. Chemopreventive effect of chitosan oligosaccharide against colon carcinogenesis[J]. Journal of Microbiology and Biotechnology,2007,17(9):1546−1549.
|
[36] |
Wu M, Li J, An Y, et al. Chitooligosaccharides prevents the development of colitis-associated colorectal cancer by modulating the intestinal microbiota and mycobiota[J]. Frontiers in Microbiology,2019,10:2101. doi: 10.3389/fmicb.2019.02101
|
[37] |
Muanprasat C, Chatsudthipong V. Chitosan oligosaccharide: Biological activities and potential therapeutic applications[J]. Pharmacology & Therapeutics,2017,170:80−97.
|
[38] |
Cummings J L, Cole G. Alzheimer disease[J]. Jama,2002,287(18):2335−2338. doi: 10.1001/jama.287.18.2335
|
[39] |
李筱筱, 武雪玲, 贾世亮, 等. 壳寡糖对Amyloid-β-(1-42)致痴呆大鼠的学习记忆及血清抗氧化功能的影响[J]. 食品科学,2017,38(1):220−225. doi: 10.7506/spkx1002-6630-201701037
|
[40] |
Jiang Z, Liu G, Yang Y, et al. N-Acetyl chitooligosaccharides attenuate amyloid β-induced damage in animal and cell models of Alzheimer’s disease[J]. Process Biochemistry,2019,84:161−171. doi: 10.1016/j.procbio.2019.06.014
|
[41] |
Huang H, Hong L, Chang P, et al. Chitooligosaccharides attenuate Cu2+-induced cellular oxidative damage and cell apoptosis involving Nrf2 activation[J]. Neurotoxicity Research,2015,27(4):411−420. doi: 10.1007/s12640-014-9512-x
|
[42] |
Kunanusornchai W, Witoonpanich B, Tawonsawatruk T, et al. Chitosan oligosaccharide suppresses synovial inflammation via AMPK activation: An in vitro and in vivo study[J]. Pharmacological Research,2016,113:458−467. doi: 10.1016/j.phrs.2016.09.016
|
[43] |
Zhang C, Yu L, Zhou Y, et al. Chitosan oligosaccharides inhibit IL-1β-induced chondrocyte apoptosis via the P38 MAPK signaling pathway[J]. Glycoconjugate Journal,2016,33(5):735−744. doi: 10.1007/s10719-016-9667-1
|
[44] |
Dang Y, Li S, Wang W, et al. The effects of chitosan oligosaccharide on the activation of murine spleen CD11c+ dendritic cells via Toll-like receptor 4[J]. Carbohydrate Polymers,2011,83(3):1075−1081. doi: 10.1016/j.carbpol.2010.08.071
|
[45] |
Xing R, Liu Y, Li K, et al. Monomer composition of chitooligosaccharides obtained by different degradation methods and their effects on immunomodulatory activities[J]. Carbohydrate Polymers,2017,157:1288−1297. doi: 10.1016/j.carbpol.2016.11.001
|
[46] |
Zhai X, Yang X, Zou P, et al. Protective effect of chitosan oligosaccharides against cyclophosphamide-induced immunosuppression and irradiation injury in mice[J]. Journal of Food Science,2018,83(2):535−542. doi: 10.1111/1750-3841.14048
|
[47] |
Kong S, Li J, Li S, et al. Anti-aging effect of chitosan oligosaccharide on d-galactose-induced subacute aging in mice[J]. Marine Drugs,2018,16(6):181. doi: 10.3390/md16060181
|
[48] |
Chung M J, Park J K, Park Y I. Anti-inflammatory effects of low-molecular weight chitosan oligosaccharides in IgE-antigen complex-stimulated RBL-2H3 cells and asthma model mice[J]. International Immunopharmacology,2012,12(2):453−459. doi: 10.1016/j.intimp.2011.12.027
|
[49] |
Jiang T, Ji H, Zhang L, et al. Chitosan oligosaccharide exerts anti-allergic effect against shrimp tropomyosin-induced food allergy by affecting Th1 and Th2 cytokines[J]. International Archives of Allergy and Immunology,2019,180(1):10−16. doi: 10.1159/000500720
