WANG Huiping, ZHANG Huan, CHEN Qian, et al. Research Progress on Effects of Endogenous Protease on Quality of Fish During Storage[J]. Science and Technology of Food Industry, 2021, 42(19): 429−435. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080312.
Citation: WANG Huiping, ZHANG Huan, CHEN Qian, et al. Research Progress on Effects of Endogenous Protease on Quality of Fish During Storage[J]. Science and Technology of Food Industry, 2021, 42(19): 429−435. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080312.

Research Progress on Effects of Endogenous Protease on Quality of Fish During Storage

More Information
  • Received Date: August 31, 2020
  • Available Online: July 25, 2021
  • During the storage of fish, many physical and chemical changes take place, which will cause the quality deterioration of fish. There are many factors that can affect the quality of fish, and endogenous proteases play an important role in quality deterioration. This review focuses on the three endogenous proteases, including matrix metalloproteinases, calpains and cathepsins, which are related to the decline of fish quality during storage. Also the theoretical basis of these three enzymes on fish protein are discussed. The mechanism of quality changes of fish meat induced by endogenous proteases, including flavor, water retention, color and texture, are reviewed in order to clarify the role of endogenous proteases in quality deterioration. Some techniques and methods to inhibit the activity of endogenous proteases in fish meat are reviewed, aiming to provide a reference for the development of quality detection and control technology for fish meat and its products.
  • [1]
    陈瑨. 2020中国渔业统计年鉴[M]. 北京: 中国科学技术出版社, 2020: 17−25.

