SUN Chong, YAO Yukun, FANG Ting, et al. Research Progress on Preparation Process and Biological Activity of Marine Oligosaccharides[J]. Science and Technology of Food Industry, 2021, 42(18): 446−453. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080280.
Citation: SUN Chong, YAO Yukun, FANG Ting, et al. Research Progress on Preparation Process and Biological Activity of Marine Oligosaccharides[J]. Science and Technology of Food Industry, 2021, 42(18): 446−453. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080280.

Research Progress on Preparation Process and Biological Activity of Marine Oligosaccharides

More Information
  • Received Date: August 30, 2020
  • Available Online: June 29, 2021
  • With the increasing research of marine polysaccharides, people are attaching importance to the research of marine oligosaccharides. Marine oligosaccharides are prepared by the degradation from marine polysaccharides with different methods. They have the characteristics of abundant sources, small molecular weight and unique structure. The degraded marine oligosaccharides have stronger biological activities than marine polysaccharides, such as anti-oxidation, anti-tumor, immunomodulation, anti-inflammatory, regulating intestinal microorganisms, etc. Therefore, they are widely used in food, health products, medicine and other fields. At present, the methods of marine oligosaccharides preparation include: Chemical degradation, physical degradation and enzyme degradation. In order to understand the research progress, promote the application and development of marine oligosaccharides, in this paper, the preparation methods and physiological activities of marine oligosaccharides are reviewed, which is expected to provide references for the further research and development of marine oligosaccharides.
  • [1]
    Zhu B W, Ni F, Xiong Q, et al. Marine oligosaccharides originated from seaweeds: Source, preparation, structure, physiological activity and applications[J]. Critical Reviews in Food Science and Nutrition,2021,61(1):60−74. doi: 10.1080/10408398.2020.1716207
    [2]
    张柯柯, 刘伟治, 律倩倩. 海洋微生物来源的岩藻多糖降解酶[J]. 微生物学通报,2018,45(9):2054−2062. [Zhang K K, Liu Z W, Lyu Q Q. Fucoidan-degrading enzymes from marine microorganisms[J]. Microbiology China,2018,45(9):2054−2062.
    [3]
    张磊, 王锦旭, 杨贤庆, 等. 海洋动物多糖的研究进展[J]. 食品工业,2018,39(1):211−215. [Zhang L, Wang J X, Yang X Q, et al. Research progress of marine animal polysaccharides[J]. The Food Industry,2018,39(1):211−215.
    [4]
    Zhao J, Yang J F, Song S, et al. Anticoagulant activity and structural characterization of polysaccharide from abalone(Haliotis discus hannai Ino) gonad[J]. Molecules(Basel, Switzerland),2016,21(6):697−708. doi: 10.3390/molecules21060697
    [5]
    李俊慧, 李珊, 胡亚芹, 等. 食源性海洋硫酸多糖的神经保护构效机理研究进展[J]. 中国食品学报,2017,17(4):155−164. [Li J H, Li S, Hu Y Q, et al. Neuroprotection mechanism of sulfated polysaccharides from marine food: A review[J]. Journal of Chinese Institute of Food Science and Technology,2017,17(4):155−164.
    [6]
    赵小亮, 王钰婷, 肖宁, 等. 海洋寡糖及其衍生物活性的研究进展[J]. 生物技术进展,2018,8(6):477−488. [Zhao X L, Wang Y T, Xiao N, et al. Progress on activities of marine oligosaccharides and their derivatives[J]. Current Biotechnology,2018,8(6):477−488.
    [7]
    Shen J J, Chang Y G, Dong S G, et al. Cloning, expression and characterization of a ι-carrageenase from marine bacterium Wenyingzhuangia fucanilytica: A biocatalyst for producing ι-carrageenan oligosaccharides[J]. Journal of Biotechnology,2017,259:103−109. doi: 10.1016/j.jbiotec.2017.07.034
    [8]
    Shi D, Qi J, Zhang H, et al. Comparison of hydrothermal depolymerization and oligosaccharide profile of fucoidan and fucosylated chondroitin sulfate from Holothuria floridana[J]. International Journal of Biological Macromolecules,2019,132:738−747. doi: 10.1016/j.ijbiomac.2019.03.127
    [9]
    曹佳淋, 辛妍娇, 汤顺清. 琼脂寡糖的制备及其对免疫细胞的作用[J]. 材料科学与工程学报,2016,34(6):890−894. [Cao J L, Xin Y J, Tang S Q. Preparation of agaro-oligosaccharides and their effect on immune cells[J]. Journal of Materials Science and Engineering,2016,34(6):890−894.
