Citation: | GUAN Mengshu, XU Cong, JIANG Rui, et al. Recent Progress of Influence Factors and Mechanism of Oil Body Stability[J]. Science and Technology of Food Industry, 2021, 42(16): 421−428. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080291. |
[1] |
Huang A H C. Oil bodies and oleosins in seeds[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1992,43:177−200.
|
[2] |
Shimada T L, Hayashi M, Hara-Nishimura I. Membrane dynamics and multiple functions of oil bodies in seeds and leaves[J]. Plant Physiology,2018,176(1):199−207. doi: 10.1104/pp.17.01522
|
[3] |
Frandsen G I, Mundy J, Tzen J T C. Oil bodies and their associated proteins, oleosin and caleosin[J]. Physiologia Plantarum,2010,112(3):301−307.
|
[4] |
Yatsu L Y, Jacks T J. Spherosome membranes: Half unit-membranes[J]. Plant Physiology,1972,49(6):937−943. doi: 10.1104/pp.49.6.937
|
[5] |
胡琪, 郭诗文, 吕莹, 等. 油脂体组成、结构及油脂体蛋白研究进展[J]. 食品科学,2015,36(11):230−235. doi: 10.7506/spkx1002-6630-201511043
|
[6] |
Daniele Marcoux, Anna Gorkiewicz-Petkow, Ranella Hirsch, et al. Dry skin improvement by an oleosome emulsion as a carrier for sphingolipid[J]. Journal of the American Academy of Dermatology,2003,50(3):77.
|
[7] |
Tzen, J T. Surface structure and properties of plant seed oil bodies[J]. Journal of Cell Biology,1992,117(2):327−335. doi: 10.1083/jcb.117.2.327
|
[8] |
Tzen J, Cao Y, Laurent P, et al. Lipids, proteins, and structure of seed oil bodies from diverse species[J]. Plant Physiology,1993,101(1):267−276. doi: 10.1104/pp.101.1.267
|
[9] |
Capuano F, Frédéric Beaudoin, Napier J A, et al. Properties and exploitation of oleosins[J]. Biotechnology Advances,2007,25(2):203−206. doi: 10.1016/j.biotechadv.2006.11.006
|
[10] |
Jolivet Pascale, Boulard Céline, Bellamy Annick, et al. Oil body proteins sequentially accumulate throughout seed development in Brassica napus[J]. Journal of Plant Physiology,2011,168(17):2015−2020. doi: 10.1016/j.jplph.2011.06.007
|
[11] |
Tzen J T C, Lie G C, Huang A H C. Characterization of the charged components and their topology on the surface of plant seed oil bodies[J]. Journal of Biological Chemistry,1992,267(22):15626. doi: 10.1016/S0021-9258(19)49582-3
|
[12] |
Lin L J, Tai S S, Peng C C. Steroleosin, a sterol-binding dehydrogenase in seed oil bodies[J]. Plant Physiology,2002,128(4):1200−1211.
|
[13] |
Tai S S K, Chen M C M, Peng C C, et al. Gene family of oleosin isoforms and their structural stabilization in sesame seed oil bodies[J]. Journal of the Agricultural Chemical Society of Japan,2002,66(10):2146−2153.
|
[14] |
Frédéric Beaudoin, Napier J A. Targeting and membrane-insertion of a sunflower oleosin in vitro and in Saccharomyces cerevisiae: The central hydrophobic domain contains more than one signal sequence, and directs oleosin insertion into the endoplasmic reticulum membrane using a signal anchor sequence mechanism[J]. Planta,2002,215(2):293−303. doi: 10.1007/s00425-002-0737-1
|
[15] |
Purkrtova Z, Jolivet P, Miquel M, et al. Structure and function of seed lipid-body-associated proteins[J]. Comptes Rendus Biologies,2008,331(10):746−754. doi: 10.1016/j.crvi.2008.07.016
|
[16] |
Pasaribu B, Lin I P, Tzen J T C, et al. SLDP: A novel protein related to caleosin is associated with the endosymbiotic symbiodinium lipid droplets from euphyllia glabrescens[J]. Marine Biotechnology,2014,16(5):560−571. doi: 10.1007/s10126-014-9574-z
|
[17] |
Allouche D, Parello J, Sanejouand YH. Ca2+/Mg2+ exchange in parvalbumin and other EF-hand proteins. A theoretical study[J]. Journal of Molecular Biology,1999,285(2):857−873. doi: 10.1006/jmbi.1998.2329
|
[18] |
Poxleitner M, Rogers S W, Samuels A L, et al. A role for caleosin in degradation of oil-body storage lipid during seed germination[J]. Plant Journal,2010,47(6):917−933.
