GUAN Mengshu, XU Cong, JIANG Rui, et al. Recent Progress of Influence Factors and Mechanism of Oil Body Stability[J]. Science and Technology of Food Industry, 2021, 42(16): 421−428. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080291.
Citation: GUAN Mengshu, XU Cong, JIANG Rui, et al. Recent Progress of Influence Factors and Mechanism of Oil Body Stability[J]. Science and Technology of Food Industry, 2021, 42(16): 421−428. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080291.

Recent Progress of Influence Factors and Mechanism of Oil Body Stability

More Information
  • Received Date: August 30, 2020
  • Available Online: June 04, 2021
  • Oil bodies are important organelles for plants to store lipids. In recent years, with the deepening of research on oil bodies, it has been found that because oil bodies have a natural protein-phospholipid interface layer, oil bodies can be dispersed in the water phase to form an oil-in-water (O/W) emulsification system. The system has good physical and chemical stability. People have begun to try to use oil bodies of food, feed and personal care products. It is of practical significance to explore the influencing factors and mechanism of oil body stability for the actual production and application of oil bodies. The structural integrity of the oil body and the proteins embedded on the surface of the oil body membrane are the determinants of maintaining the stability of the oil body. The stability of the fat body emulsion is related to the conditions of the fat body composition, extraction method, exogenous protein, pH and salt concentration. This article reviews the structure and composition of oil bodies, emulsion stability and applications, and provides references for the research and application of oil bodies.
  • [1]
    Huang A H C. Oil bodies and oleosins in seeds[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1992,43:177−200.
    [2]
    Shimada T L, Hayashi M, Hara-Nishimura I. Membrane dynamics and multiple functions of oil bodies in seeds and leaves[J]. Plant Physiology,2018,176(1):199−207. doi: 10.1104/pp.17.01522
    [3]
    Frandsen G I, Mundy J, Tzen J T C. Oil bodies and their associated proteins, oleosin and caleosin[J]. Physiologia Plantarum,2010,112(3):301−307.
    [4]
    Yatsu L Y, Jacks T J. Spherosome membranes: Half unit-membranes[J]. Plant Physiology,1972,49(6):937−943. doi: 10.1104/pp.49.6.937
    [5]
    胡琪, 郭诗文, 吕莹, 等. 油脂体组成、结构及油脂体蛋白研究进展[J]. 食品科学,2015,36(11):230−235. doi: 10.7506/spkx1002-6630-201511043
    [6]
    Daniele Marcoux, Anna Gorkiewicz-Petkow, Ranella Hirsch, et al. Dry skin improvement by an oleosome emulsion as a carrier for sphingolipid[J]. Journal of the American Academy of Dermatology,2003,50(3):77.
    [7]
    Tzen, J T. Surface structure and properties of plant seed oil bodies[J]. Journal of Cell Biology,1992,117(2):327−335. doi: 10.1083/jcb.117.2.327
    [8]
    Tzen J, Cao Y, Laurent P, et al. Lipids, proteins, and structure of seed oil bodies from diverse species[J]. Plant Physiology,1993,101(1):267−276. doi: 10.1104/pp.101.1.267
    [9]
    Capuano F, Frédéric Beaudoin, Napier J A, et al. Properties and exploitation of oleosins[J]. Biotechnology Advances,2007,25(2):203−206. doi: 10.1016/j.biotechadv.2006.11.006
    [10]
    Jolivet Pascale, Boulard Céline, Bellamy Annick, et al. Oil body proteins sequentially accumulate throughout seed development in Brassica napus[J]. Journal of Plant Physiology,2011,168(17):2015−2020. doi: 10.1016/j.jplph.2011.06.007
    [11]
    Tzen J T C, Lie G C, Huang A H C. Characterization of the charged components and their topology on the surface of plant seed oil bodies[J]. Journal of Biological Chemistry,1992,267(22):15626. doi: 10.1016/S0021-9258(19)49582-3
    [12]
    Lin L J, Tai S S, Peng C C. Steroleosin, a sterol-binding dehydrogenase in seed oil bodies[J]. Plant Physiology,2002,128(4):1200−1211.