    Chen Jin. 2020 China fishery statistical yearbook[M]. Beijing: China Science and Technlogy Press, 2020: 17−25.
    [2]
    Kristoffersen S, Torbjørn T, Esaiassen M, et al. Effects of pre-rigour filleting on quality aspects of atlantic cod (Gadus morhua L.)[J]. Aquaculture Research,2010,37(15):1556−1564.
    [3]
    Sriket C, Benjakul S, Visessanguan W. Characterisation of proteolytic enzymes from muscle and hepatopancreas of fresh water prawn (Macrobrachium rosenbergii)[J]. Journal of the Science of Food and Agriculture,2010,91(1):52−59.
    [4]
    杨静, 夏文水, 葛黎红, 等. 内源蛋白酶和微生物对冷藏河豚鱼质构软化的作用研究[J]. 科学养鱼,2017(6):72−74. [Yang Jing, Xia Wenshui, Ge Lihonh, et al. Study on the effects of endogenous proteases and microorganisms on softening the texture of cold storage puffer fish[J]. Scientific Fish Farming,2017(6):72−74.
    [5]
    卢涵. −20 ℃下鳙鱼肉中组织蛋白酶B及L对其肌纤维微结构及持水力的影响[J]. 华中农业大学学报,2019(5):122−129. [Lu Han. Effects of cathepsin B and L in bighead carp meat on the microstructure and water holding capacity of muscle fibers at −20 ℃[J]. Journal of Huazhong Agricultural University,2019(5):122−129.
    [6]
    Tang M, Dai H, Ma L, et al. Degradation of structural proteins and their relationship with the quality of Mandarin fish (Siniperca chuatsi) during postmortem storage and cooking[J]. International Journal of Food Science and Technology,2020,55(4):1617−1628. doi: 10.1111/ijfs.14421
    [7]
    Christensen S, Purslow P P. The role of matrix metalloproteinases in muscle and adipose tissue development and meat quality: A review[J]. Meat Science,2016,119:138−146. doi: 10.1016/j.meatsci.2016.04.025
    [8]
    Wu J, Wang S, Sun X, et al. Purification, characterization, and cDNA cloning of a matrix metalloproteinase from the skeletal muscle of silver carp (Hypophthalmichthys molitrix) with collagen degradation activity[J]. Process Biochemistry,2016,51(7):854−864. doi: 10.1016/j.procbio.2016.04.004
    [9]
    刘小莉, 王荣, 王帆, 等. 温度和pH值条件对白鱼内源性蛋白酶活性的影响[J]. 江苏农业科学,2020,48(2):188−192. [Liu Xiaoli, Wang Rong, Wang Fan, et al. Effects of temperature and pH value on activity of endogenous proteases in Culter alburnus[J]. Jiangsu Agricultural Sciences,2020,48(2):188−192.
    [10]
    Rajaram S, Murawala H, Buch P, et al. Inhibition of BMP signaling reduces MMP-2 and MMP-9 expression and obstructs wound healing in regenerating fin of teleost fish Poecilia latipinna[J]. Fish Physiology and Biochemistry,2016,42(2):787−794. doi: 10.1007/s10695-015-0175-1
    [11]
    Kubota M, Kinoshita M, Takeuchi K, et al. Solubilization of type I collagen from fish muscle connective tissue by matrix metalloproteinase-9 at chilled temperature[J]. Fisheries Science,2003,69(5):1053−1059. doi: 10.1046/j.1444-2906.2003.00726.x
    [12]
    Michelin A C, Justulin L A, Delella F K, et al. Differential MMP and MMP activity and collagen distribution in skeletal muscle from pacu (Piaractus mesopotamicus) during juvenile and adult growth phases[J]. Anatomical Record Advances in Integrative Anatomy and Evolutionary Biology,2009,292(3):387−395. doi: 10.1002/ar.20863
    [13]
    Hadler-Olsen E, Solli A I, Hafstad A, et al. Intracellular MMP-2 activity in skeletal muscle is associated with type II fibers[J]. Journal of Cellular Physiology,2015,230(1):160−169. doi: 10.1002/jcp.24694
    [14]
    Veiseth-Kent E, Pedersen M E, Rnning S B, et al. Can postmortem proteolysis explain tenderness differences in various bovine muscles?[J]. Meat Science,2018,137:114−122. doi: 10.1016/j.meatsci.2017.11.011
    [15]
    Bracho G E, Haard N F. Identification of two matrix metalloproteinases in the skeletal muscle of pacific rockfish (Sebastes sp. )[J]. Journal of Food Biochemistry,1995,19(4):299−319. doi: 10.1111/j.1745-4514.1995.tb00536.x
    [16]
    Delbarre-Ladrat C, Chére R, Taylor R, et al. Trends in postmortem aging in fish: Understanding of proteolysis and disorganization of the myofibrillar structure[J]. Critical Reviews in Food Science and Nutrition,2006,46(5):409−421. doi: 10.1080/10408390591000929
    [17]
    徐超. 蓝圆鲹肌肉金属蛋白酶的分离纯化及对胶原蛋白的作用[D]. 厦门: 集美大学, 2015: 7−14.

    Xu Chao. Identification of a metalloproteinase from blue scad (Decapterus maruadsi) muscle and its effect on collagen[D]. Xiamen: Jimei University, 2015: 7−14.
    [18]
    王诚. 胶原蛋白酶在鲤鱼肌肉软化过程中的作用及机理研究[D]. 厦门: 集美大学, 2013: 18−20.

    Wang Cheng. Study on collagenolytic proteinases in the softening of common carp (Cyprinus carpio) muscle[D]. Xiamen: Jimei University, 2013: 18−20.
    [19]
    Ding Z J, Wei Q C, Zhang C Z, et al. Influence of oxidation on heat shock protein 27 translocation, caspase-3 and calpain activities and myofibrils degradation in postmortem beef muscles[J]. Food Chemistry,2020:340.
    [20]
    徐晨晨, 罗海玲. 钙蛋白酶系统对肌肉系水力的影响研究进展[J]. 肉类研究,2015(6):29−32. [Xu Chenchen, Luo Hailing. Advance in research on calpain system affecting water holding capacity in muscle[J]. Meat Research,2015(6):29−32.
    [21]
    Storr S J, Carragher N O, Frame M C, et al. The calpain system and cancer[J]. Nature Reviews Cancer,2011,11(5):364−374. doi: 10.1038/nrc3050
    [22]
    李琳, 王正全, 张晶晶, 等. 内源蛋白酶对肉类食品风味的影响[J]. 食品与发酵工业,2015,47(2):237−241. [Li Lin, Wang Zhengquan, Zhang Jingjing, et al. Effects of endogenous proteases on meat flavor[J]. Food and Fermentation Industry,2015,47(2):237−241.
    [23]
    吴燕燕, 曹松敏, 魏涯, 等. 腌制鱼类中内源性酶类对制品品质影响的研究进展[J]. 2016, 8(37): 358−363.