    [10]
    于广利, 谭仁祥. 海洋天然产物与药物研究开发[M]. 北京: 科学出版社, 2016: 222−228.

    Yu G L, Tan R X. Marine natural products research and drug development[M]. Beijing: Science Press, 2016: 222−228.
    [11]
    Ouyang J M, Wang M, Lu P, et al. Degradation of sulfated polysaccharide extracted from algal Laminaria japonica, and its modulation on calcium oxalate crystallization[J]. Materials Science & Engineering C,2010,30(7):1022−1029.
    [12]
    Kalitnik A A, Marcov P A, Anastyuk S D, et al. Gelling polysaccharide from Chondrus armatus and its oligosaccharides: The structural peculiarities and anti-inflammatory activity[J]. Carbohydrate Polymers,2015(115):768−775.
    [13]
    Liu X, Hao J J, Zhang L J, et al. Activated AMPK explains hypolipidemic effects of sulfated low molecular weight guluronate on HepG2cells[J]. European Journal of Medicinal Chemistry,2014,85(15):304−310.
    [14]
    刘雪, 王姝垚, 曹素健, 等. 海洋硫酸鼠李寡糖的制备研究[J]. 中国海洋药物,2017,36(6):18−22. [Liu X, Wang S Y, Cao S J, et al. Research on the preparation of marine sulfated rhamno-oligosaccharides[J]. Chinese Journal of Marine Drugs,2017,36(6):18−22.
    [15]
    Tommeraas K, Varum K M, Christensen B E. Preparation and characterisation of oligosaccharides produced by nitrous acid depolymerisation of chitosans[J]. Carbohydrate Research,2001,333:137−144. doi: 10.1016/S0008-6215(01)00130-6
    [16]
    王浩贤. 聚甘露糖醛酸和聚古罗糖醛酸纯化及降解产物活性研究[D]. 青岛: 中国海洋大学, 2012: 10−12.

    Wang H X. The purification of polymannuronic acids and polyguluronic acids as well as the research on the activity of the oligosaccharides of algin series[D]. Qingdao: Ocean University of China, 2012: 10−12.
    [17]
    Haug A, Bjørn Larsen. A study on the constitution of alginic acid by partial acid hydrolysis[J]. Acta Chemica Scandinavica,1966,5:271−277.
    [18]
    孙冲, 杜阿珠, 姚昱锟, 等. 响应面法优化固相酸水解鲍鱼脏器多糖工艺优化[J]. 食品工业科技,2020,41(11):171−177. [Sun C, Du A Z, Yao Y K, et al. Optimization of solid phase acid hydrolysis of polysaccharide from abalone viscera by response surface methodology[J]. Science and Technology of Food Industry,2020,41(11):171−177.
    [19]
    秦玲, 孙辉, 刘志纯, 等. 绿藻多糖CH1-1的可控降解及其寡糖的制备研究[J]. 中国海洋药物,2019,38(1):23−27. [Qin L, Sun H, Liu Z C, el al. Research on the controlled degradation of the green alga polysaccharide CH1-1 and preparation of the oligosaccharides[J]. Chinese Journal of Marine Drugs,2019,38(1):23−27.
    [20]
    邰宏博, 唐丽薇, 陈带娣, 等. 褐藻胶寡糖制备的研究进展[J]. 生命科学研究,2015,19(1):75−79. [Tai H B, Tang L W, Chen D D, et al. Progresses on preparation of alginate oligosaccharide[J]. Life Science Research,2015,19(1):75−79.