    [13]
    Tai S S K, Chen M C M, Peng C C, et al. Gene family of oleosin isoforms and their structural stabilization in sesame seed oil bodies[J]. Journal of the Agricultural Chemical Society of Japan,2002,66(10):2146−2153.
    [14]
    Frédéric Beaudoin, Napier J A. Targeting and membrane-insertion of a sunflower oleosin in vitro and in Saccharomyces cerevisiae: The central hydrophobic domain contains more than one signal sequence, and directs oleosin insertion into the endoplasmic reticulum membrane using a signal anchor sequence mechanism[J]. Planta,2002,215(2):293−303. doi: 10.1007/s00425-002-0737-1
    [15]
    Purkrtova Z, Jolivet P, Miquel M, et al. Structure and function of seed lipid-body-associated proteins[J]. Comptes Rendus Biologies,2008,331(10):746−754. doi: 10.1016/j.crvi.2008.07.016
    [16]
    Pasaribu B, Lin I P, Tzen J T C, et al. SLDP: A novel protein related to caleosin is associated with the endosymbiotic symbiodinium lipid droplets from euphyllia glabrescens[J]. Marine Biotechnology,2014,16(5):560−571. doi: 10.1007/s10126-014-9574-z
    [17]
    Allouche D, Parello J, Sanejouand YH. Ca2+/Mg2+ exchange in parvalbumin and other EF-hand proteins. A theoretical study[J]. Journal of Molecular Biology,1999,285(2):857−873. doi: 10.1006/jmbi.1998.2329
    [18]
    Poxleitner M, Rogers S W, Samuels A L, et al. A role for caleosin in degradation of oil-body storage lipid during seed germination[J]. Plant Journal,2010,47(6):917−933.
    [19]
    Nikiforidis C V, Scholten E. High internal phase emulsion gels (HIPE-gels) created through assembly of natural oil bodies[J]. Food Hydrocolloids,2015,43(1):283−289.
    [20]
    Yang N, Su C, Zhang Y, et al. In situ nanomechanical properties of natural oil bodies studied using atomic force microscopy[J]. Journal of Colloid and Interface Science,2020:362−374.
    [21]
    Bourgeois C, Gomaa A I, Lefevre T, et al. Interaction of oil bodies proteins with phospholipid bilayers: A molecular level elucidation as revealed by infrared spectroscopy[J]. International Journal of Biological Macromolecules,2019:873−881.
    [22]
    Iwanaga D, Gray D, Decker E A, et al. Stabilization of soybean oil bodies using protective pectin coatings formed by electrostatic deposition[J]. Journal of Agricultural & Food Chemistry,2008,56(6):2240−2245.
    [23]
    徐琼. 共轭亚油酸水包油型乳液物理化学稳定性研究[D]. 武汉: 湖北工业大学, 2013.
    [24]
    David Julian Mcclements. Critical review of techniques and methodologies for characterization of emulsion stability[J]. Critical Reviews in Food Science and Nutrition,2007,47(7):611−649. doi: 10.1080/10408390701289292
    [25]
    Niu R H, Chen F S, Zhao Z T, et al. Effect of papain on the demulsification of peanut oil body emulsion and the corresponding mechanism[J]. Journal of Oleo Science,2020,69(6):617−625. doi: 10.5650/jos.ess19297
    [26]
    Fisk I D, White D A, Lad M, et al. Oxidative stability of sunflower oil bodies[J]. European Journal of Lipid ence & Technology,2010,110(10):962−968.
    [27]
    Constantinos V. Nikiforidis. Structure and functions of oleosomes (oil bodies)[J]. Advances in Colloid and Interface Science,2019:274.
    [28]
    Karefyllakis D, Octaviana H, Jan V D G A, et al. The emulsifying performance of mildly derived mixtures from sunflower seeds[J]. Food Hydrocolloids,2018,88(3):75−85.
    [29]
    Constantinos V. Nikiforidis, Olga A. Karkani, Vassilios Kiosseoglou. Exploitation of maize germ for the preparation of a stable oil-body nanoemulsion using a combined aqueous extraction-ultrafiltration method[J]. Food Hydrocolloids,2011,25(5):1122−1127. doi: 10.1016/j.foodhyd.2010.10.009
    [30]
    田其英, 华欲飞, 孔祥珍, 等. 大豆油体的提取及其功能性质[J]. 食品工业,2019,40(3):13−16.