    Wu Yanyan, Cao Songmin, Wei Ya, et al. Research progress on the effect of endogenous enzymes on the quality of salted fish[J]. 2016, 8(37): 358−363.
    [24]
    Ahmed Z, Donkor O, WayneA, et al. Calpainsand cathepsinsinduced myofibrillar changes in post-mortem fish: impact on structural softening and release of bioactive peptides[J]. Trends in Food Science and Technology,2015,45(1):1−166. doi: 10.1016/j.jpgs.2015.05.002
    [25]
    苏永杰, 梁梓, 郑玉才. 钙蛋白酶在肉嫩化中的作用及其活性测定[J]. 西南民族大学学报,2008(3):564−567. [Su Yongjie, Liang Zi, Zheng Yucai. Role of calpains in meat tenderization and assay of their activities[J]. Journal of Southwest University for Nationalities,2008(3):564−567.
    [26]
    Shigemura Y, Ando M, Harada K, et al. Possible degradation of type I collagen in relation to yellowtail muscle softening during chilled storage[J]. Fisheries Science,2004,70(4):703−709. doi: 10.1111/j.1444-2906.2004.00860.x
    [27]
    Subbaiah K, Majumdar R K, Choudhury J, et al. Protein degradation and instrumental texture changes in fresh nile tilapia (Oreochromis niloticus) during frozen storagre[J]. Journal of Food Processing and Preservation,2015,39(6):2206−2214. doi: 10.1111/jfpp.12465
    [28]
    魏世娜, 秦启伟. 鱼类溶菌酶和组织蛋白酶研究进展[J]. 广西科学,2018,25(1):32−35. [Wei Shina, Qin Qiwei. Advance on lysozyme and cathepsin of fish[J]. Guangxi Science,2018,25(1):32−35.
    [29]
    Noguera M E, Jakoncic J, Mario R. High-resolution structure of intramolecularly proteolyzed human mucin-1 SEA domain[J]. Biochimica et Biophysica Acta (BBA) -Proteins and Proteomics,2020,1868(3):140361. doi: 10.1016/j.bbapap.2020.140361
    [30]
    Nakanishi H. Cathepsin regulation on microglial function[J]. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics,2020,1868(9).
    [31]
    葛黎红. 内源蛋白酶在低温保鲜草鱼质构劣化中的作用与控制研究[D]. 无锡: 江南大学, 2017: 15−31.

    Ge Lihong. Study on correlation of endogenous proteases with texture deterioration of grass carp (Ctenopharyngodon idella) during chilled storage and quality control[D]. Wuxi: Jiangnan University, 2017: 15−31.
    [32]
    Wang D, Zhang M, Deng S, et al. Postmortem changes in actomyosin dissociation, myofibril fragmentation and endogenous enzyme activities of grass carp (Ctenopharyngodon idellus) muscle[J]. Food Chemistry,2016,197(15):340−344.
    [33]
    Ladrat C, Verrez-Bagnis V, NOEL J, et al. In vitro proteolysis of myofibrillar and sarcoplasmic proteins of white muscle of sea bass (Dicentrarchus labrax L.): effects of cathepsins B, D and L[J]. Food Chemistry,2003,81(4):517−525. doi: 10.1016/S0308-8146(02)00481-8
    [34]
    Sainclivier M. L'industrie alimentaire halieutique[J]. Rennes Sciences Agronomiques Rennes,1985:219.
    [35]
    Ouali A. Meat tenderization: possible causes and mechanisms: A review[J]. Journal of Muscle Foods,1990,1(2):129−165. doi: 10.1111/j.1745-4573.1990.tb00360.x
    [36]
    Jiang S T. Effect of proteinases on the meat texture and seafood quality[J]. Food Science and Agricultural Chemistry,2000,2(2):55−74.
    [37]
    曹松敏. 蓝圆鰺腌干过程中内源性酶类与品质变化的关系研究[D]. 上海: 上海海洋大学, 2017: 18−32.

