Citation: | HE Fangjian, LI Jing, LIU Mingbao, et al. Microwave Drying Characteristics and Moisture Content Prediction of Hawthorn[J]. Science and Technology of Food Industry, 2021, 42(12): 32−38. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090098. |
[1] |
郭婷, 白向丽, 陈益能, 等. 干燥方式对大果山楂粉干燥速率及品质的影响[J]. 食品与机械,2019,35(10):122−125, 188.
|
[2] |
Jurikova Tunde, Sochor Jiri, Rop Otakar, et al. Polyphenolic profile and biological activity of Chinese hawthorn (Crataegus pinnatifida BUNGE) fruits[J]. Molecules (Basel, Switzerland),2012,17(12):14490−14509. doi: 10.3390/molecules171214490
|
[3] |
吕豪, 吕黄珍, 杨炳南, 等. 苦瓜微波-热风振动床干燥湿热特性与表观形态研究[J]. 农业机械学报,2020,51(4):373−381. doi: 10.6041/j.issn.1000-1298.2020.04.043
|
[4] |
Pande R, Mishra H N, Singh M N. Microwave drying for safe storage and improved nutritional quality of green gram seed (Vigna radiata)[J]. Journal of Agricultural & Food Chemistry,2012,60(14):3809−3816.
|
[5] |
唐小闲, 段振华, 任爱清, 等. 即食慈姑片微波干燥特性及动力学模型研究[J/OL]. 食品与机械: 1−11[2020-09-05]. http://kns.cnki.net/kcms/detail/43.1183.TS.20200629.1527.006.html.
|
[6] |
Jing Li, Zhenfeng Li, Lili Li, et al. Microwave drying of balsam pear with online aroma detection and control[J]. Journal of Food Engineering,2020:288.
|
[7] |
Ma X , Luo G , Li Z , et al. Microwave power control scheme for potatoes based on dielectric loss factor feedback[J]. Journal of Food Engineering,2020,288:110134.
|
[8] |
惠菊, 李臻峰, 李静, 等. 排湿风速对微波干燥过程湿度及其干燥特性的影响[J]. 浙江农业学报,2016,28(6):1061−1068.
|
[9] |
李静, 浦宏杰, 宋飞虎, 等. 排湿压力对微波干燥过程的影响[J]. 江苏农业科学,2015,43(5):257−259.
|
[10] |
李静, 宋飞虎, 浦宏杰, 等. 苹果控制排湿压力微波干燥模型研究[J]. 江苏农业科学,2015,43(11):529−532.
|
[11] |
席慧涵, 刘云宏, 王琦, 等. 马铃薯超声强化远红外辐射干燥特性及神经网络模型研究[J]. 食品与机械,2019,35(2):123−128, 152.
|
[12] |
Tavakolipour H, Mokhtarian M. Neural network approaches for prediction of pistachio drying kinetics[J]. International Journal of Food Engineering 2012, 8(3): 1–17.
|
[13] |
张丽丽, 王相友, 张海鹏. 山药切片红外干燥温度神经网络预测[J]. 农业机械学报,2014,45(11):246−249. doi: 10.6041/j.issn.1000-1298.2014.11.038
|
[14] |
Liu Yunhong, Sun Yue, Miao Shuai, et al. Drying characteristics of ultrasound assisted hot air drying of flos lonicerae[J]. Journal of Food Science and Technology,2015,52(8):4955−4964. doi: 10.1007/s13197-014-1612-3
|
[15] |
Ju H Y, Zhao S H, Mujumdar A S, et al. Energy efficient improvements in hot air drying by controlling relative humidity based on Weibull and Bi-Di models[J]. Food and Bioproducts Processing,2018,111:20−29. doi: 10.1016/j.fbp.2018.06.002
|
[16] |
巨浩羽, 肖红伟, 郑霞, 等. 干燥介质相对湿度对胡萝卜片热风干燥特性的影响[J]. 农业工程学报,2015,31(16):296−304. doi: 10.11975/j.issn.1002-6819.2015.16.040
|
[17] |
田华. 生姜微波干燥动力学模型构建[J]. 保鲜与加工,2020,20(1):127−132. doi: 10.3969/j.issn.1009-6221.2020.01.021
|
[18] |
Jian Wu Dai, Jun Quan Rao, Dong Wang, et al. Process-based drying temperature and humidity integration control enhances drying kinetics of apricot halves[J]. Drying Technology,2015,33(12):365−376.
|
[19] |
李文峰, 金欢欢, 肖旭霖. 山楂气体射流冲击干燥特性及干燥模型[J]. 食品科学,2014,35(9):69−73. doi: 10.7506/spkx1002-6630-201409015
|
[20] |
中华人民共和国卫生部. GB 5009.86-2016 食品安全国家标准 食品中抗坏血酸的测定[S]. 北京: 中国标准出版社, 2016.
|
[21] |
李文峰, 金欢欢, 肖旭霖. 气体射流冲击干燥对山楂抗坏血酸、还原糖、总酸及总黄酮的影响[J]. 食品与发酵工业,2013,39(7):147−153.
|
[22] |
Mohammad Hossein Nadian, Shahin Rafiee, Mortaza Aghbashlo, et al. Continuous real-time monitoring and neural network modeling of apple slices color changes during hot air drying[J]. Food and Bioproducts Processing,2015,94:263−274. doi: 10.1016/j.fbp.2014.03.005
|
[23] |
白竣文, 田潇瑜, 马海乐. 基于BP神经网络的葡萄气体射流冲击干燥含水率预测[J]. 现代食品科技,2016,32(12):198−203.
|
[24] |
刘品, 刘寅, 张艳, 等. 干燥介质相对湿度对红枣热风干燥特性的影响[J]. 食品与发酵工业,2019,45(11):185−190.
|
[25] |
于海明, 李海源, 张欣悦, 等. 水稻秸秆营养穴盘微波热风耦合干燥动力学模型研究[J]. 农业机械学报,2020,51(5):339−348. doi: 10.6041/j.issn.1000-1298.2020.05.037
|
[26] |
Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: Theory and applications[J]. Neurocomputing,2006,70(1−3):489−501. doi: 10.1016/j.neucom.2005.12.126
|