WANG Li, LIU Guangxian, ZHANG Dequan, et al. Analysis of Free Fatty Acids, Flavor Substances and Amino Acids in Anfu Ham[J]. Science and Technology of Food Industry, 2021, 42(16): 236−242. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090113.
Citation: WANG Li, LIU Guangxian, ZHANG Dequan, et al. Analysis of Free Fatty Acids, Flavor Substances and Amino Acids in Anfu Ham[J]. Science and Technology of Food Industry, 2021, 42(16): 236−242. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090113.

Analysis of Free Fatty Acids, Flavor Substances and Amino Acids in Anfu Ham

More Information
  • Received Date: September 13, 2020
  • Available Online: July 04, 2021
  • To reveal the quality characteristics and main volatile flavor components of Anfu ham, free fatty acids and volatile flavor components in intramuscular fat and subcutaneous fat of it were analyzed by gas chromatography-mass spectrometry (GC-MS) and solid phase microextraction gas chromatography-mass spectrometry (SPME-GC-MS), and the content of amino acids in muscles was determined quantitatively. The results showed that 19 and 29 kinds of free fatty acids were detected in intramuscular fat and subcutaneous fat, respectively (the total free fatty acid content of subcutaneous fat was 7.992 times that of intramuscular fat). 29 and 31 volatile flavor compounds were detected in intramuscular fat and subcutaneous fat, respectively. 7 and 14 main volatile flavor compounds were obtained from intramuscular fat and subcutaneous fat by the method of odor activity value (OAV). The hexanal, octanal, nonanal, (E,E)-2,4-decadienal and dipentene were the key volatile flavor compounds in intramuscular fat and subcutaneous fat among them. Moreover, 3-methylthiopropionaldehyde and decanal were only found in intramuscular fat. 17 kinds of amino acids were detected in muscles, and the content of essential amino acids accounted for 41.98% of the total amino acids. Aspartic acid and glutamic acid had the highest content of delicious amino acids, which had an important contribution to the freshness of Anfu ham. This study could provide reference for analyzing the influence of processing technology on the quality of Anfu ham.
  • [1]
    郭新, 卢士玲, 王斌, 等. 中国传统火腿风味分析研究进展[J]. 粮食与油脂,2019,32(3):18−21.
    [2]
    黄占旺, 徐明生, 汤凯洁, 等. 安福火腿发酵微生物分离与发酵工艺研究[J]. 江西农业大学学报(自然科学),2003(4):635−638.
    [3]
    Benet I, Dolors G M, Ibanez C, et al. Analysis of SPME or SBSE extracted volatile compounds from cooked cured pork ham differing in intramuscular fat profiles[J]. LWT-Food Science and Technology,2015,60(1):393−399. doi: 10.1016/j.lwt.2014.08.016
    [4]
    Luna G, Aparicio R, Garcia-gonzalez D L, et al. A tentative characterization of white dry-cured hams from Teruel (Spain) by SPME-GC[J]. Food Chemistry,2006,97(4):621−630. doi: 10.1016/j.foodchem.2005.05.039
    [5]
    Narvaez-rivas M, Gallardo E, Leon-gamacho M, et al. Evolution of volatile hydrocarbons from subcutaneous fat during ripening of Iberian dry-cured ham. A tool to differentiate between ripening periods of the process[J]. Food Research International,2015,67:299−307. doi: 10.1016/j.foodres.2014.11.031
    [6]
    Angela J, Carmen G, Maria L T, et al. Effect of ripening time and rearing system on amino acid-related flavour compounds of Iberian ham[J]. Meat Science,2007,75(4):585−594. doi: 10.1016/j.meatsci.2006.09.006
    [7]
    Zhu C, Tian W, Li M, et al. Separation and identification of peptides from dry-cured Jinhua ham[J]. International Journal of Food Properties,2018,20(3):2980−2989.
    [8]
    李玲, 张敬竟, 王桂瑛, 等. 宣威火腿与金华火腿中游离脂肪酸组成比较分析[J]. 食品工业科技,2019,40(15):225−229.
    [9]
