Citation: | WANG Huiping, ZHANG Huan, CHEN Qian, et al. Research Progress on Effects of Endogenous Protease on Quality of Fish During Storage[J]. Science and Technology of Food Industry, 2021, 42(19): 429−435. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080312. |
[1] |
陈瑨. 2020中国渔业统计年鉴[M]. 北京: 中国科学技术出版社, 2020: 17−25.
Chen Jin. 2020 China fishery statistical yearbook[M]. Beijing: China Science and Technlogy Press, 2020: 17−25.
|
[2] |
Kristoffersen S, Torbjørn T, Esaiassen M, et al. Effects of pre-rigour filleting on quality aspects of atlantic cod (Gadus morhua L.)[J]. Aquaculture Research,2010,37(15):1556−1564.
|
[3] |
Sriket C, Benjakul S, Visessanguan W. Characterisation of proteolytic enzymes from muscle and hepatopancreas of fresh water prawn (Macrobrachium rosenbergii)[J]. Journal of the Science of Food and Agriculture,2010,91(1):52−59.
|
[4] |
杨静, 夏文水, 葛黎红, 等. 内源蛋白酶和微生物对冷藏河豚鱼质构软化的作用研究[J]. 科学养鱼,2017(6):72−74. [Yang Jing, Xia Wenshui, Ge Lihonh, et al. Study on the effects of endogenous proteases and microorganisms on softening the texture of cold storage puffer fish[J]. Scientific Fish Farming,2017(6):72−74.
|
[5] |
卢涵. −20 ℃下鳙鱼肉中组织蛋白酶B及L对其肌纤维微结构及持水力的影响[J]. 华中农业大学学报,2019(5):122−129. [Lu Han. Effects of cathepsin B and L in bighead carp meat on the microstructure and water holding capacity of muscle fibers at −20 ℃[J]. Journal of Huazhong Agricultural University,2019(5):122−129.
|
[6] |
Tang M, Dai H, Ma L, et al. Degradation of structural proteins and their relationship with the quality of Mandarin fish (Siniperca chuatsi) during postmortem storage and cooking[J]. International Journal of Food Science and Technology,2020,55(4):1617−1628. doi: 10.1111/ijfs.14421
|
[7] |
Christensen S, Purslow P P. The role of matrix metalloproteinases in muscle and adipose tissue development and meat quality: A review[J]. Meat Science,2016,119:138−146. doi: 10.1016/j.meatsci.2016.04.025
|
[8] |
Wu J, Wang S, Sun X, et al. Purification, characterization, and cDNA cloning of a matrix metalloproteinase from the skeletal muscle of silver carp (Hypophthalmichthys molitrix) with collagen degradation activity[J]. Process Biochemistry,2016,51(7):854−864. doi: 10.1016/j.procbio.2016.04.004
|
[9] |
刘小莉, 王荣, 王帆, 等. 温度和pH值条件对白鱼内源性蛋白酶活性的影响[J]. 江苏农业科学,2020,48(2):188−192. [Liu Xiaoli, Wang Rong, Wang Fan, et al. Effects of temperature and pH value on activity of endogenous proteases in Culter alburnus[J]. Jiangsu Agricultural Sciences,2020,48(2):188−192.