    [21]
    Courtois J. Oligosaccharides from land plants and algae: Production and applications in therapeutics and biotechnology[J]. Current Opinion in Microbiology,2009,12(3):261−273. doi: 10.1016/j.mib.2009.04.007
    [22]
    Kim K J, Lee O H, Lee B Y. Low-molecular-weight fucoidan regulates myogenic differentiation through the mitogen-activated protein kinase pathway in C2C12 cells[J]. British Journal of Nutrition,2011,106(12):1836−1844. doi: 10.1017/S0007114511002534
    [23]
    Wu S, Huang X. Preparation and antioxidant activities of oligosaccharides from Crassostrea gigas[J]. Food Chemistry,2017,216:243−246. doi: 10.1016/j.foodchem.2016.08.043
    [24]
    王灵昭, 史辰娟, 汪维喜, 等. 过氧化氢降解水不溶性条斑紫菜多糖[J]. 食品与发酵工业,2018,44(3):204−208. [Wang L Z, Shi C J, Wang W X, et al. Degradation of water-insoluble polysaccharide from Porphyra yezoensis by hydrogen peroxide[J]. Food and Fermentation Industries,2018,44(3):204−208.
    [25]
    Li J H, Li S, Zhi Z J, et al. Depolymerization of fucosylated chondroitin sulfate with a modified fenton-system and anticoagulant activity of the resulting fragments[J]. Marine Drugs,2016,14(9):170−183. doi: 10.3390/md14090170
    [26]
    Li B, Liu S, Xing R, et al. Degradation of sulfated polysaccharides from Enteromorpha prolifera and their antioxidant activities[J]. Carbohydrate Polymers,2013,92(2):1991−1996. doi: 10.1016/j.carbpol.2012.11.088
    [27]
    Jo B W, Choi S K. Degradation of fucoidans from Sargassum fulvellum and their biological activities[J]. Carbohydrate Polymers,2014,111:822−829. doi: 10.1016/j.carbpol.2014.05.049
    [28]
    段科, 单虎, 林英庭, 等. 微波辅助盐酸/过氧化氢降解浒苔多糖及其抗氧化活性[J]. 食品科技,2015,40(12):142−147. [Duan K, Shan H, Lin Y T, et al. Degradation of polysaccharide from Enteromorpha prolifera with hydrochloric acid and hydrogen peroxide assisted by microwave and its antioxidant activity[J]. Food Science and Technology,2015,40(12):142−147.
    [29]
    凌绍梅, 吴永沛, 刘翼翔, 等. 低分子量岩藻聚糖制备工艺及其抗菌活性的研究[J]. 食品科技,2014,39(7):184−189. [Ling S M, Wu Y P, Liu Y X, et al. Preparation technology of low-molecular-weight fucoidans and their antibacterial activity[J]. Food Science and Technology,2014,39(7):184−189.
    [30]
    Li J H, Li S, Wu L M, et al. Ultrasound-assisted fast preparation of low molecular weight fucosylated chondroitin sulfate with antitumor activity[J]. Carbohydrate Polymers,2019,209:82−91. doi: 10.1016/j.carbpol.2018.12.061
    [31]
    Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering[J]. Chemical Reviews,2006,106(9):4060−4066.
    [32]
    Belik A A, Silchenko A S, Kusaykin M I, et al. Alginate lyases: Substrates, structure, properties, and prospects of application[J]. Russian Journal of Bioorganic Chemistry,2018,44(4):386−396. doi: 10.1134/S1068162018040040
    [33]
    Boucelkha A, Petit E, Elboutachfaiti R, et al. Production of guluronate oligosaccharide of alginate from brown algae Stypocaulon scoparium using an alginate lyase[J]. Journal of Applied Phycology,2016,29(1):1−11.
    [34]
    邓宇峰, 林娟, 叶秀云, 等. 龙须菜酶解制备琼胶寡糖的工艺优化[J]. 食品工业,2019,40(5):110−115. [Deng Y F, Lin J, Ye X Y, et al. Process optimization of preparation of agarose oligosaccharides by enzymatic hydrolysis of Gracilaria lemaneiformis[J]. The Food Industry,2019,40(5):110−115.
    [35]
    Yu L, Xu X, Xue C, et al. Enzymatic preparation and structural determination of oligosaccharides derived from sea cucumber(Acaudina molpadioides) fucoidan[J]. Food Chemistry,2013,139(1−4):702−709. doi: 10.1016/j.foodchem.2013.01.055
    [36]
    Zhao X M, She X P, Liang X M, et al. Induction of antiviral resistance and stimulary effect by oligochitosan in tobacco[J]. Pestic Biochem Physiol,2006(87):78−84.