|
[19] |
Nikiforidis C V, Scholten E. High internal phase emulsion gels (HIPE-gels) created through assembly of natural oil bodies[J]. Food Hydrocolloids,2015,43(1):283−289.
|
[20] |
Yang N, Su C, Zhang Y, et al. In situ nanomechanical properties of natural oil bodies studied using atomic force microscopy[J]. Journal of Colloid and Interface Science,2020:362−374.
|
[21] |
Bourgeois C, Gomaa A I, Lefevre T, et al. Interaction of oil bodies proteins with phospholipid bilayers: A molecular level elucidation as revealed by infrared spectroscopy[J]. International Journal of Biological Macromolecules,2019:873−881.
|
[22] |
Iwanaga D, Gray D, Decker E A, et al. Stabilization of soybean oil bodies using protective pectin coatings formed by electrostatic deposition[J]. Journal of Agricultural & Food Chemistry,2008,56(6):2240−2245.
|
[23] |
徐琼. 共轭亚油酸水包油型乳液物理化学稳定性研究[D]. 武汉: 湖北工业大学, 2013.
|
[24] |
David Julian Mcclements. Critical review of techniques and methodologies for characterization of emulsion stability[J]. Critical Reviews in Food Science and Nutrition,2007,47(7):611−649. doi: 10.1080/10408390701289292
|
[25] |
Niu R H, Chen F S, Zhao Z T, et al. Effect of papain on the demulsification of peanut oil body emulsion and the corresponding mechanism[J]. Journal of Oleo Science,2020,69(6):617−625. doi: 10.5650/jos.ess19297
|
[26] |
Fisk I D, White D A, Lad M, et al. Oxidative stability of sunflower oil bodies[J]. European Journal of Lipid ence & Technology,2010,110(10):962−968.
|
[27] |
Constantinos V. Nikiforidis. Structure and functions of oleosomes (oil bodies)[J]. Advances in Colloid and Interface Science,2019:274.
|
[28] |
Karefyllakis D, Octaviana H, Jan V D G A, et al. The emulsifying performance of mildly derived mixtures from sunflower seeds[J]. Food Hydrocolloids,2018,88(3):75−85.
|
[29] |
Constantinos V. Nikiforidis, Olga A. Karkani, Vassilios Kiosseoglou. Exploitation of maize germ for the preparation of a stable oil-body nanoemulsion using a combined aqueous extraction-ultrafiltration method[J]. Food Hydrocolloids,2011,25(5):1122−1127. doi: 10.1016/j.foodhyd.2010.10.009
|
[30] |
田其英, 华欲飞, 孔祥珍, 等. 大豆油体的提取及其功能性质[J]. 食品工业,2019,40(3):13−16.
|
[31] |
Karkani Olga A, Nenadis Nikolaos, Nikiforidis Constantinos V, et al. Effect of recovery methods on the oxidative and physical stability of oil body emulsions[J]. Food Chemistry,2013,139(1-4):640−648. doi: 10.1016/j.foodchem.2012.12.055
|
[32] |
Yan Z, Zhao L, Kong X, et al. Behaviors of particle size and bound proteins of oil bodies in soymilk processing[J]. Food Chemistry,2016,194(3):881−890.
|
[33] |
Jian Ding, Zejian Xu, Baokun Qi, et al. Thermally treated soya bean oleosomes: the changes in their stability and associated proteins[J]. International Journal of Food Science & Technology,2020,55(1):229−238.
