YU Jiaqi, XIA Yanan, QIAO Xiaohong, et al. Analysis of Flavor Substances and Microbial Diversity in Nautral Starter of Koumiss in Xilin Gol Pastoral Area[J]. Science and Technology of Food Industry, 2021, 42(10): 112−121. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090110.
Citation: YU Jiaqi, XIA Yanan, QIAO Xiaohong, et al. Analysis of Flavor Substances and Microbial Diversity in Nautral Starter of Koumiss in Xilin Gol Pastoral Area[J]. Science and Technology of Food Industry, 2021, 42(10): 112−121. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090110.

Analysis of Flavor Substances and Microbial Diversity in Nautral Starter of Koumiss in Xilin Gol Pastoral Area

More Information
  • Received Date: September 13, 2020
  • Available Online: March 21, 2021
  • In this experiment, the natural starter of koumiss in Xilin Gol pastoral area was used as the research object to explore its flavor substances and microbial diversity. Liquid - liquid extraction - gas chromatography-mass spectrometry (LLE-GC-MS) was used to determine the flavor compounds and Illumina MiSeq high-throughput sequencing technology was used to sequence and analyze the V3-V4 variable region of bacterial 16S rRNA gene and ITS region of fungal gene, and their related metabolic pathways were analyzed and predicted. The results showed that a total of 43 flavor substances were detected in the natural starter, the main flavor substances were L-lactic acid, palmitic acid, lauric acid, ethyl caprylate, ethyl lactate, ethyl laurate, 2, 3-butanediol, dodecanethiol, isoamyl alcohol, etc. A total of 180069 bacterial and 187397 fungal sequences were obtained by high-throughput sequencing. The bacterial community mainly included Lactobacillus, Acetobacter, Lactococcus and Streptococcus, among which Lactobacillus was the dominant bacterium and the relative abundance was 72.26%. The fungal community mainly consisted of Dekkera and Kluyveromyces, among which Dekkera was the dominant fungal genus with a relative abundance of 94.09%. According to the prediction of gene function, carbohydrate metabolism and amino acid metabolism of starter were prominent, and there were a lot of enzyme genes in the metabolic pathway, which would lay a genetic foundation for the formation of flavor substances in the fermentation process of koumiss.
  • [1]
    Guo L, Xu W L, Li C D, et al. Production technology, nutritional, and microbiological investigation of traditionally fermented mare milk (Chigee) from Xilin Gol in China[J]. Food Science & Nutrition,2019,8(S1).
    [2]
    Xia Y, Yu J, Miao W, et al. A UPLC-Q-TOF-MS-based metabolomics approach for the evaluation of fermented mare’s milk to koumiss[J]. Food Chemistry,2020:126619.
    [3]
    Ismail M Al-Bulushi, Muna S Bani-Uraba, Nejib S Guizani, et al. Illumina MiSeq sequencing analysis of fungal diversity in stored dates[J]. Bmc Microbiology,2017,17(1):72. doi: 10.1186/s12866-017-0985-7
    [4]
    Liu Tengfei, Zhang Hongmei, Shi Xiaosa, et al. Illumina MiSeq sequencing investigation of Chanhua (Cordyceps cicadae Shing) fungal community structures in different regions[J]. Journal of Traditional Chinese Medical Sciences,2018,5(2).
    [5]
    Rui Ying, Wan Peng, Chen Guijie, et al. Analysis of bacterial and fungal communities by Illumina MiSeq platforms and characterization of Aspergillus cristatus in Fuzhuan brick tea[J]. LWT,2019,110:168−174. doi: 10.1016/j.lwt.2019.04.092
    [6]
    刘文俊, 多拉娜, 刘亚华, 等. 基于纯培养方法和PacBio三代测序技术研究蒙古国传统酸马奶中乳酸菌多样性[J]. 中国食品学报,2019,19(4):27−37.
    [7]
    熊素玉. 酸马奶中乳酸菌的分离鉴定及其生物学特性的研究[D]. 乌鲁木齐: 疆农业大学, 2007.
    [8]
    贺银凤. 酸马奶酒中微生物的分离鉴定及抗菌因子的研究[D]. 呼和浩特: 内蒙古农业大学, 2008.
    [9]
    乌日汗, 包连胜, 包秀萍, 等. 内蒙古科尔沁地区食疗用酸马奶天然发酵剂化学成分及细菌多样性分析[J]. 食品科学,2019,40(14):179−185.
    [10]
    苏海荣. 黄酒中挥发性风味物质的研究[D]. 青岛: 青岛科技大学, 2013: 27-29.
    [11]
    洪家丽, 李秋艺, 潘雨阳, 等. 红曲黄酒传统酿造过程挥发性风味组分及微生物菌群多样性分析[J]. 食品科学,2019,40(12):137−144.
