FAN Tingting, LU Jiangming, KANG Zhilong, et al. Nondestructive Detection of Keemun Black Tea Grade Based on Hyperspectral Imaging Technique [J]. Science and Technology of Food Industry, 2021, 42(16): 243−248. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090211.
Citation: FAN Tingting, LU Jiangming, KANG Zhilong, et al. Nondestructive Detection of Keemun Black Tea Grade Based on Hyperspectral Imaging Technique [J]. Science and Technology of Food Industry, 2021, 42(16): 243−248. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090211.

Nondestructive Detection of Keemun Black Tea Grade Based on Hyperspectral Imaging Technique

More Information
  • Received Date: September 20, 2020
  • Available Online: June 17, 2021
  • In order to evaluate the grade of tea products quickly and nondestructive, the near infrared (900~1700 nm) hyperspectral imaging technology was applied to classify six grades of black tea. Firstly, the hyperspectral data were visualized by linear and nonlinear dimension reduction methods. The visualization algorithms included the linear method of principal component analysis (PCA), multi-dimensional scaling (MDS), the nonlinear method of T-distributed stochastic embedding (T-SNE) and Sammon nonlinear mapping. Secondly, the classification model was established by using support vector machine (SVM) and extreme learning machine (ELM) to identify the different grades of Keemun black tea. Finally, SVM and ELM classification model were used to identify each pixel of hyperspectral image, and the prediction map was obtained. The results showed that T-SNE could divide the six grades of Keemun black tea into six different clusters, and the accuracy of SVM and ELM prediction set was 100% and 96.35%, respectively. The T-SNE visualization effect was the best, and the detection model of SVM could effectively identify the six grades of Keemun black tea. This paper provides an effective method for rapid and nondestructive testing of tea product grade, which had great significance for quality control, authenticity and adulteration detection of tea products.
  • [1]
    Orrillo I, Cruz-Tirado J P, Cardenas A, et al. Hyperspectral imaging as a powerful tool for identification of papaya seeds in black pepper[J]. Food Control,2019,101:45−52. doi: 10.1016/j.foodcont.2019.02.036
    [2]
    Ren G X, Wang Y J, Ning J M, et al. Using near-infrared hyperspectral imaging with multiple decision tree methods to delineate black tea quality[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2020,237:118407. doi: 10.1016/j.saa.2020.118407
    [3]
    Ren G, Wang S, Ning J, et al. Quantitative analysis and geographical traceability of black tea using Fourier transform near-infrared spectroscopy (FT-NIRS)[J]. Food Research International,2013,53(2):822−826. doi: 10.1016/j.foodres.2012.10.032
    [4]
    李清光, 李晓钟, 钟芳. 基于矿质元素含量和支持向量机的茶叶鉴别分析[J], 江苏大学学报(自然科学版), 2011, 32(6): 636−641.
    [5]
    孙俊, 靳海涛, 武小红, 等. 基于低秩自动编码器及高光谱图像的茶叶品种鉴别[J]. 农业机械学报,2018,49(8):316−323. doi: 10.6041/j.issn.1000-1298.2018.08.037
    [6]
    Sharma P, Ghosh A, Tudu B, et al. Monitoring the fermentation process of black tea using QCM sensor based electronic nose[J]. Sensors & Actuators: B. Chemical,2015,219:67−74.
    [7]
    Yaroshenko I, Kirsanov D, Kartsova L, et al. On the application of simple matrix methods for electronic tongue data processing: Case study with black tea samples[J]. Sensors & Actuators: B. Chemical,2014,191:146−157.
    [8]
    Baldwin E A, Bai J, Plotto A, et al. Electronic noses and tongues: Applications for the food and pharmaceutical industries[J]. Sensors,2011,11(5):4744−4766. doi: 10.3390/s110504744
    [9]
    徐海卫, 胡常安, 汤江文, 等. 基于机器视觉的神经网络在茶叶鉴别中的应用[J]. 中国测试,2014,40(3):89−92. doi: 10.11857/j.issn.1674-5124.2014.03.024
    [10]
    陆江锋, 单春芳, 裘正军. 茶叶外形特征数字化及不同等级茶叶鉴别研究[J]. 现代农机,2015(3):49−51.
    [11]
    He Y, Li X, Deng X. Discrimination of varieties of tea using near infrared spectroscopy by principal component analysis and BP model[J], Journal of Food Engineering, 2006, 79(4): 845−850.
    [12]
    Chen Q S, Zhang J W, Hao L. Study on discrimination of Roast green tea (Camellia sinensis L.) according to geographical origin by FT-NIR spectroscopy and supervised pattern recognition[J]. Spectrochimica acta. Part A, Molecular and Biomolecular Spectroscopy,2009,72(4):1238−1242.
    [13]
    Chen Q C, Zhang J W, Hao F C, et al. Feasibility study on identification of green, black and Oolong teas using near-infrared reflectance spectroscopy based on support vector machine (SVM)[J]. Spectrochimica acta. Part A, Molecular and Biomolecular Spectroscopy,2007,66(3):568−574. doi: 10.1016/j.saa.2006.03.038
    [14]
    Wang S, Yang X, Zhang Y, et al. Identification of green, oolong and black teas in China via wavelet packet entropy and fuzzy support vector machine[J]. Entropy,2015,17(10):6663−6682.
    [15]
    Xi W, Huang J, Wei F, et al. Identification of green tea varieties and fast quantification of total polyphenols by near-infrared spectroscopy and ultraviolet-visible spectroscopy with chemometric algorithms[J]. Analytical Methods,2015,7:787−792. doi: 10.1039/C4AY02106A
    [16]
    Panigrahi N, Bhol C S, Das B S. Rapid assessment of black tea quality using diffuse reflectance spectroscopy[J]. Journal of Food Engineering,2016,190(Dec.):101−108.
    [17]
    黄培贤, 姚志湘, 粟晖, 等. 高光谱图像技术在食品无损检测中的研究进展[J]. 食品工业科技,2012,33(15):412−417.
    [18]
    Sun J, Zhou X, Hu Y, et al. Visualizing distribution of moisture content in tea leaves using optimization algorithms and NIR hyperspectral imaging[J]. Computers and Electronics in Agriculture,2019,160:161−167.
    [19]
    Wang Y J, Li T H, Jin G, et al. Qualitative and quantitative diagnosis of nitrogen nutrition of tea plants under field condition using hyperspectral imaging coupled with chemometrics[J]. Journal of the Science of Food and Agriculture,2020,100(1):1997−2004.
    [20]
    Wang Y J, Hu Xi, Jin Ge, et al. Rapid prediction of chlorophylls and carotenoids contents in tea leaves under different levels of nitrogen application based on hyperspectral imaging[J]. Journal of the Science of Food and Agriculture,2018:153−159.
    [21]
    Li L Q, Sheng X M, Ni J M, et al. Evaluating green tea quality based on multisensor data fusion combining hyperspectral imaging and olfactory visualization systems[J]. Journal of the Science of Food and Agriculture,2018:1787−1794.
    [22]
    Mishra P, Nordon A, Asaari M S M, et al. Fusing spectral and textural information in near-infrared hyperspectral imaging to improve green tea classification modelling[J]. Journal of Food Engineering,2019:40−47.
    [23]
    Hong Z, He Y. Rapid and Nondestructive Discrimination of Geographical Origins of longjing tea using hyperspectral imaging at two spectral ranges coupled with machine learning methods[J]. Applied Sciences,2020,10(3):1173−1184. doi: 10.3390/app10031173
    [24]
    Zhuang X G, W L L, Chen Q, et al. Identification of green tea origins by near-infrared(NIR) spectroscopy and different regression tools[J]. Science China(Technological Sciences),2017,60(1):84−90. doi: 10.1007/s11431-016-0464-0
    [25]
    Cox T F, Cox M A A. Multidimensional scaling, second edition[M]. 2000.
    [26]
    Hinton G E. Visualizing high-dimensional data using t-SNE[J]. Vigiliae Christianae,2008,9:2579−2605.
    [27]
    Vapnik V N, Vapnik V. Statistical learning theory[M], 1998.
  • Cited by

