ZHU Lijuan, HOU Jiadi, WANG Junping, et al. Research Progress on Effect and Mechanism of NO Delaying Ripening and Senescence and Improving Resistance of Fresh Fruits and Vegetables[J]. Science and Technology of Food Industry, 2021, 42(22): 398−405. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090145.
Citation: ZHU Lijuan, HOU Jiadi, WANG Junping, et al. Research Progress on Effect and Mechanism of NO Delaying Ripening and Senescence and Improving Resistance of Fresh Fruits and Vegetables[J]. Science and Technology of Food Industry, 2021, 42(22): 398−405. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090145.

Research Progress on Effect and Mechanism of NO Delaying Ripening and Senescence and Improving Resistance of Fresh Fruits and Vegetables

More Information
  • Received Date: September 14, 2020
  • Available Online: September 15, 2021
  • As an important signal molecule, nitric oxide(NO) plays an important role in regulating postharvest physio-biochemical reaction and quality of fruit and vegetables. This article summarizes the effect of NO on delaying ripening, reducing chilling injury, and enhancing disease resistance of postharvest fruit and vegetables. NO delays the ripening and senescence by inhibiting the biosynthesis of ethylene, and enhances cold resistance by activating the antioxidant system, maintaining energy levels, protecting cell membranes and regulating the CBF cold response pathway. The mechanism of enhancing disease resistance is to kill pathogens, to regulate secondary metabolic processes, and to improve the gene expression of disease-related proteins and disease resistance genes. In addition, the future research for postharvest NO treatment on the basis and application of fruit and vegetables is proposed.
  • [1]
    GAPPER N E, MCQUINN R P, GIOVANNONI J J. Molecular and genetic regulation of fruit ripening[J]. Plant Molecular Biology,2013,82(6):575−591. doi: 10.1007/s11103-013-0050-3
    [2]
    BARSAN C, ZOUINE M, MAZA E, et al. Proteomic analysis of chloroplast-to-chromoplast transition in tomato reveals metabolic shifts coupled with disrupted thylakoid biogenesis machinery and elevated energy-production components[J]. Plant Physiology,2012,160(2):708−725. doi: 10.1104/pp.112.203679
    [3]
    SERAGLIO S K T, SCHULZ M, NEHRING P, et al. Nutritional and bioactive potential of Myrtaceae fruits during ripening[J]. Food Chemistry,2018,239:649−659. doi: 10.1016/j.foodchem.2017.06.118
    [4]
    ZHU X Y, SONG Z Y, LI Q M, et al. Physiological and transcriptomic analysis reveals the roles of 1-MCP in the ripening and fruit aroma quality of banana fruit(Fenjiao)[J]. Food Research International,2020,130:108968. doi: 10.1016/j.foodres.2019.108968
    [5]
    MUKHERJEE S. Recent advancements in the mechanism of nitric oxide signaling associated with hydrogen sulfide and melatonin crosstalk during ethylene-induced fruit ripening in plants[J]. Nitric Oxide,2019(82):25−34.
    [6]
    ZHAO H D, LIU B D, ZHANG W L, et al. Enhancement of quality and antioxidant metabolism of sweet cherry fruit by near-freezing temperature storage[J]. Postharvest Biology and Technology,2019,147:113−122. doi: 10.1016/j.postharvbio.2018.09.013
    [7]
    王锐锐. S-亚硝基化对冷藏桃果实线粒体氧化应激的调控作用[D]. 泰安: 山东农业大学, 2016.

    WANG R R. Regulation by S-nitrosylation on mitochondrial oxidative stress of peaches during cold storage[D]. Taian: Shandong Agriculture University, 2016.
    [8]
    LESHEM Y Y, HARAMATY Z. The characterization and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum sativum Linn foliage[J]. Plant Physiology,1996,148(3-4):258−263. doi: 10.1016/S0176-1617(96)80251-3
    [9]
    CORPAS F J, FRESCHI L, RODRÍGUEZ-RUIZ M, et al. Nitro-oxidative metabolism during fruit ripening[J]. Journal of Experimental Botany,2018,69(14):3449−3463. doi: 10.1093/jxb/erx453
    [10]
    SINGH S P, SINGH Z, SWINNY E E. Postharvest nitric oxide fumigation delays fruit ripening and alleviates chilling injury during cold storage of Japanese plums(Prunus salicina Lindell)[J]. Postharvest Biology and Technology,2009,53(3):101−108. doi: 10.1016/j.postharvbio.2009.04.007
    [11]
    HAN S, CAI H F, AN X J, et al. Effect of nitric oxide on sugar metabolism in peach fruit(cv. Xiahui 6) during cold storage[J]. Postharvest Biology and Technology,2018,142(3):72−80.
    [12]
    ZHAO Y T, ZHU X, HOU Y Y, et al. Postharvest nitric oxide treatment delays the senescence of winter jujube(Zizyphus jujuba Mill. cv. Dongzao) fruit during cold storage by regulating reactive oxygen species metabolism[J]. Scientia Horticulturae,2020,261:109009. doi: 10.1016/j.scienta.2019.109009
    [13]
    ZHANG Z, XU J, CHEN Y, et al. Nitric oxide treatment maintains postharvest quality of table grapes by mitigation of oxidative damage[J]. Postharvest Biology and Technology,2019,152:9−18. doi: 10.1016/j.postharvbio.2019.01.015
    [14]
    宋丽君. 一氧化氮处理对猕猴桃果实的保鲜效应及其生理机制研究[D]. 杭州: 浙江工商大学, 2016.