|
[34] |
Chen B, Mcclements D J, Gray D A, et al. Physical and oxidative stability of pre-emulsified oil bodies extracted from soybeans[J]. Food Chemistry,2012,132(3):1514−1520. doi: 10.1016/j.foodchem.2011.11.144
|
[35] |
丁俭, 张巧智, 韩天翔, 等. 热处理对大豆油脂体乳液特性的影响[J]. 食品科学,2016,37(19):8−14. doi: 10.7506/spkx1002-6630-201619002
|
[36] |
陈业明, 赵路苹, 熊小辉, 等. 热处理对大豆油体表面的油体蛋白和外源性蛋白影响[J]. 食品工业科技,2014,35(22):106−109, 113.
|
[37] |
Qi B, Ding J, Wang Z, et al. Deciphering the characteristics of soybean oleosome-associated protein in maintaining the stability of oleosomes as affected by pH[J]. Food Research International,2017,100(1):551.
|
[38] |
Wan Wang, Chunli Cui, Qiuling Wang, et al. Effect of pH on physicochemical properties of oil bodies from different oil crops[J]. Journal of Food Science and Technology,2019,56(1):49−58. doi: 10.1007/s13197-018-3453-y
|
[39] |
Kapchie V N, Yao L, Hauck C C, et al. Oxidative stability of soybean oil in oleosomes as affected by pH and iron[J]. Food Chemistry,2013,141(3):2286−2293. doi: 10.1016/j.foodchem.2013.05.018
|
[40] |
Lan X , Qiang W , Yang Y , et al. Physicochemical stability of safflower oil body emulsions during food processing[J]. LWT,2020.
|
[41] |
Toya Ishii, Kentaro Matsumiya, Yasuki Matsumura. Combinational effects of acid and salt addition on colloidal, interfacial, and emulsifying properties of purified soybean oil bodies[J]. Food Hydrocolloids,2021,111:106312.
|
[42] |
Zhou Longzheng, Chen Fusheng, Hao Lihua, et al. Peanut oil body composition and stability[J]. Journal of Food Science,2019,84(10):2812−2819. doi: 10.1111/1750-3841.14801
|
[43] |
王智丰, 雷帆, 武艺, 等. 芝麻油体的稳定性及油体膜蛋白结构分析[J]. 食品科技,2019,44(8):190−196.
|
[44] |
李婷婷, 李志远, 孙静, 等. 牡丹油体提取及其稳定性研究[J]. 中国粮油学报,2019,34(8):98−103. doi: 10.3969/j.issn.1003-0174.2019.08.017
|
[45] |
Maria Juliana Romero-Guzmán, Vasileios Petris, Simone De Chirico, et al. The effect of monovalent (Na+, K+) and divalent (Ca2+, Mg2+) cations on rapeseed oleosome (oil body) extraction and stability at pH 7[J]. Food Chemistry,2020,306:125578. doi: 10.1016/j.foodchem.2019.125578
|
[46] |
李迎宾. 咪唑类离子液体表面活性剂的性能及与蛋白质相互作用研究[D]. 郑州: 郑州轻工业大学, 2019.
|
[47] |
Nikiforidis C V, Donsouzi S, Kiosseoglou V. The interplay between diverse oil body extracts and exogenous biopolymers or surfactants[J]. Food Research International,2016,83(5):14−24.
|
[48] |
Constantinos V. Nikiforidis, Vassilios Kiosseoglou. Competitive displacement of oil body surface proteins by Tween 80 – Effect on physical stability[J]. Food Hydrocolloids,2011,25(5):1063−1068. doi: 10.1016/j.foodhyd.2010.10.002
|
[49] |
Sukhotu R, Shi X, Hu Q, et al. Aggregation behaviour and stability of maize germ oil body suspension[J]. Food Chemistry,2014,164:1−6. doi: 10.1016/j.foodchem.2014.05.003
|
[50] |
Hou Juncai, Feng Xue, Jiang Mengting, et al. Effect of NaCl on oxidative stability and protein properties of oil bodies from different oil crops[J]. LWT,2019,113:108263. doi: 10.1016/j.lwt.2019.108263
|
[51] |
Sui X, Sun H, Qi B, et al. Functional and conformational changes to soy proteins accompanying anthocyanins: Focus on covalent and non-covalent interactions[J]. Food Chemistry,2017,245(4):871−878.