|
[10] |
Rajaram S, Murawala H, Buch P, et al. Inhibition of BMP signaling reduces MMP-2 and MMP-9 expression and obstructs wound healing in regenerating fin of teleost fish Poecilia latipinna[J]. Fish Physiology and Biochemistry,2016,42(2):787−794. doi: 10.1007/s10695-015-0175-1
|
[11] |
Kubota M, Kinoshita M, Takeuchi K, et al. Solubilization of type I collagen from fish muscle connective tissue by matrix metalloproteinase-9 at chilled temperature[J]. Fisheries Science,2003,69(5):1053−1059. doi: 10.1046/j.1444-2906.2003.00726.x
|
[12] |
Michelin A C, Justulin L A, Delella F K, et al. Differential MMP and MMP activity and collagen distribution in skeletal muscle from pacu (Piaractus mesopotamicus) during juvenile and adult growth phases[J]. Anatomical Record Advances in Integrative Anatomy and Evolutionary Biology,2009,292(3):387−395. doi: 10.1002/ar.20863
|
[13] |
Hadler-Olsen E, Solli A I, Hafstad A, et al. Intracellular MMP-2 activity in skeletal muscle is associated with type II fibers[J]. Journal of Cellular Physiology,2015,230(1):160−169. doi: 10.1002/jcp.24694
|
[14] |
Veiseth-Kent E, Pedersen M E, Rnning S B, et al. Can postmortem proteolysis explain tenderness differences in various bovine muscles?[J]. Meat Science,2018,137:114−122. doi: 10.1016/j.meatsci.2017.11.011
|
[15] |
Bracho G E, Haard N F. Identification of two matrix metalloproteinases in the skeletal muscle of pacific rockfish (Sebastes sp. )[J]. Journal of Food Biochemistry,1995,19(4):299−319. doi: 10.1111/j.1745-4514.1995.tb00536.x
|
[16] |
Delbarre-Ladrat C, Chére R, Taylor R, et al. Trends in postmortem aging in fish: Understanding of proteolysis and disorganization of the myofibrillar structure[J]. Critical Reviews in Food Science and Nutrition,2006,46(5):409−421. doi: 10.1080/10408390591000929
|
[17] |
徐超. 蓝圆鲹肌肉金属蛋白酶的分离纯化及对胶原蛋白的作用[D]. 厦门: 集美大学, 2015: 7−14.
Xu Chao. Identification of a metalloproteinase from blue scad (Decapterus maruadsi) muscle and its effect on collagen[D]. Xiamen: Jimei University, 2015: 7−14.
|
[18] |
王诚. 胶原蛋白酶在鲤鱼肌肉软化过程中的作用及机理研究[D]. 厦门: 集美大学, 2013: 18−20.
Wang Cheng. Study on collagenolytic proteinases in the softening of common carp (Cyprinus carpio) muscle[D]. Xiamen: Jimei University, 2013: 18−20.
|
[19] |
Ding Z J, Wei Q C, Zhang C Z, et al. Influence of oxidation on heat shock protein 27 translocation, caspase-3 and calpain activities and myofibrils degradation in postmortem beef muscles[J]. Food Chemistry,2020:340.
|
[20] |
徐晨晨, 罗海玲. 钙蛋白酶系统对肌肉系水力的影响研究进展[J]. 肉类研究,2015(6):29−32. [Xu Chenchen, Luo Hailing. Advance in research on calpain system affecting water holding capacity in muscle[J]. Meat Research,2015(6):29−32.
|
[21] |
Storr S J, Carragher N O, Frame M C, et al. The calpain system and cancer[J]. Nature Reviews Cancer,2011,11(5):364−374. doi: 10.1038/nrc3050
|
[22] |
李琳, 王正全, 张晶晶, 等. 内源蛋白酶对肉类食品风味的影响[J]. 食品与发酵工业,2015,47(2):237−241. [Li Lin, Wang Zhengquan, Zhang Jingjing, et al. Effects of endogenous proteases on meat flavor[J]. Food and Fermentation Industry,2015,47(2):237−241.
|
[23] |
吴燕燕, 曹松敏, 魏涯, 等. 腌制鱼类中内源性酶类对制品品质影响的研究进展[J]. 2016, 8(37): 358−363.
Wu Yanyan, Cao Songmin, Wei Ya, et al. Research progress on the effect of endogenous enzymes on the quality of salted fish[J]. 2016, 8(37): 358−363.
|
[24] |
Ahmed Z, Donkor O, WayneA, et al. Calpainsand cathepsinsinduced myofibrillar changes in post-mortem fish: impact on structural softening and release of bioactive peptides[J]. Trends in Food Science and Technology,2015,45(1):1−166. doi: 10.1016/j.jpgs.2015.05.002
|
[25] |
苏永杰, 梁梓, 郑玉才. 钙蛋白酶在肉嫩化中的作用及其活性测定[J]. 西南民族大学学报,2008(3):564−567. [Su Yongjie, Liang Zi, Zheng Yucai. Role of calpains in meat tenderization and assay of their activities[J]. Journal of Southwest University for Nationalities,2008(3):564−567.