|
[50] |
Karin M, Clevers H. Reparative inflammation takes charge of tissue regeneration[J]. Nature,2016,529(7586):307−315. doi: 10.1038/nature17039
|
[51] |
Minagawa T, Okamura Y, Shigemasa Y, et al. Effects of molecular weight and deacetylation degree of chitin/chitosan on wound healing[J]. Carbohydrate Polymers,2007,67(4):640−644. doi: 10.1016/j.carbpol.2006.07.007
|
[52] |
Wang Y, Zhao Y, Sun C, et al. Chitosan degradation products promote nerve regeneration by stimulating schwann cell proliferation via miR-27a/FOXO1 axis[J]. Molecular Neurobiology,2016,53(1):28−39. doi: 10.1007/s12035-014-8968-2
|
[53] |
李小燕, 曹璇, 刘心悦, 等. 壳寡糖对病理性卵巢衰退小鼠免疫功能和生殖功能的作用[J]. 中国应用生理学杂志,2017,33(2):97−102. doi: 10.12047/j.cjap.5457.2017.025
|
[54] |
Kim S, Rajapakse N. Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review[J]. Carbohydrate Polymers,2005,62(4):357−368. doi: 10.1016/j.carbpol.2005.08.012
|
[55] |
Mei Y, Dai X, Yang W, et al. Antifungal activity of chitooligosaccharides against the dermatophyte Trichophyton rubrum[J]. International Journal of Biological Macromolecules,2015,77:330−335. doi: 10.1016/j.ijbiomac.2015.03.042
|
[56] |
姚萍, 江文, 王江, 等. 接枝壳寡糖抗菌粘胶纤维的制备及其抗菌性与染色效果[J]. 纺织学报,2018,39(4):9−13.
|
[57] |
Cerdá C, Sánchez C, Climent B, et al. Oxidative stress and DNA damage in obesity-related tumorigenesis[M]//Oxidative Stress and Inflammation in Non-communicable Diseases-Molecular Mechanisms and Perspectives in Therapeutics. Springer, 2014: 5−17.
|
[58] |
Chang S, Wu C, Tsai G. Effects of chitosan molecular weight on its antioxidant and antimutagenic properties[J]. Carbohydrate Polymers,2018,181:1026−1032. doi: 10.1016/j.carbpol.2017.11.047
|
[59] |
Zhang Y, Ahmad K A, Khan F U, et al. Chitosan oligosaccharides prevent doxorubicin-induced oxidative stress and cardiac apoptosis through activating p38 and JNK MAPK mediated Nrf2/ARE pathway[J]. Chemico-Biological Interactions,2019,305:54−65. doi: 10.1016/j.cbi.2019.03.027
|
[60] |
Lan R, Chang Q, An L, et al. Dietary supplementation with chitosan oligosaccharides alleviates oxidative stress in rats challenged with hydrogen peroxide[J]. Animals,2020,10(1):55.
|
[61] |
Qiao J, Liu Y, Jiang Z, et al. Preparation and renoprotective effects of carboxymethyl chitosan oligosaccharide on adriamycin nephropathy[J]. Carbohydrate Polymers,2018,201:347−356. doi: 10.1016/j.carbpol.2018.06.109
|
[62] |
Gao Y, He L, Katsumi H, et al. Improvement of intestinal absorption of insulin and water-soluble macromolecular compounds by chitosan oligomers in rats[J]. International Journal of Pharmaceutics,2008,359(1-2):70−78. doi: 10.1016/j.ijpharm.2008.03.016
|
[63] |
Zhang H, Huang X, Sun Y, et al. Absorption-improving effects of chitosan oligomers based on their mucoadhesive properties: A comparative study on the oral and pulmonary delivery of calcitonin[J]. Drug Delivery,2016,23(7):2419−2427. doi: 10.3109/10717544.2014.1002946
|
[64] |
Zhou W, Wang H, Zhu X, et al. Improvement of intestinal absorption of forsythoside A and chlorogenic acid by different carboxymethyl chitosan and chito-oligosaccharide, application to flos lonicerae-fructus forsythiae herb couple preparations[J]. PloS One,2013,8(5):e63348. doi: 10.1371/journal.pone.0063348
|