    SONG L J. Effect of nitric oxide treatment on preservation in kiwifruit and its involved physiological mechanism[D]. Hangzhou: Zhejiang Gongshang University, 2016.
    [15]
    REN Y F, HE J Y, LIU H Y, et al. Nitric oxide alleviates deterioration and preserves antioxidant properties in ‘Tainong’ mango fruit during ripening[J]. Horticulture Environment and Biotechnology,2017,58(1):27−37. doi: 10.1007/s13580-017-0001-z
    [16]
    RUAN J Z, LI M Y, JIN H H, et al. UV-B irradiation alleviates the deterioration of cold-stored mangoes by enhancing endogenous nitric oxide levels[J]. Food Chemistry,2015,169:417−423. doi: 10.1016/j.foodchem.2014.08.014
    [17]
    任小林, 张少颖, 于建娜. 一氧化氮与植物成熟衰老的关系[J]. 西北植物学报,2004,21(1):167−171. [REN X L, ZHANG S Y, YU J N. Nitric oxide and its role in maturation and senescence in plant[J]. Acta Botanica Boreali-Occidentalia Sinica,2004,21(1):167−171. doi: 10.3321/j.issn:1000-4025.2004.01.030
    [18]
    LINDERMAYR C, SAALBACH G, BAHNWEG G, et al. Differential inhibition of Arabidopsis methionine adenosyltransferases by protein S-nitrosylation[J]. The Journal of Biological Chemistry,2006,281(7):4285−4291. doi: 10.1074/jbc.M511635200
    [19]
    LINDERMAYR C, SAALBACH G, DURNER J. Proteomic identification of S-nitrosylated proteins in Arabidopsis[J]. Plant Physiology,2005,137(3):921−930. doi: 10.1104/pp.104.058719
    [20]
    ZHU L Q, DU H Y, WANG W, et al. Synergistic effect of nitric oxide with hydrogen sulfide on inhibition of ripening and softening of peach fruits during storage[J]. Scientia Horticultura,2019,256:108591. doi: 10.1016/j.scienta.2019.108591
    [21]
    KANG R Y, ZHANG L, JIANG L, et al. Effect of postharvest nitric oxide treatment on the proteome of peach fruit during ripening[J]. Postharvest Biology and Technology,2016,112:277−289. doi: 10.1016/j.postharvbio.2015.08.017
    [22]
    LV S F, JIA M Z, ZHANG S S, et al. The dependence of leaf senescence on the balance between 1-aminocyclopropane-1-carboxylate acid synthase 1(ACS1)-catalysed ACC generation and nitric oxide-associated 1(NOS1)-dependent NO accumulation in Arabidopsis[J]. Plant Biology,2019,21(4):595−603. doi: 10.1111/plb.12970
    [23]
    ZHANG C, SHI J Y, ZHU L Q, et al. Cooperative effects of hydrogen sulfide and nitric oxide on delaying softening and decay of strawberry[J]. International Journal of Agricultural and Biological Engineering,2014,7(6):114−122.
    [24]
    LIU J, YANG J, ZHANG H, et al. Melatonin inhibits ethylene synthesis via nitric oxide regulation to delay postharvest senescence in pears[J]. Journal of Agricultural and Food Chemistry,2019,67(8):2279−2288. doi: 10.1021/acs.jafc.8b06580
    [25]
    SEVILLANO L, SANCHEZ-BALLESTA M T, ROMOJARO F, et al. Physiological, hormonal and molecular mechanisms regulating chilling injury in horticultural species. Postharvest technologies applied to reduce its impact[J]. Journal of the Science of Food and Agriculture,2009,89(4):555−573. doi: 10.1002/jsfa.3468