|
[26] |
Shigemura Y, Ando M, Harada K, et al. Possible degradation of type I collagen in relation to yellowtail muscle softening during chilled storage[J]. Fisheries Science,2004,70(4):703−709. doi: 10.1111/j.1444-2906.2004.00860.x
|
[27] |
Subbaiah K, Majumdar R K, Choudhury J, et al. Protein degradation and instrumental texture changes in fresh nile tilapia (Oreochromis niloticus) during frozen storagre[J]. Journal of Food Processing and Preservation,2015,39(6):2206−2214. doi: 10.1111/jfpp.12465
|
[28] |
魏世娜, 秦启伟. 鱼类溶菌酶和组织蛋白酶研究进展[J]. 广西科学,2018,25(1):32−35. [Wei Shina, Qin Qiwei. Advance on lysozyme and cathepsin of fish[J]. Guangxi Science,2018,25(1):32−35.
|
[29] |
Noguera M E, Jakoncic J, Mario R. High-resolution structure of intramolecularly proteolyzed human mucin-1 SEA domain[J]. Biochimica et Biophysica Acta (BBA) -Proteins and Proteomics,2020,1868(3):140361. doi: 10.1016/j.bbapap.2020.140361
|
[30] |
Nakanishi H. Cathepsin regulation on microglial function[J]. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics,2020,1868(9).
|
[31] |
葛黎红. 内源蛋白酶在低温保鲜草鱼质构劣化中的作用与控制研究[D]. 无锡: 江南大学, 2017: 15−31.
Ge Lihong. Study on correlation of endogenous proteases with texture deterioration of grass carp (Ctenopharyngodon idella) during chilled storage and quality control[D]. Wuxi: Jiangnan University, 2017: 15−31.
|
[32] |
Wang D, Zhang M, Deng S, et al. Postmortem changes in actomyosin dissociation, myofibril fragmentation and endogenous enzyme activities of grass carp (Ctenopharyngodon idellus) muscle[J]. Food Chemistry,2016,197(15):340−344.
|
[33] |
Ladrat C, Verrez-Bagnis V, NOEL J, et al. In vitro proteolysis of myofibrillar and sarcoplasmic proteins of white muscle of sea bass (Dicentrarchus labrax L.): effects of cathepsins B, D and L[J]. Food Chemistry,2003,81(4):517−525. doi: 10.1016/S0308-8146(02)00481-8
|
[34] |
Sainclivier M. L'industrie alimentaire halieutique[J]. Rennes Sciences Agronomiques Rennes,1985:219.
|
[35] |
Ouali A. Meat tenderization: possible causes and mechanisms: A review[J]. Journal of Muscle Foods,1990,1(2):129−165. doi: 10.1111/j.1745-4573.1990.tb00360.x
|
[36] |
Jiang S T. Effect of proteinases on the meat texture and seafood quality[J]. Food Science and Agricultural Chemistry,2000,2(2):55−74.
|
[37] |
曹松敏. 蓝圆鰺腌干过程中内源性酶类与品质变化的关系研究[D]. 上海: 上海海洋大学, 2017: 18−32.
Cao Songmin. Study on the relationship between the changes of endogenous enzymes andquality of Decapterus maruadsi duringdry-salted processing[D]. Shanghai: Shanghai Ocean University, 2017: 18−32.
|
[38] |
张晶晶, 王锡昌, 施文正. 白姑鱼和小黄鱼肉中挥发性风味物质的鉴定[J]. 食品科学,2019,40(14):206−213. [Zhang Jingjing, Wang Xichang, Shi Wenzheng. Identification of volatile compounds in white croaker and small yellow croaker[J]. Food Science,2019,40(14):206−213. doi: 10.7506/spkx1002-6630-20180901-001
|
[39] |
陈玉峰, 吴燕燕, 李来好, 等. 腌干鱼贮藏过程生物胺的变化及其货架期研究[J]. 核农学报,2016(8):1548−1557. [Chen Yufeng, Wu Yanyan, Li Laihao, et al. Study on the change of biogenic amines and its shelf life of dried-salted fish at storage[J]. Journal of Nuclear Agricultural Science,2016(8):1548−1557. doi: 10.11869/j.issn.100-8551.2016.08.1548
|
[40] |
Haard N F, Simpson B K. Seafood enzymes: Utilization and influence on postharvest seafood quality[M]. Abingdon: Taylor and Francis, 2000: 273.