|
[52] |
Ding Jian, Xu Zejian, Qi Baokun, et al. Physicochemical and oxidative stability of a soybean oleosome-based emulsion and its in vitro digestive fate as affected by (-)-epigallocatechin-3-gallate[J]. Food & Function,2018:66−75.
|
[53] |
Chen B, Mcclements D J, Decker E A. Role of continuous phase anionic polysaccharides on the oxidative stability of menhaden oil-in-water emulsions[J]. Journal of Agricultural & Food Chemistry,2010,58(6):3779−3784.
|
[54] |
Nikiforidis C V, Kiosseoglou V. Physicochemical stability of maize germ oil body emulsions as influenced by oil body surface-xanthan gum interactions[J]. Journal of Agricultural & Food Chemistry,2010,58(1):527.
|
[55] |
Su C, Feng Y, Ye J, et al. Effect of sodium alginate on the stability of natural soybean oil body emulsions[J]. RSC Advances,2018,8(9):4731−4741. doi: 10.1039/C7RA09375F
|
[56] |
Zhang, Yang, Wang, et al. Improving the stability of oil body emulsions from diverse plant seeds using sodium alginate[J]. Molecules,2019,24(21):3856. doi: 10.3390/molecules24213856
|
[57] |
Wu N N, Huang X, Yang X Q, et al. Stabilization of soybean oil body emulsions using ι-carrageenan: Effects of salt, thermal treatment and freeze-thaw cycling[J]. Food Hydrocolloids,2012,28(1):110−120. doi: 10.1016/j.foodhyd.2011.12.005
|
[58] |
Li Y, Liu B, Jiang L, et al. Interaction of soybean protein isolate and phosphatidylcholine in nanoemulsions: A fluorescence analysis[J]. Food Hydrocolloids,2019,87(2):814−829.
|
[59] |
姜梦婷, 王秋岭, 周鑫, 等. 不同油料作物油脂体氧化稳定性差异的研究[J]. 中国粮油学报,2018,33(10):63−70. doi: 10.3969/j.issn.1003-0174.2018.10.012
|
[60] |
梁新婷, 江连洲, 侯俊财, 等. 高油大豆与低油大豆油脂体组成及其稳定性的研究[J]. 中国粮油学报,2016,31(10):11−17. doi: 10.3969/j.issn.1003-0174.2016.10.003
|
[61] |
章书婷. 大豆油体工业化制备的应用研究及产品开发[D]. 广州: 华南理工大学, 2013.
|
[62] |
刘志静, 张鸿超, 赵悦含, 等. 不同源大豆油脂体对蛋黄酱组成成分及稳定性的影响[J]. 食品工业科技,2018,39(10):28−34.
|
[63] |
钟佳慧, 陈蓓蕾, 王倩, 等. 基于天然大豆油脂体-海藻酸钠的沙拉汁工艺研究[J]. 食品工业科技,2020,41(11):7−14, 20.
|
[64] |
Berry M J, Cox A R, Keenan R D, et al. Ice confection and its manufacturing process: US, EP20040763605[P]. 2006-07-12.
|
[65] |
居巧苓. 大豆油体富集物的分离及其功能性质研究[D]. 无锡: 江南大学, 2019.
|
[66] |
徐泽健, 章绍兵. 植物油体制备工艺及其稳定性研究进展[J]. 中国油脂,2016(9):41−45. doi: 10.3969/j.issn.1003-7969.2016.09.009
|
[67] |
Acevedo F, Rubilar, Mónica, Jofré, Ignacio, et al. Oil bodies as a potential microencapsulation carrier for astaxanthin stabilisation and safe delivery[J]. Journal of Microencapsulation,2014,31(5):488−500. doi: 10.3109/02652048.2013.879931
|
[68] |
Chiang C J, Chen C J, Liou P J, et al. Selective delivery of curcumin to HER2/neu-overexpressing tumor cells using nanoscale oil body[J]. Journal of the Taiwan Institute of Chemical Engineers,2019:38−44.
|
[69] |
J Boucher, F Cengelli, D Trumbic, et al. Sorption of hydrophobic organic compounds (HOC) in rapeseed oil bodies[J]. Chemospere,2008,70:1452−1458. doi: 10.1016/j.chemosphere.2007.08.065
|