    [31]
    Karkani Olga A, Nenadis Nikolaos, Nikiforidis Constantinos V, et al. Effect of recovery methods on the oxidative and physical stability of oil body emulsions[J]. Food Chemistry,2013,139(1-4):640−648. doi: 10.1016/j.foodchem.2012.12.055
    [32]
    Yan Z, Zhao L, Kong X, et al. Behaviors of particle size and bound proteins of oil bodies in soymilk processing[J]. Food Chemistry,2016,194(3):881−890.
    [33]
    Jian Ding, Zejian Xu, Baokun Qi, et al. Thermally treated soya bean oleosomes: the changes in their stability and associated proteins[J]. International Journal of Food Science & Technology,2020,55(1):229−238.
    [34]
    Chen B, Mcclements D J, Gray D A, et al. Physical and oxidative stability of pre-emulsified oil bodies extracted from soybeans[J]. Food Chemistry,2012,132(3):1514−1520. doi: 10.1016/j.foodchem.2011.11.144
    [35]
    丁俭, 张巧智, 韩天翔, 等. 热处理对大豆油脂体乳液特性的影响[J]. 食品科学,2016,37(19):8−14. doi: 10.7506/spkx1002-6630-201619002
    [36]
    陈业明, 赵路苹, 熊小辉, 等. 热处理对大豆油体表面的油体蛋白和外源性蛋白影响[J]. 食品工业科技,2014,35(22):106−109, 113.
    [37]
    Qi B, Ding J, Wang Z, et al. Deciphering the characteristics of soybean oleosome-associated protein in maintaining the stability of oleosomes as affected by pH[J]. Food Research International,2017,100(1):551.
    [38]
    Wan Wang, Chunli Cui, Qiuling Wang, et al. Effect of pH on physicochemical properties of oil bodies from different oil crops[J]. Journal of Food Science and Technology,2019,56(1):49−58. doi: 10.1007/s13197-018-3453-y
    [39]
    Kapchie V N, Yao L, Hauck C C, et al. Oxidative stability of soybean oil in oleosomes as affected by pH and iron[J]. Food Chemistry,2013,141(3):2286−2293. doi: 10.1016/j.foodchem.2013.05.018
    [40]
    Lan X , Qiang W , Yang Y , et al. Physicochemical stability of safflower oil body emulsions during food processing[J]. LWT,2020.
    [41]
    Toya Ishii, Kentaro Matsumiya, Yasuki Matsumura. Combinational effects of acid and salt addition on colloidal, interfacial, and emulsifying properties of purified soybean oil bodies[J]. Food Hydrocolloids,2021,111:106312.
    [42]
    Zhou Longzheng, Chen Fusheng, Hao Lihua, et al. Peanut oil body composition and stability[J]. Journal of Food Science,2019,84(10):2812−2819. doi: 10.1111/1750-3841.14801
    [43]
    王智丰, 雷帆, 武艺, 等. 芝麻油体的稳定性及油体膜蛋白结构分析[J]. 食品科技,2019,44(8):190−196.
    [44]
    李婷婷, 李志远, 孙静, 等. 牡丹油体提取及其稳定性研究[J]. 中国粮油学报,2019,34(8):98−103. doi: 10.3969/j.issn.1003-0174.2019.08.017
    [45]
    Maria Juliana Romero-Guzmán, Vasileios Petris, Simone De Chirico, et al. The effect of monovalent (Na+, K+) and divalent (Ca2+, Mg2+) cations on rapeseed oleosome (oil body) extraction and stability at pH 7[J]. Food Chemistry,2020,306:125578. doi: 10.1016/j.foodchem.2019.125578
    [46]
    李迎宾. 咪唑类离子液体表面活性剂的性能及与蛋白质相互作用研究[D]. 郑州: 郑州轻工业大学, 2019.