|
[41] |
Ocano Higuera V M, Marquez Rios E, Canizales Davila M, et al. Postmortem changes in cazon fish muscle stored on ice[J]. Food Chemistry,2009,116(4):933−938. doi: 10.1016/j.foodchem.2009.03.049
|
[42] |
Nagasaka R, Harigaya A, Ohshima T. Effect of proteolysis on the meat quality of a brand fish, red sea bream pagrus major[J]. Food Science and Technology Research,2018,24(3):465−473. doi: 10.3136/fstr.24.465
|
[43] |
Lihong G, Yanshun X, Wenshui X, et al. Differential role of endogenous cathepsin and microorganism in texture softening of ice-stored grass carp (Ctenopharyngodon idella) fillets[J]. Journal of the Science of Food and Agriculture,2016,96(9):3233−3239. doi: 10.1002/jsfa.7506
|
[44] |
刘腾. 分割牛肉冷却成熟及贮藏对其品质的影响研究[D]. 福建: 福建农林大学, 2016: 18−20.
Liu Teng. Study on the effect of different pre-rigor chilling, ageing and storage temperature on quality characteristics of cut beef[D]. Fujian: Fujian Agriculture and Forestry University, 2016: 18−20.
|
[45] |
年琳玉. 鲱鱼抗冻蛋白对真鲷品质特性的影响及抗冻机制研究[D]. 大连: 渤海大学, 2019: 1.
Nian Linyu. Study on the antifreeze mechanism and effect on quality characteristics of red sea bream (Pagrosomus major) by herring antifreeze protein[D]. Dalian: Bohai University, 2019: 1.
|
[46] |
Yang F, Xia W, Rustad T, et al. Changes in myofibrillar structure of silver carp (Hypophthalmichthys molitrix) as affected by endogenous proteolysis under acidic condition[J]. International Journal of Food Science and Technology,2016,51(10):2171−2177. doi: 10.1111/ijfs.13199
|
[47] |
Sohn J H, Ohshima T. Control of lipid oxidation and meat color deterioration in skipjack tuna muscle during ice storage[J]. Fisheries Science,2010,76(4):703−710. doi: 10.1007/s12562-010-0248-0
|
[48] |
Ciaramella M A, Nair M N, Suman S P, et al. Differential abundance of muscle proteome in cultured channel catfish (Ictalurus punctatus) subjected to ante-mortem stressors and its impact on fillet quality[J]. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics,2016,20(1):10−18.
|
[49] |
Haard N. Biochemistry and chemistry of color and color change in seafoods.[J]. Advances in Seafood Biochemistry,1992:305−360.
|
[50] |
Singh A, Benjakul S. Proteolysis and its control using protease inhibitors in fish and fish products: A review[J]. Comprehensive Reviews in Food science and Food Safety,2018,7(2):496−509.
|
[51] |
夏静华. 天然保鲜剂对冷鲜羊肉保鲜效果及其内源蛋白酶和品质影响的研究[D]. 四川: 四川农业大学, 2010: 48.
Xia Jinghua. Effect of three nature preservatives in chilled mutton preservation and their influence on the endogenous proteases and the quality of mutton during the shelf life[D]. Sichuan: Sichuan Agricultural University, 2010: 48.
|
[52] |
Feng X, Fu C, Yang H. Gelatin addition improves the nutrient retention, texture and mass transfer of fish balls without altering their nanostructure during boiling[J]. LWT-Food Science and Technology,2017,77:142−151. doi: 10.1016/j.lwt.2016.11.024
|
[53] |
Feng X, Hang S, Zhou Y, et al. Bromelain kinetics and mechanism on myofibril from golden pomfret (Trachinotus blochii)[J]. Journal of Food Science,2018,83(9):2148−2158.