    [26]
    SABA M K, MORADI S. Sodium nitroprusside(SNP) spray to maintain fruit quality and alleviate postharvest chilling injury of peach fruit[J]. Scientia Horticulturae,2017,216:193−199. doi: 10.1016/j.scienta.2017.01.009
    [27]
    GHORBANI B, PAKKISH Z, KHEZRI M. Nitric oxide increases antioxidant enzyme activity and reduces chilling injury in orange fruit during storage[J]. New Zealand Journal of Crop and Horticultural Science,2018,46(2):101−116. doi: 10.1080/01140671.2017.1345764
    [28]
    WANG D, LI L, XU Y Q, et al. Effect of exogenous nitro oxide on chilling tolerance, polyamine, proline, and γ-aminobutyric acid in bamboo shoots(Phyllostachys praecox f. prevernalis)[J]. Journal of Agricultural and Food Chemistry,2017,65(28):5607−5613. doi: 10.1021/acs.jafc.7b02091
    [29]
    CAI H F, HAN S, YU M L, et al. Exogenous nitric oxide fumigation promoted the emission of volatile organic compounds in peach fruit during shelf life after long-term cold storage[J]. Food Research International,2020,133:109135. doi: 10.1016/j.foodres.2020.109135
    [30]
    WU B, GUO Q, LI Q, et al. Impact of postharvest nitric oxide treatment on antioxidant enzymes and related genes in banana fruit in response to chilling tolerance[J]. Postharvest Biology and Technology,2014,92:157−163. doi: 10.1016/j.postharvbio.2014.01.017
    [31]
    ZHANG T, CHE F B, ZHANG H, et al. Effect of nitric oxide treatment on chilling injury, antioxidant enzymes and expression of the CmCBF1 and CmCBF3 genes in cold-stored Hami melon (Cucumis melo L.) fruit[J]. Postharvest Biology and Technology,2017,127:88−98. doi: 10.1016/j.postharvbio.2017.01.005
    [32]
    YANG H, WU F, CHENG J. Reduced chilling injury in cucumber by nitric oxide and the antioxidant response[J]. Food Chemistry,2011,127(3):1237−1242. doi: 10.1016/j.foodchem.2011.02.011
    [33]
    YANG H J, MU J Y, CHEN L C, et al. S-nitrosylation positively regulates ascorbate peroxidase activity during plant stress responses[J]. Plant Physiology,2015,167(4):1604−1615. doi: 10.1104/pp.114.255216
    [34]
    AGHDAM M S, JANNATIZADEH A, LUO Z S, et al. Ensuring sufficient intracellular ATP supplying and friendly extracellular ATP signaling attenuates stresses, delays senescence and maintains quality in horticultural crops during postharvest life[J]. Trends in Food Science & Technology,2018,76:67−81.
    [35]
    WANG F, YANG Q Z, ZHAO Q F, et al. Roles of antioxidant capacity and energy metabolism in the maturity-dependent chilling tolerance of postharvest kiwifruit[J]. Postharvest Biology and Technology,2020,168:111281. doi: 10.1016/j.postharvbio.2020.111281
    [36]
    WANG Y, LUO Z, KHAN Z U, et al. Effect of nitric oxide on energy metabolism in postharvest banana fruit in response to chilling stress[J]. Postharvest Biology and Technology,2015,108:21−27. doi: 10.1016/j.postharvbio.2015.05.007
    [37]
    张小康. 一氧化氮对采后肥城桃果实能量代谢及CBF抗冷途径的调控机理[D]. 泰安: 山东农业大学, 2017.