    [47]
    Nikiforidis C V, Donsouzi S, Kiosseoglou V. The interplay between diverse oil body extracts and exogenous biopolymers or surfactants[J]. Food Research International,2016,83(5):14−24.
    [48]
    Constantinos V. Nikiforidis, Vassilios Kiosseoglou. Competitive displacement of oil body surface proteins by Tween 80 – Effect on physical stability[J]. Food Hydrocolloids,2011,25(5):1063−1068. doi: 10.1016/j.foodhyd.2010.10.002
    [49]
    Sukhotu R, Shi X, Hu Q, et al. Aggregation behaviour and stability of maize germ oil body suspension[J]. Food Chemistry,2014,164:1−6. doi: 10.1016/j.foodchem.2014.05.003
    [50]
    Hou Juncai, Feng Xue, Jiang Mengting, et al. Effect of NaCl on oxidative stability and protein properties of oil bodies from different oil crops[J]. LWT,2019,113:108263. doi: 10.1016/j.lwt.2019.108263
    [51]
    Sui X, Sun H, Qi B, et al. Functional and conformational changes to soy proteins accompanying anthocyanins: Focus on covalent and non-covalent interactions[J]. Food Chemistry,2017,245(4):871−878.
    [52]
    Ding Jian, Xu Zejian, Qi Baokun, et al. Physicochemical and oxidative stability of a soybean oleosome-based emulsion and its in vitro digestive fate as affected by (-)-epigallocatechin-3-gallate[J]. Food & Function,2018:66−75.
    [53]
    Chen B, Mcclements D J, Decker E A. Role of continuous phase anionic polysaccharides on the oxidative stability of menhaden oil-in-water emulsions[J]. Journal of Agricultural & Food Chemistry,2010,58(6):3779−3784.
    [54]
    Nikiforidis C V, Kiosseoglou V. Physicochemical stability of maize germ oil body emulsions as influenced by oil body surface-xanthan gum interactions[J]. Journal of Agricultural & Food Chemistry,2010,58(1):527.
    [55]
    Su C, Feng Y, Ye J, et al. Effect of sodium alginate on the stability of natural soybean oil body emulsions[J]. RSC Advances,2018,8(9):4731−4741. doi: 10.1039/C7RA09375F
    [56]
    Zhang, Yang, Wang, et al. Improving the stability of oil body emulsions from diverse plant seeds using sodium alginate[J]. Molecules,2019,24(21):3856. doi: 10.3390/molecules24213856
    [57]
    Wu N N, Huang X, Yang X Q, et al. Stabilization of soybean oil body emulsions using ι-carrageenan: Effects of salt, thermal treatment and freeze-thaw cycling[J]. Food Hydrocolloids,2012,28(1):110−120. doi: 10.1016/j.foodhyd.2011.12.005
    [58]
    Li Y, Liu B, Jiang L, et al. Interaction of soybean protein isolate and phosphatidylcholine in nanoemulsions: A fluorescence analysis[J]. Food Hydrocolloids,2019,87(2):814−829.
    [59]
    姜梦婷, 王秋岭, 周鑫, 等. 不同油料作物油脂体氧化稳定性差异的研究[J]. 中国粮油学报,2018,33(10):63−70. doi: 10.3969/j.issn.1003-0174.2018.10.012
    [60]
    梁新婷, 江连洲, 侯俊财, 等. 高油大豆与低油大豆油脂体组成及其稳定性的研究[J]. 中国粮油学报,2016,31(10):11−17. doi: 10.3969/j.issn.1003-0174.2016.10.003
    [61]
    章书婷. 大豆油体工业化制备的应用研究及产品开发[D]. 广州: 华南理工大学, 2013.
    [62]
    刘志静, 张鸿超, 赵悦含, 等. 不同源大豆油脂体对蛋黄酱组成成分及稳定性的影响[J]. 食品工业科技,2018,39(10):28−34.
    [63]
    钟佳慧, 陈蓓蕾, 王倩, 等. 基于天然大豆油脂体-海藻酸钠的沙拉汁工艺研究[J]. 食品工业科技,2020,41(11):7−14, 20.
    [64]
    Berry M J, Cox A R, Keenan R D, et al. Ice confection and its manufacturing process: US, EP20040763605[P]. 2006-07-12.