|
[54] |
Hultmann L, Rustad T. Iced storage of atlantic salmon (Salmo salar) effects on endogenous enzymes and their impact on muscle proteins and texture[J]. Food Chemistry,2004,87(1):31−41. doi: 10.1016/j.foodchem.2003.10.013
|
[55] |
Benjakul S, Visessanguan W, Thongkaew C, et al. Comparative study on physicochemical changes of muscle proteins from some tropical fish during frozen storage[J]. Food Research International,2003,36(8):787−795. doi: 10.1016/S0963-9969(03)00073-5
|
[56] |
Ayala M D, Abdel I, Santaella M, et al. Muscle tissue structural changes and texture development in sea bream, Sparus aurata L. during post-mortem storage[J]. LWT-Food Science and Technology,2010,43(3):465−475. doi: 10.1016/j.lwt.2009.08.023
|
[57] |
Godiksen H, Morzel M, Hyldig G, et al. Contribution of Cathepsins B, L and D to muscle protein profiles correlated with texture in rainbow trout (Oncorhynchus mykiss)[J]. Food Chemistry,2009,113(4):889−896. doi: 10.1016/j.foodchem.2008.08.012
|
[58] |
Ando M, Toyohara H, Shimizu Y, et al. Post-mortem tenderisation of rainbow trout (Oncorhyncus Mykiss) muscle caused by gradual disintegration of the extracellular matrix structure[J]. Journal of the Science of Food and Agriculture,1991,55(4):589−597. doi: 10.1002/jsfa.2740550410
|
[59] |
Martinez I, Wang P A, Slizyte R, et al. Protein expression and enzymatic activities in normal and soft textured Atlantic salmon (Salmo salar) muscle[J]. Food Chemistry,2011,126(1):140−148. doi: 10.1016/j.foodchem.2010.10.090
|
[60] |
Wu J L, Ge S Y, Cai Z X, et al. Purification and characterization of a gelatinolytic matrix metalloproteinase from the skeletal muscle of grass carp (Ctenopharyngodon idellus)[J]. Food Chemistry,2014,145(15):632−638.
|
[61] |
Cheng J H, Sun D W, Han Z, et al. Texture and structure measurements and analyses for evaluation of fish and fillet freshness quality: areview[J]. Comprehensive Reviews in Food Science and Food Safety,2014,13(1):52−61. doi: 10.1111/1541-4337.12043
|
[62] |
Bremner H A, Hallett I C. Muscle fiber-connective tissue junctions in the fish blue grenadier (Macruronus novaezelandiae) a scanning electron microscope study[J]. Journal of Food Science,2010,50(4):975−980.
|
[63] |
Xu Y, Ge L, Jiang X, et al. Inhibitory effect of aqueous extract of Alliumspecies on endogenous cathepsin activities and textural deterioration of ice-stored grass carp fillets[J]. Food and Bioprocess Technology,2015,8(10):2171−2175. doi: 10.1007/s11947-015-1564-2
|
[64] |
Ge L, Xu Y, Jiang X, et al. Broad-spectrum inhibition of proteolytic enzymes by allicin and application in mitigating textural deterioration of ice-stored grass carp (Ctenopharyngodon idella) fillets[J]. International Journal of Food Science and Technology,2016,51(4):902−910. doi: 10.1111/ijfs.13047
|
[65] |
Xu Y, Jiang X, Ge L, et al. Inhibitory effect of edible additives on collagenase activity and softening of chilled grass carp fillets[J]. Journal of Food Processing and Preservation,2016,41(2):e12836.
|
[66] |
赵良. 高压静电场对罗非鱼片品质的影响及作用机理研究[D]. 上海: 上海海洋大学, 2016: 34−43.
Zhao Liang. Research on the effect of high-voltage electrostatic field on the quality of tilapia fillets[D]. Shanghai: Shanghai Ocean University, 2016: 34−43.
|
[67] |
Yu D, Regenstein J M, Zang J, et al. Inhibitory effects of chitosan-based coatings on endogenous enzyme activities, proteolytic degradation and texture softening of grass carp (Ctenopharyngodon idellus) fillets stored at 4 ℃[J]. Food Chemistry,2018,262(1):1−6.
|
[68] |
余达威. 壳聚糖涂膜对冷藏草鱼片的品质影响研究[D]. 无锡: 江南大学, 2019: 43−64.
Yu Dawei. Study on effect of chitosan-based coating on the quality of refrigerated grass carp (Ctenopharyngodon idella) filets[D]. Wuxi: Jiangnan University, 2019: 43−64.
|