    Cao Songmin. Study on the relationship between the changes of endogenous enzymes andquality of Decapterus maruadsi duringdry-salted processing[D]. Shanghai: Shanghai Ocean University, 2017: 18−32.
    [38]
    张晶晶, 王锡昌, 施文正. 白姑鱼和小黄鱼肉中挥发性风味物质的鉴定[J]. 食品科学,2019,40(14):206−213. [Zhang Jingjing, Wang Xichang, Shi Wenzheng. Identification of volatile compounds in white croaker and small yellow croaker[J]. Food Science,2019,40(14):206−213. doi: 10.7506/spkx1002-6630-20180901-001
    [39]
    陈玉峰, 吴燕燕, 李来好, 等. 腌干鱼贮藏过程生物胺的变化及其货架期研究[J]. 核农学报,2016(8):1548−1557. [Chen Yufeng, Wu Yanyan, Li Laihao, et al. Study on the change of biogenic amines and its shelf life of dried-salted fish at storage[J]. Journal of Nuclear Agricultural Science,2016(8):1548−1557. doi: 10.11869/j.issn.100-8551.2016.08.1548
    [40]
    Haard N F, Simpson B K. Seafood enzymes: Utilization and influence on postharvest seafood quality[M]. Abingdon: Taylor and Francis, 2000: 273.
    [41]
    Ocano Higuera V M, Marquez Rios E, Canizales Davila M, et al. Postmortem changes in cazon fish muscle stored on ice[J]. Food Chemistry,2009,116(4):933−938. doi: 10.1016/j.foodchem.2009.03.049
    [42]
    Nagasaka R, Harigaya A, Ohshima T. Effect of proteolysis on the meat quality of a brand fish, red sea bream pagrus major[J]. Food Science and Technology Research,2018,24(3):465−473. doi: 10.3136/fstr.24.465
    [43]
    Lihong G, Yanshun X, Wenshui X, et al. Differential role of endogenous cathepsin and microorganism in texture softening of ice-stored grass carp (Ctenopharyngodon idella) fillets[J]. Journal of the Science of Food and Agriculture,2016,96(9):3233−3239. doi: 10.1002/jsfa.7506
    [44]
    刘腾. 分割牛肉冷却成熟及贮藏对其品质的影响研究[D]. 福建: 福建农林大学, 2016: 18−20.

    Liu Teng. Study on the effect of different pre-rigor chilling, ageing and storage temperature on quality characteristics of cut beef[D]. Fujian: Fujian Agriculture and Forestry University, 2016: 18−20.
    [45]
    年琳玉. 鲱鱼抗冻蛋白对真鲷品质特性的影响及抗冻机制研究[D]. 大连: 渤海大学, 2019: 1.