    [12]
    王姣, 许凌云, 张晋华, 等. SPME-GC-MS和GC-O鉴定3种不同生产工艺马苏里拉奶酪的特征香气物质[J]. 食品科学,2020,41(18):210−217.
    [13]
    吕嘉枥, 晁倩文, 刘秉坤, 等. 传统老坛自然发酵泡菜中真菌群落结构多样性分析[J]. 陕西科技大学学报,2019,37(6):53−59.
    [14]
    刘文俊, 张和平. 发酵乳中的主要风味物质及其代谢合成途径和关键功能基因[J]. 中国科技论文,2016,11(12):1391−1397.
    [15]
    乌日汗, 包连胜, 包秀萍, 等. 科尔沁地区食疗用酸马奶发酵过程中挥发性风味物质的动态变化研究[J]. 中国乳品工业,2019,47(8):10−16.
    [16]
    Li Weiwei, Fan Guangsen, Fu Zhilei, et al. Effects of fortification of Daqu with various yeasts on microbial community structure and flavor metabolism[J]. Food Research International,2020:129.
    [17]
    梁琪, 张卫兵, 张炎, 等. 百合酸奶的挥发性风味物质成分分析[J]. 食品工业科技,2012(16):65−70, 73.
    [18]
    乔鑫, 付雯, 乔宇, 等. 豆酱挥发性风味物质的分析[J]. 食品科学,2011,32(2):222−226.
    [19]
    Ott A, Germond J E, Baumgartner M, et al. Aroma comparisons of traditional and mild yogurts: Headspace gas chromatography quantification of volatiles and origin of alpha-diketones[J]. Journal of Agricultural & Food Chemistry,1999,47(6):2379−85.
    [20]
    Xu D, Wang P, Zhang X, et al. High-throughput sequencing approach to characterize dynamic changes of the fungal and bacterial communities during the production of sufu, a traditional Chinese fermented soybean food[J]. Food Microbiology,2020,86(Apr.):103340.1−103340.10.
    [21]
    吴树坤, 谢军, 卫春会, 等. 四川不同地区浓香型大曲微生物群落结构比较[J]. 食品科学,2019,40(14):144−152.
    [22]
    马龙, 邢军, 李安, 等. 开菲尔不同发酵时期微生物群落结构的变化[J]. 现代食品科技,2019(8):27−34, 26.
    [23]
    Guo L, Ya M, Guo Y S, et al. Study of bacterial and fungal community structures in traditional koumiss from Inner Mongolia[J]. Journal of Dairy Science,2019,102(3).
    [24]
    Zhong Z, Hou Q, Kwok L, et al. Bacterial microbiota compositions of naturally fermented milk are shaped by both geographic origin and sample type[J]. Journal of Dairy Ence,2016,99(10):7832−7841.
    [25]
    Wang H, Shi J, Zhang H, et al. A survey of some antifungal properties of lactic acid bacteria isolates from koumiss in China[J]. International Journal of Dairy Technology,2011,64(4):585−590. doi: 10.1111/j.1471-0307.2011.00716.x
    [26]
    赵飞燕, 刘亚华, 李枝, 等. 锡林郭勒地区鲜马奶中细菌多样性分析[J]. 微生物学通报,2019,46(12):3295−3304.
    [27]
    Ren Y, Yang Y, Zhang D, et al. Diversity analysis and quantification of lactic acid bacteria in traditionally fermented yaks’milk products from Tibet[J]. Food Biotechnology,2017,31:1−19. doi: 10.1080/08905436.2016.1269290
    [28]
    许真珍. 蜂蜜酒生香酵母的筛选及菌种选育研究[D]. 西安: 陕西师范大学, 2015: 5-10.
    [29]
    孟红, 岳玉娟, 姜秀芳, 等. 酵母菌氨基酸代谢与发酵饮料风味[J]. 食品科学,1995(2):24−26.
    [30]
    倪慧娟. 新疆地区和青海地区传统发酵乳制品中酵母菌的生物多样性[D]. 呼和浩特: 内蒙古农业大学, 2009.
    [31]
    祝春梅. 自然发酵酸马奶中酵母菌的分离鉴定及酵母菌产乳糖酶的研究[D]. 乌鲁木齐: 新疆农业大学, 2013.
    [32]
    Ishii S, Kikuchi M, Takao S. Isolation and ident ification of lactic acid bacteria and yeast s from “ Chigo” in Inner Mongolia, China[J]. Animal Science and Technology,1997,68(3):325.
    [33]
    张积荣, 姚新奎, 谭晓海, 等. 酸马奶中酵母菌的分离提纯及鉴定[J]. 新疆农业科学,2007(2):206−211.
    [34]
    Mu Z, Yang X, Yuan H. Detection and identification of wild yeast in Koumiss[J]. Food Microbiology,2012,31(2):301−308. doi: 10.1016/j.fm.2012.04.004
    [35]
    李静. 新疆酸马奶中酵母菌分离鉴定及安全性分析[D]. 乌鲁木齐: 新疆农业大学, 2012.
    [36]
    郭明丽. 草莓衰老过程中几种酶的变化及菌落表征[D]. 大连: 大连工业大学, 2015.
    [37]
    Narvhus J A, Gadaga T H. The role of interaction between yeasts and lactic acid bacteria in African fermented milks: A review[J]. International Journal of Food Microbiology,2003,86(1-2):51−60. doi: 10.1016/S0168-1605(03)00247-2
    [38]
    Sudun, Wulijideligen, Arakawa K, et al. Interaction between lactic acid bacteria and yeasts in airag, an alcoholic fermented milk[J]. Animal Science Journal,2013,84(1):66−74. doi: 10.1111/j.1740-0929.2012.01035.x
    [39]
    葛云飞, 赵舒婷, 刘德志, 等. 基于宏基因组技术分析自然发酵高粱菌群结构[J]. 食品研究与开发,2019,40(24):26−32.
    [40]
    袁钰, 李静, 林少华, 等. 基于16S rDNA高通量测序技术分析北京豆汁儿微生物多样性和功能预测的研究[J]. 食品工业科技,2020,41(2):95−100.
  • Related Articles

