Citation: | FAN Tingting, LU Jiangming, KANG Zhilong, et al. Nondestructive Detection of Keemun Black Tea Grade Based on Hyperspectral Imaging Technique [J]. Science and Technology of Food Industry, 2021, 42(16): 243−248. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090211. |
[1] |
Orrillo I, Cruz-Tirado J P, Cardenas A, et al. Hyperspectral imaging as a powerful tool for identification of papaya seeds in black pepper[J]. Food Control,2019,101:45−52. doi: 10.1016/j.foodcont.2019.02.036
|
[2] |
Ren G X, Wang Y J, Ning J M, et al. Using near-infrared hyperspectral imaging with multiple decision tree methods to delineate black tea quality[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2020,237:118407. doi: 10.1016/j.saa.2020.118407
|
[3] |
Ren G, Wang S, Ning J, et al. Quantitative analysis and geographical traceability of black tea using Fourier transform near-infrared spectroscopy (FT-NIRS)[J]. Food Research International,2013,53(2):822−826. doi: 10.1016/j.foodres.2012.10.032
|
[4] |
李清光, 李晓钟, 钟芳. 基于矿质元素含量和支持向量机的茶叶鉴别分析[J], 江苏大学学报(自然科学版), 2011, 32(6): 636−641.
|
[5] |
孙俊, 靳海涛, 武小红, 等. 基于低秩自动编码器及高光谱图像的茶叶品种鉴别[J]. 农业机械学报,2018,49(8):316−323. doi: 10.6041/j.issn.1000-1298.2018.08.037
|
[6] |
Sharma P, Ghosh A, Tudu B, et al. Monitoring the fermentation process of black tea using QCM sensor based electronic nose[J]. Sensors & Actuators: B. Chemical,2015,219:67−74.
|
[7] |
Yaroshenko I, Kirsanov D, Kartsova L, et al. On the application of simple matrix methods for electronic tongue data processing: Case study with black tea samples[J]. Sensors & Actuators: B. Chemical,2014,191:146−157.
|
[8] |
Baldwin E A, Bai J, Plotto A, et al. Electronic noses and tongues: Applications for the food and pharmaceutical industries[J]. Sensors,2011,11(5):4744−4766. doi: 10.3390/s110504744
|
[9] |
徐海卫, 胡常安, 汤江文, 等. 基于机器视觉的神经网络在茶叶鉴别中的应用[J]. 中国测试,2014,40(3):89−92. doi: 10.11857/j.issn.1674-5124.2014.03.024
|
[10] |
陆江锋, 单春芳, 裘正军. 茶叶外形特征数字化及不同等级茶叶鉴别研究[J]. 现代农机,2015(3):49−51.
|
[11] |
He Y, Li X, Deng X. Discrimination of varieties of tea using near infrared spectroscopy by principal component analysis and BP model[J], Journal of Food Engineering, 2006, 79(4): 845−850.
|
[12] |
Chen Q S, Zhang J W, Hao L. Study on discrimination of Roast green tea (Camellia sinensis L.) according to geographical origin by FT-NIR spectroscopy and supervised pattern recognition[J]. Spectrochimica acta. Part A, Molecular and Biomolecular Spectroscopy,2009,72(4):1238−1242.
|
[13] |
Chen Q C, Zhang J W, Hao F C, et al. Feasibility study on identification of green, black and Oolong teas using near-infrared reflectance spectroscopy based on support vector machine (SVM)[J]. Spectrochimica acta. Part A, Molecular and Biomolecular Spectroscopy,2007,66(3):568−574. doi: 10.1016/j.saa.2006.03.038
|
[14] |
Wang S, Yang X, Zhang Y, et al. Identification of green, oolong and black teas in China via wavelet packet entropy and fuzzy support vector machine[J]. Entropy,2015,17(10):6663−6682.
|
[15] |
Xi W, Huang J, Wei F, et al. Identification of green tea varieties and fast quantification of total polyphenols by near-infrared spectroscopy and ultraviolet-visible spectroscopy with chemometric algorithms[J]. Analytical Methods,2015,7:787−792. doi: 10.1039/C4AY02106A
|
[16] |
Panigrahi N, Bhol C S, Das B S. Rapid assessment of black tea quality using diffuse reflectance spectroscopy[J]. Journal of Food Engineering,2016,190(Dec.):101−108.
|
[17] |
黄培贤, 姚志湘, 粟晖, 等. 高光谱图像技术在食品无损检测中的研究进展[J]. 食品工业科技,2012,33(15):412−417.
|
[18] |
Sun J, Zhou X, Hu Y, et al. Visualizing distribution of moisture content in tea leaves using optimization algorithms and NIR hyperspectral imaging[J]. Computers and Electronics in Agriculture,2019,160:161−167.
|
[19] |
Wang Y J, Li T H, Jin G, et al. Qualitative and quantitative diagnosis of nitrogen nutrition of tea plants under field condition using hyperspectral imaging coupled with chemometrics[J]. Journal of the Science of Food and Agriculture,2020,100(1):1997−2004.
|
[20] |
Wang Y J, Hu Xi, Jin Ge, et al. Rapid prediction of chlorophylls and carotenoids contents in tea leaves under different levels of nitrogen application based on hyperspectral imaging[J]. Journal of the Science of Food and Agriculture,2018:153−159.
|
[21] |
Li L Q, Sheng X M, Ni J M, et al. Evaluating green tea quality based on multisensor data fusion combining hyperspectral imaging and olfactory visualization systems[J]. Journal of the Science of Food and Agriculture,2018:1787−1794.
|
[22] |
Mishra P, Nordon A, Asaari M S M, et al. Fusing spectral and textural information in near-infrared hyperspectral imaging to improve green tea classification modelling[J]. Journal of Food Engineering,2019:40−47.
|
[23] |
Hong Z, He Y. Rapid and Nondestructive Discrimination of Geographical Origins of longjing tea using hyperspectral imaging at two spectral ranges coupled with machine learning methods[J]. Applied Sciences,2020,10(3):1173−1184. doi: 10.3390/app10031173
|
[24] |
Zhuang X G, W L L, Chen Q, et al. Identification of green tea origins by near-infrared(NIR) spectroscopy and different regression tools[J]. Science China(Technological Sciences),2017,60(1):84−90. doi: 10.1007/s11431-016-0464-0
|
[25] |
Cox T F, Cox M A A. Multidimensional scaling, second edition[M]. 2000.
|
[26] |
Hinton G E. Visualizing high-dimensional data using t-SNE[J]. Vigiliae Christianae,2008,9:2579−2605.
|
[27] |
Vapnik V N, Vapnik V. Statistical learning theory[M], 1998.
|