    Nian Linyu. Study on the antifreeze mechanism and effect on quality characteristics of red sea bream (Pagrosomus major) by herring antifreeze protein[D]. Dalian: Bohai University, 2019: 1.
    [46]
    Yang F, Xia W, Rustad T, et al. Changes in myofibrillar structure of silver carp (Hypophthalmichthys molitrix) as affected by endogenous proteolysis under acidic condition[J]. International Journal of Food Science and Technology,2016,51(10):2171−2177. doi: 10.1111/ijfs.13199
    [47]
    Sohn J H, Ohshima T. Control of lipid oxidation and meat color deterioration in skipjack tuna muscle during ice storage[J]. Fisheries Science,2010,76(4):703−710. doi: 10.1007/s12562-010-0248-0
    [48]
    Ciaramella M A, Nair M N, Suman S P, et al. Differential abundance of muscle proteome in cultured channel catfish (Ictalurus punctatus) subjected to ante-mortem stressors and its impact on fillet quality[J]. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics,2016,20(1):10−18.
    [49]
    Haard N. Biochemistry and chemistry of color and color change in seafoods.[J]. Advances in Seafood Biochemistry,1992:305−360.
    [50]
    Singh A, Benjakul S. Proteolysis and its control using protease inhibitors in fish and fish products: A review[J]. Comprehensive Reviews in Food science and Food Safety,2018,7(2):496−509.
    [51]
    夏静华. 天然保鲜剂对冷鲜羊肉保鲜效果及其内源蛋白酶和品质影响的研究[D]. 四川: 四川农业大学, 2010: 48.

    Xia Jinghua. Effect of three nature preservatives in chilled mutton preservation and their influence on the endogenous proteases and the quality of mutton during the shelf life[D]. Sichuan: Sichuan Agricultural University, 2010: 48.
    [52]
    Feng X, Fu C, Yang H. Gelatin addition improves the nutrient retention, texture and mass transfer of fish balls without altering their nanostructure during boiling[J]. LWT-Food Science and Technology,2017,77:142−151. doi: 10.1016/j.lwt.2016.11.024
    [53]
    Feng X, Hang S, Zhou Y, et al. Bromelain kinetics and mechanism on myofibril from golden pomfret (Trachinotus blochii)[J]. Journal of Food Science,2018,83(9):2148−2158.
    [54]
    Hultmann L, Rustad T. Iced storage of atlantic salmon (Salmo salar) effects on endogenous enzymes and their impact on muscle proteins and texture[J]. Food Chemistry,2004,87(1):31−41. doi: 10.1016/j.foodchem.2003.10.013
    [55]
    Benjakul S, Visessanguan W, Thongkaew C, et al. Comparative study on physicochemical changes of muscle proteins from some tropical fish during frozen storage[J]. Food Research International,2003,36(8):787−795. doi: 10.1016/S0963-9969(03)00073-5
    [56]
    Ayala M D, Abdel I, Santaella M, et al. Muscle tissue structural changes and texture development in sea bream, Sparus aurata L. during post-mortem storage[J]. LWT-Food Science and Technology,2010,43(3):465−475. doi: 10.1016/j.lwt.2009.08.023
    [57]
    Godiksen H, Morzel M, Hyldig G, et al. Contribution of Cathepsins B, L and D to muscle protein profiles correlated with texture in rainbow trout (Oncorhynchus mykiss)[J]. Food Chemistry,2009,113(4):889−896. doi: 10.1016/j.foodchem.2008.08.012
    [58]
    Ando M, Toyohara H, Shimizu Y, et al. Post-mortem tenderisation of rainbow trout (Oncorhyncus Mykiss) muscle caused by gradual disintegration of the extracellular matrix structure[J]. Journal of the Science of Food and Agriculture,1991,55(4):589−597. doi: 10.1002/jsfa.2740550410
    [59]
    Martinez I, Wang P A, Slizyte R, et al. Protein expression and enzymatic activities in normal and soft textured Atlantic salmon (Salmo salar) muscle[J]. Food Chemistry,2011,126(1):140−148. doi: 10.1016/j.foodchem.2010.10.090
    [60]
    Wu J L, Ge S Y, Cai Z X, et al. Purification and characterization of a gelatinolytic matrix metalloproteinase from the skeletal muscle of grass carp (Ctenopharyngodon idellus)[J]. Food Chemistry,2014,145(15):632−638.
    [61]
    Cheng J H, Sun D W, Han Z, et al. Texture and structure measurements and analyses for evaluation of fish and fillet freshness quality: areview[J]. Comprehensive Reviews in Food Science and Food Safety,2014,13(1):52−61. doi: 10.1111/1541-4337.12043
    [62]
    Bremner H A, Hallett I C. Muscle fiber-connective tissue junctions in the fish blue grenadier (Macruronus novaezelandiae) a scanning electron microscope study[J]. Journal of Food Science,2010,50(4):975−980.
    [63]
    Xu Y, Ge L, Jiang X, et al. Inhibitory effect of aqueous extract of Alliumspecies on endogenous cathepsin activities and textural deterioration of ice-stored grass carp fillets[J]. Food and Bioprocess Technology,2015,8(10):2171−2175. doi: 10.1007/s11947-015-1564-2
    [64]
    Ge L, Xu Y, Jiang X, et al. Broad-spectrum inhibition of proteolytic enzymes by allicin and application in mitigating textural deterioration of ice-stored grass carp (Ctenopharyngodon idella) fillets[J]. International Journal of Food Science and Technology,2016,51(4):902−910. doi: 10.1111/ijfs.13047
    [65]
    Xu Y, Jiang X, Ge L, et al. Inhibitory effect of edible additives on collagenase activity and softening of chilled grass carp fillets[J]. Journal of Food Processing and Preservation,2016,41(2):e12836.
    [66]
    赵良. 高压静电场对罗非鱼片品质的影响及作用机理研究[D]. 上海: 上海海洋大学, 2016: 34−43.