    [1]Longlong LUO, Weihe REN, Linhai CAI, Siru LIU, Ulamubek·duiSheikhdale, Alimat Sharizah, Gongtao DING, Li SONG, Li LUO, Shien CHEN. Research Progress on the Mechanism of Lactic Acid Bacteria in Improving Diabetes Metabolism[J]. Science and Technology of Food Industry, 2021, 42(8): 404-409. DOI: 10.13386/j.issn1002-0306.2020070270
    [2]Qisen XIANG, Rong ZHANG, Guihong DU, Limin WANG, Aimin JIANG. Inactivation Effects and Mechanisms of Plasma-Activated Water against S. typhimurium[J]. Science and Technology of Food Industry, 2021, 42(8): 138-143. DOI: 10.13386/j.issn1002-0306.2020080241
    [3]LI Ke, YU Lan-xiu, LIU Xiao-yu, LIU Dong, ZHANG Wei-guang. Research Progress on Improving Sleep Mechanism of γ-aminobutyric Acid[J]. Science and Technology of Food Industry, 2019, 40(14): 353-358. DOI: 10.13386/j.issn1002-0306.2019.14.058
    [4]LU Jing-jing, WANG Na-na, JIAO Wen-shu, HUO Gui-cheng. The Mechanism and Research Progress of Probiotics in Relieving Obesity[J]. Science and Technology of Food Industry, 2019, 40(3): 296-299,306. DOI: 10.13386/j.issn1002-0306.2019.03.047
    [5]WANG Hui, ZHAO Jiang, YANG Sheng-nan, ZHANG Xiao-han, CHENG Jing, WANG Hao. Anti-aging Effects and Underling Mechanism of D-chiro-inosiol on Glucose-Induced Oxidative Damage in Caenorhabditis elegans[J]. Science and Technology of Food Industry, 2019, 40(2): 282-286. DOI: 10.13386/j.issn1002-0306.2019.02.049
    [6]ZHOU Ting-ting, CAO Shao-qian, LI Si-si, QI Xiang-yang. Advances in oxidation deterioration mechanisms of oils and fats under non-thermal treatment[J]. Science and Technology of Food Industry, 2017, (10): 385-388. DOI: 10.13386/j.issn1002-0306.2017.10.066
    [7]ZHANG Hong, ZHOU Ying-yu, LU Wei-hong, CHEN Cui-lin, GAO Xin, SHAN Shan. Overview on anti-tumor mechanism and effect of diosmin[J]. Science and Technology of Food Industry, 2016, (24): 376-379. DOI: 10.13386/j.issn1002-0306.2016.24.065

Catalog

    Article Metrics

    Article views (322) PDF downloads (23) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return