    Wang W L, Feng X, Zhang D N, et al. Analysis of volatile compounds in Chinese dry-cured hams by comprehensive two-dimensional gas chromatography with high-resolution time-of-flight mass spectrometry[J]. Meat Science,2018,140(14):14−25.
    [10]
    郇延军, 周光宏, 徐幸莲, 等. 金华火腿生产过程中脂质水解特性研究[J]. 食品与机械,2007(3):5−9. doi: 10.3969/j.issn.1003-5788.2007.03.001
    [11]
    Liu S Y, Wang G Y, Xiao Z C, et al. 1H-NMR-based water-soluble low molecular weight compound characterization and free fatty acid composition of five kinds of Yunnan dry-cured hams[J]. LWT-Food Science and Technology,2019,108:174−182. doi: 10.1016/j.lwt.2019.03.043
    [12]
    梁定年, 薛桥丽, 黄启超, 等. 三川焐灰火腿和风干火腿发酵过程中理化性质变化[J]. 肉类研究,2019,33(9):19−24.
    [13]
    罗玉龙, 王柏辉, 赵丽华, 等. 苏尼特羊和小尾寒羊的屠宰性能、肉品质、脂肪酸和挥发性风味物质比较[J]. 食品科学,2018,39(8):103−107. doi: 10.7506/spkx1002-6630-201808017
    [14]
    Gkarane V, Brunton N P, Harrison S M, et al. Volatile profile of grilled lamb as affected by gastration and age at slaughter in two breeds[J]. Journal of Food Science,2018,83(10):2466−2477. doi: 10.1111/1750-3841.14337
    [15]
    李柯呈, 徐宝才, 姚忠, 等. 干腌盐量对南京盐水鸭特征风味成分的影响[J]. 食品与发酵工业,2019,45(17):98−104.
    [16]
    Tian H X, Li F H, Qin L, et al. Quality evaluation of beef seasonings using gas chromatography-mass spectrometry and electronic nose: correlation with sensory attributes and classification according to grade level[J]. Food Analytical Methods,2015,8(6):1552−1534.
    [17]
    葛孟甜, 李肖婵, 林琳, 等. 我国四个地区河蟹蟹肉挥发性物质的比较[J]. 中国调味品,2019,44(4):16−22. doi: 10.3969/j.issn.1000-9973.2019.04.004
    [18]
    谢恬, 王丹, 马明娟, 等. OAV和GC-O-MS法分析五香驴肉风味活性物质[J]. 食品科学,2018,39(8):123−128. doi: 10.7506/spkx1002-6630-201808020
    [19]
    蒋肇样, 黄雨婷, 邓莎, 等. 不同复合菌种发酵驴肉香肠的风味特性[J]. 食品科技,2019,44(12):99−104.
    [20]
    李少辉, 赵巍, 李朋亮, 等. 基于香味活性值对五谷晒醋香气成分的研究[J]. 中国酿造,2020,39(1):88−92. doi: 10.11882/j.issn.0254-5071.2020.01.017
    [21]
    张哲奇, 臧明伍, 张凯华, 等. 关键工艺对粉蒸肉挥发性特征风味形成的影响[J]. 食品科学,2019,40(4):222−228. doi: 10.7506/spkx1002-6630-20180727-324
    [22]
    Huan Y J, Zhou G H, Zhao G M, et al. Changes in flavor compounds of dry-cured Chinese Jinhua ham during processing[J]. Meat Science,2005,71(2):291−299. doi: 10.1016/j.meatsci.2005.03.025
    [23]
    Zhang Y Y, Wu H Z, Tang J, et al. Influence of partial replacement of NaCl with KCl on formation of volatile compounds in Jinhua ham during processing[J]. Food Science and Biotechnology,2016,25(2):379−391. doi: 10.1007/s10068-016-0053-3
    [24]
    李贞子, 杨具田, 祁高展, 等. 兰州大尾羊肉挥发性风味组分研究[J]. 食品与机械,2016,32(12):50−54, 95.
    [25]
    何聪聪, 苏柯冉, 刘梦雅, 等. 基于AEDA和OAV值确定西瓜汁香气活性化合物的比较[J]. 现代食品科技,2014,30(7):279−285.
    [26]
    赵景丽, 赵改名, 柳艳霞, 等. 谷氨酸美拉德反应在金华火腿挥发性风味物质形成中的作用[J]. 中国食品学报,2014,14(9):110−115.
    [27]
    臧明伍, 王宇, 韩凯, 等. 香港酱牛肉挥发性风味化合物的研究[J]. 肉类研究,2009,23(6):46−51. doi: 10.3969/j.issn.1001-8123.2009.06.013
    [28]
    赵景丽, 赵改名, 柳艳霞, 等. 含硫氨基酸美拉德反应在金华火腿挥发性风味物质形成中的作用[J]. 食品科学,2013,34(19):23−26. doi: 10.7506/spkx1002-6630-201319006
    [29]
    谭椰子, 周光宏, 徐幸莲, 等. 3个品牌干腌火腿皮下脂肪挥发性风味比较分析[J]. 食品科学,2019,40(16):185−192. doi: 10.7506/spkx1002-6630-20180725-304
    [30]
    母雨, 苏伟, 母应春. 盘县火腿微生物多样性及主体挥发性风味解析[J]. 食品研究与开发,2019,40(15):77−85. doi: 10.12161/j.issn.1005-6521.2019.15.013
    [31]
    朱建军, 王晓宇, 胡萍, 等. 黔式腊肉加工过程中挥发性风味物质的变化[J]. 食品与机械,2013,29(4):20−23. doi: 10.3969/j.issn.1003-5788.2013.04.006
    [32]
    戴照琪, 赵见营, 罗辑, 等. 复合精油涂层对干腌火腿挥发性风味品质的影响研究[J]. 食品工业科技,2018,39(3):243−249, 258.
    [33]
    Muriel E, Antequera T, Petrón M J, et al. Volatile compounds in lberian dry-cured loin[J]. Meat Science,2004,68(3):391−400. doi: 10.1016/j.meatsci.2004.04.006
    [34]
    马建荣, 潘腾, 王振宇, 等. 传统炭烤羊腿特征挥发性风味物质分析[J]. 肉类研究,2019,33(1):50−54. doi: 10.7506/rlyj1001-8123-20181211-228
  • Cited by