    Zhao Liang. Research on the effect of high-voltage electrostatic field on the quality of tilapia fillets[D]. Shanghai: Shanghai Ocean University, 2016: 34−43.
    [67]
    Yu D, Regenstein J M, Zang J, et al. Inhibitory effects of chitosan-based coatings on endogenous enzyme activities, proteolytic degradation and texture softening of grass carp (Ctenopharyngodon idellus) fillets stored at 4 ℃[J]. Food Chemistry,2018,262(1):1−6.
    [68]
    余达威. 壳聚糖涂膜对冷藏草鱼片的品质影响研究[D]. 无锡: 江南大学, 2019: 43−64.

    Yu Dawei. Study on effect of chitosan-based coating on the quality of refrigerated grass carp (Ctenopharyngodon idella) filets[D]. Wuxi: Jiangnan University, 2019: 43−64.
  • Cited by

    Periodical cited type(7)

    1. 朱剑,许丹,马新悦,郑斌,邓尚贵,李铁军. 银鲳低温冻藏期间品质劣化及水分迁移规律的研究. 浙江海洋大学学报(自然科学版). 2024(02): 119-126+136 .
    2. 李小锋,张露,罗晶,王思宇,温庆辉,尹红梅,涂宗财. 烹饪方式对草鱼肉蛋白消化特性及其消化产物降血压活性的影响. 食品与发酵工业. 2024(15): 186-195 .
    3. 马新悦,韩悦,邓尚贵,郑斌,张小军,杨最素,许丹. 小黄鱼低温贮藏过程中内源性蛋白酶活性及其水分变化. 食品与发酵工业. 2023(09): 252-258 .
    4. 王雪莉,张婉,徐云强,汪兰,丁安子,石柳,吴文锦,陈胜,孙卫青,熊光权. 电商物流过程中温度波动对鮰鱼片冷藏品质的变化. 现代食品科技. 2023(08): 124-132 .
    5. 于希良,蔺小雨,谢伊莎,祁立波,丁浩宸,尚珊,董秀萍. 鱼肉颗粒及壳寡糖对中餐鱼滑品质的影响. 中国食品学报. 2023(10): 136-145 .
    6. 谢晶,裴聚鑫,郁慧洁,孙锦涛. 海水鱼的腐败因素及其相关代表性保鲜技术进展. 上海海洋大学学报. 2022(05): 1248-1259 .
    7. 陈志炎,闵二虎. 响应面优化鱼糜藕夹夹馅加工工艺. 中国调味品. 2021(11): 81-87+104 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (410) PDF downloads (43) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return