    ZHANG X K. Regulatory mechanisms by nitric oxide on energy metabolism CBF depended chilling resistance in postharvest Feicheng peach fruit[D]. Taian: Shandong Agriculture University, 2017.
    [38]
    井广琴. 一氧化氮对冷藏肥城桃果实线粒体抗氧化防御和膜脂代谢的调控作用[D]. 泰安: 山东农业大学, 2015.

    JIN G Q. Regulation by antioxidative defence and membrane lipid metabolism in mitochondria of Feicheng peach fruits during cold-storage t[D]. Taian: Shandong Agriculture University, 2015.
    [39]
    LI X, GONG B, XU K. Interaction of nitric oxide and polyamines involves antioxidants and physiological strategies against chilling-induced oxidative damage in Zingiber officinale Roscoe[J]. Scientia Horticulturae,2014,170:237−248. doi: 10.1016/j.scienta.2014.03.026
    [40]
    COSTA-BROSETA A, PEREA-RESA C, CASTILLO M C, et al. Nitric oxide deficiency decreases C-repeat binding factor-dependent and -independent induction of cold acclimation[J]. Journal of Experimental Botany,2019,70(12):3283−3296. doi: 10.1093/jxb/erz115
    [41]
    JIAO C F, DUAN Y Q. The mediation of no-enhanced chilling tolerance by GSK-3 in postharvest peach fruit[J]. Food and Bioprocess Technology,2019,12(12):1−8.
    [42]
    HU M J, YANG D P, HUBER D J, et al. Reduction of postharvest anthracnose and enhancement of disease resistance in ripening mango fruit by nitric oxide treatment[J]. Postharvest Biology and Technology,2014,97(6):115−122.
    [43]
    LI G J, ZHU S H, WU W X, et al. Exogenous nitric oxide induces disease resistance against Monilinia fructicola through activating the phenylpropanoid pathway in peach fruit[J]. Journal of the Science of Food and Agriculture,2017,97(9):3030−3038. doi: 10.1002/jsfa.8146
    [44]
    YAN B W, ZHENG Z, ZHENG P, et al. Nitric oxide enhances resistance against black spot disease in muskmelon and the possible mechanisms involved[J]. Scientia Horticulturae,2019,256:108650. doi: 10.1016/j.scienta.2019.108650
    [45]
    ZHENG X L, HU B, SONG L J, et al. Changes in quality and defense resistance of kiwifruit in response to nitric oxide treatment during storage at room temperature[J]. Scientia Horticulturae,2017,222:187−192. doi: 10.1016/j.scienta.2017.05.010
    [46]
    ZHOU Y H, LI S M, ZENG K F. Exogenous nitric oxide-induced postharvest disease resistance in citrus fruit to Colletotrichum gloeosporioides[J]. Journal of the Science of Food and Agriculture,2016,96(2):505−512. doi: 10.1002/jsfa.7117
    [47]
    HU M, ZHU Y Y, LIU G S, et al. Inhibition on anthracnose and induction of defense response by nitric oxide in pitaya fruit[J]. Scientia Horticulturae,2019,245(2):224−230.
    [48]
    魏佳. 一氧化氮和二氧化氯对哈密瓜和葡萄采后病害及农药残留的影响[D]. 乌鲁木齐: 新疆大学, 2018.

    WEI J. The effect of nitric oxide and chlorine dioxide on postharvest disease and pesticide of Hami melon and table grape[D]. Wulumuqi: Xinjiang University, 2018.
    [49]
    VANDELLE E, DELLEDONNE M. Peroxynitrite formation and function in plants[J]. Plant Science,2011,181(5):534−539. doi: 10.1016/j.plantsci.2011.05.002
    [50]
    GAUPELS F, SPIAZZI-VANDELLE E, YANG D, et al. Detection of peroxynitrite accumulation in Arabidopsis thaliana during the hypersensitive defense response[J]. Nitric Oxide-Biology and Chemistry,2011,25(2):222−228. doi: 10.1016/j.niox.2011.01.009
    [51]
    ABRAMOWSKI D, ARASIMOWICZ-JELONEK M, IZBIAŃSKA K, et al. Nitric oxide modulates redox- mediated defense in potato challenged with Phytophthora infestans[J]. European Journal of Plant Pathology,2015,143(2):237−260. doi: 10.1007/s10658-015-0677-9
    [52]
    LIU Q Q, LUO L, ZHENG L Q, et al. Lignins: Biosynthesis and biological functions in plants[J]. International Journal of Molecular Sciences,2018,19(2):335. doi: 10.3390/ijms19020335
    [53]
    VAN LOON L C, REP M, PIETERSE C M J. Significance of inducible defense-related proteins in infected plants[J]. Annual Review of Phytopathology,2006,44(1):135−162. doi: 10.1146/annurev.phyto.44.070505.143425
    [54]
    GU R X, ZHU S H, ZHOU J, et al. Inhibition on brown rot disease and induction of defence response in harvested peach fruit by nitric oxide solution[J]. European Journal of Plant Pathology,2014,139(2):369−378. doi: 10.1007/s10658-014-0393-x
  • Cited by

    Periodical cited type(4)

    1. 王菁,胡萍. 双酶法制备红豆多肽的工艺优化及其抗氧化活性. 食品研究与开发. 2023(09): 152-156 .
    2. 谷俊华,邢晓轲. 不同酶对藜麦蛋白肽制备的影响及其抗氧化活性研究. 中国食品添加剂. 2022(01): 69-74 .
    3. 林冰洁,薛鹏,荆金金,张若愚,季晓迎,韩彩静,张丰香. 不同蛋白酶制备藜麦麸皮多肽及其活性研究. 食品与发酵工业. 2021(03): 114-119+127 .
    4. 徐霞,刘靖,宋雨,胡燕梅,黎丽,谭林凤,赵钢,邹亮. 基于胆酸盐吸附作用的藜麦蛋白质酶解工艺研究. 食品工业科技. 2020(15): 192-197 . 本站查看

    Other cited types(9)

Catalog

    Article Metrics

    Article views (353) PDF downloads (30) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return