    [65]
    居巧苓. 大豆油体富集物的分离及其功能性质研究[D]. 无锡: 江南大学, 2019.
    [66]
    徐泽健, 章绍兵. 植物油体制备工艺及其稳定性研究进展[J]. 中国油脂,2016(9):41−45. doi: 10.3969/j.issn.1003-7969.2016.09.009
    [67]
    Acevedo F, Rubilar, Mónica, Jofré, Ignacio, et al. Oil bodies as a potential microencapsulation carrier for astaxanthin stabilisation and safe delivery[J]. Journal of Microencapsulation,2014,31(5):488−500. doi: 10.3109/02652048.2013.879931
    [68]
    Chiang C J, Chen C J, Liou P J, et al. Selective delivery of curcumin to HER2/neu-overexpressing tumor cells using nanoscale oil body[J]. Journal of the Taiwan Institute of Chemical Engineers,2019:38−44.
    [69]
    J Boucher, F Cengelli, D Trumbic, et al. Sorption of hydrophobic organic compounds (HOC) in rapeseed oil bodies[J]. Chemospere,2008,70:1452−1458. doi: 10.1016/j.chemosphere.2007.08.065
  • Cited by

    Periodical cited type(12)

    1. 赵星,张嘉楠,张一鸣,金欣欣,苏俏,宋亚辉,李玉荣,王瑾. 花生籽仁蔗糖含量近红外光谱快速测定方法研究. 中国油料作物学报. 2025(01): 226-233 .
    2. 魏松丽,张丽霞,孙强,芦鑫,靳淑秀,孙晓静,金璐,游静,黄纪念. 真空干燥花生油体的条件优化及性质表征. 河南工业大学学报(自然科学版). 2024(01): 8-16 .
    3. 张亚靖,陈复生,王颖颖,刘晨,郑乾坤,殷丽君. 油脂体的提取方法及其在食品中应用的研究进展. 中国油脂. 2024(08): 131-136 .
    4. 单子明,彭郁,秦琛强,傅娆,李茉,倪元颖,温馨. 植物油脂体提取及稳定性评价研究进展. 食品科学. 2024(19): 19251-19262 .
    5. 忠梦,刘白宁,华威,王锋,荣瑞芬,段玉权. 不同包装核桃仁氧化机制分析. 食品科学. 2024(20): 65-73 .
    6. 尹国友,杨卓凡,曾姣,张莹莹,孙婕,王召. 大豆油体包埋韭菜籽油微胶囊工艺优化及其稳定性评价. 食品科技. 2024(11): 267-275 .
    7. 李天赐,陈毅保,刘昆仑,陈复生,杨趁仙,段晓杰,朱婷伟. 界面蛋白对水酶法提取植物油脂过程中乳状液稳定性影响的研究进展. 食品科学. 2023(17): 188-195 .
    8. 王广婕,赵焕宇,苏成成,韦旋,吴梦果,单迪,黄萍,马佳歌,侯俊财,姜瞻梅. 油脂体的组成、结构及氧化稳定性研究进展. 食品科学. 2023(21): 293-302 .
    9. 官梦姝,冯雪,刘月,朱秀清,姜瞻梅,江连洲,侯俊财. 3种天然酚类物质对大豆油脂体稳定性及体外消化性的影响. 食品科学. 2022(03): 10-18 .
    10. 秦晓鹏,黄沙沙,聂成镇,禹晓,邓乾春,相启森,朱莹莹. 微波处理对萌动亚麻籽酚类化合物油相迁移的影响. 食品科学技术学报. 2022(03): 124-136 .
    11. 汪锦,应瑞峰,王耀松,黄梅桂. 超声-水酶法对高品质薄壳山核桃油释放的影响. 食品与发酵工业. 2022(18): 177-182 .
    12. 刘子豪,梅雅欣,彭郁,傅娆,秦琛强,倪元颖,温馨. 外源蛋白对大豆油脂体稳定性的影响. 食品科学. 2022(22): 1-9 .

    Other cited types(12)

Catalog

    Article Metrics

    Article views (571) PDF downloads (54) Cited by(24)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return