    Periodical cited type(7)

    1. 左子珍,王海波,柴志欣,符健慧,张翔飞,罗晓林,钟金城. 过瘤胃蛋氨酸对牦牛半腱肌肉品质、挥发性风味物质及脂肪酸组成的影响. 畜牧兽医学报. 2024(03): 1102-1114 .
    2. 姚伟琴,员丽娟,任小雨,申雯轩,徐舒婕,巩志国. 进口红花籽油氧化过程中挥发性成分变化分析. 化学试剂. 2024(08): 91-98 .
    3. 王丽,张耀,刘光宪,李雪,黄锦卿,程文龙,董博,刘彩玲,何雪平,张晓. 顶空固相微萃取-气相色谱-质谱法分析桂花板鸭加工过程中挥发性风味物质的变化. 食品安全质量检测学报. 2024(19): 111-121 .
    4. 王晓雨,徐恒,杨丽,张恒,王金铎,刘伟,赵旭东,王艺晓,裴龙英. 五种干腌火腿的理化特性及品质对比分析. 中国调味品. 2024(12): 73-78 .
    5. 王琪,高厚基,瞿静,谢政泽,吴春霞,陈韬. 云南黑松露脂肪酶酶学性质研究及应用. 中国调味品. 2023(08): 33-38+44 .
    6. 刁小琴,王莹,贾瑞鑫,孙薇婷,刘登勇,关海宁. 动物性脂肪对肉品风味影响机制研究进展. 肉类研究. 2022(03): 45-51 .
    7. 王琪,瞿静,刘琨毅,黄元相,陈韬. 黑松露不同预处理温度对中式香肠品质的影响. 食品安全质量检测学报. 2022(06): 1942-1950 .

    Other cited types(12)

Catalog

    Article Metrics

    Article views (352) PDF downloads (44) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return