    Periodical cited type(15)

    1. 袁惠君,徐琰莹,余诗曼,冯欢,袁毅君,张欢欢,何苗苗. 一株抗真菌卡利比克迈耶氏酵母(Meyerozymacaribbica lut-Y1)的鉴定及其抑菌活性. 食品研究与开发. 2025(03): 181-187 .
    2. 申旻,陈雅楠,刘瑶,刘晨,朱晨辉,薛文娇. 白酒酿造副产物黄水中产酯酵母菌株分离鉴定及产酯条件优化. 现代农业科技. 2024(12): 154-159+166 .
    3. 马吉喆,李镕涛,陆筑凤,李加友,徐涛. 提高酿酒酵母耐受性能的研究进展. 食品工业. 2023(01): 178-182 .
    4. 王丹,江春阳,邓乔晟,杨勤,周浓. 地参发酵酒中专用酵母菌的筛选、鉴定及特性研究. 食品科技. 2023(05): 18-25 .
    5. 潘庆珉,杨洁,岳海涛,申彤. 阿勒泰地区酸驼乳中酵母菌的分离鉴定及耐受性分析. 中国乳品工业. 2023(06): 27-31+39 .
    6. 赵广河,胡梦琪,陆玺文,赵丰丽. 桃金娘果酒酵母菌的筛选鉴定及生长特性分析. 中国酿造. 2023(09): 103-108 .
    7. 冼佳露,李理. 三类传统发酵食品中蜡样芽孢杆菌的污染状况研究. 中国酿造. 2023(12): 33-37 .
    8. 尹晓燕,王羽,牛秋红. 根系土壤假丝酵母菌Candida sp. YIN9对大丽轮枝菌和全齿复活线虫的抑制作用. 生物安全学报. 2022(01): 56-63 .
    9. 徐婉莹,戚晓雪,何晓霞,徐莹. 逆境对GST基因过表达库德毕赤酵母G43生长及脱镉能力的影响. 食品安全质量检测学报. 2022(11): 3620-3626 .
    10. 袁野,李云成,孟凡冰,焦晓磊,王欣瑶,罗永琪. 贵州红酸汤研究进展. 粮食与油脂. 2022(06): 19-23 .
    11. 乔旭辉,禄亚洲. 察隅县野生沙棘果实酵母菌分离鉴定. 高原农业. 2022(04): 362-368+386 .
    12. 王辉,袁婷玉,白卫东,赵文红,黄桂颖,杨婉媛. 青梅自然发酵液中酵母菌的分离鉴定及特性研究. 食品科技. 2021(08): 16-21 .
    13. 秦宇蒙,周笑犁,管庆林,刘云寒,吴承木. 基于高通量测序分析番茄自然发酵过程中的真菌多样性. 福建农业学报. 2021(09): 1110-1118 .
    14. 闫洪洋,黄启蒙,蔡兴华,张立立,徐志强,马林,李萌. 产香菌株的分离鉴定及其发酵产物在卷烟加香中的应用. 轻工学报. 2021(06): 47-54 .
    15. 韦玉梅,张文倩,朱闪闪,李杨,雷勇辉,孙燕飞. 果蔬酵素中优良酵母菌的分离、鉴定及耐受性研究. 中国酿造. 2021(12): 87-92 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (274) PDF downloads (37) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return