    [37]
    Falkeborg M, Cheong L Z, Gianfico C, et al. Alginate oligosaccharides: Enzymatic preparation and antioxidant property evaluation[J]. Food Chemistry,2014,164:185−194. doi: 10.1016/j.foodchem.2014.05.053
    [38]
    Ramos P E, Silva P, Alario M M, et al. Effect of alginate molecular weight and M/G ratio in beads properties foreseeing the protection of probiotics[J]. Food Hydrocolloids,2018,77:8−16. doi: 10.1016/j.foodhyd.2017.08.031
    [39]
    蒋越, 姚子昂, 陈丰嘉, 等. 藻酸盐寡糖制备工艺及生物活性研究进展[J]. 中国酿造,2018,37(8):19−23. [Jiang Y, Yao Z A, Chen F J, et al. Preparation of alginate oligosaccharides and their biological activities[J]. China Brewing,2018,37(8):19−23. doi: 10.11882/j.issn.0254-5071.2018.08.005
    [40]
    Sun Y J, Yang B Y, Wu Y M, et al. Structural characterization and antioxidant activities of κ-carrageenan oligosaccharides degraded by different method[J]. Food Chemistry,2015,178:311−318. doi: 10.1016/j.foodchem.2015.01.105
    [41]
    Zhang Y H, Song X N, Lin Y, et al. Antioxidant capacity and prebiotic effects of Gracilaria neoagaro oligosaccharides prepared by agarase hydrolysis[J]. International Journal of Biological Macromolecules,2019,137:177−186. doi: 10.1016/j.ijbiomac.2019.06.207
    [42]
    Liu X Y, Liu D, Lin G P, et al. Anti-ageing and antioxidant effects of sulfate oligosaccharides from green algae Ulva lactuca and Enteromorpha prolifera in SAMP8 mice[J]. International Journal of Biological Macromolecules,2019,139:342−351. doi: 10.1016/j.ijbiomac.2019.07.195
    [43]
    Chen J Y, Hu Y, Zhang L R, et al. Alginate oligosaccharide DP5 exhibits antitumor effects in osteosarcoma patients following surgery[J]. Frontiers in Pharmacology,2017,8:623. doi: 10.3389/fphar.2017.00623
    [44]
    Yang Y, Ma Z, Yang G, et a. Alginate oligosaccharide indirectly affects toll-like receptor signaling via the inhibition of microRNA-29b in aneurysm patients after endovascular aortic repair[J]. Drug Design Development & Therapy,2017,11:2565−2579.
    [45]
    Zou P, Yuan S, Yang X, et al. Structural characterization and antitumor effects of chitosan oligosaccharides against orthotopic liver tumor via NF-κB signaling pathway[J]. Journal of Functional Foods,2019,57:157−165. doi: 10.1016/j.jff.2019.04.002
    [46]
    张胜霞, 吴海歌, 姚子昂, 等. 两种海洋寡糖对S180荷瘤小鼠抗肿瘤及免疫调节作用的研究[J]. 现代免疫学,2012,32(1):5−8. [Zhang S X, Wu H G, Yao Z A, et al. Anti-tumor effect and immunoregulatory activity of two marine oligosaccharides on S180 sarcoma in mice[J]. Current Immunology,2012,32(1):5−8.
    [47]
    Yuan H, Song J, Li X, et al. Immunomodulation and antitumor activity of κ-carrageenan oligosaccharides[J]. Cancer Letters,2006,243(2):228−234. doi: 10.1016/j.canlet.2005.11.032
    [48]
    Yao Z A, Xu L, Wu H G. Immunomodulatory function of κ-carrageenan oligosaccharides acting on LPS-activated microglial cells[J]. Neurochemical Research,2014,39(2):333−343. doi: 10.1007/s11064-013-1228-4
    [49]
    Xu L, Yao Z, Wu H, et al. The immune regulation ofκ-car- rageenan oligosaccharide and its desulfated derivatives on LPS- activated microglial cells[J]. Neurochemistry International,2012,61(5):689−696. doi: 10.1016/j.neuint.2012.06.019
    [50]
    Kidgell J T, Glasson C, Magnusson M, et al. The molecular weight of ulvan affects thein vitro inflammatory response of a murine macrophage[J]. International Journal of Biological Macromolecules,2020,150:839−848. doi: 10.1016/j.ijbiomac.2020.02.071
    [51]
    Xu X, Wu X T, Wang Q Q, et al. Immunomodulatory effects of alginate oligosaccharides on murine macrophage RAW264.7 cells and their structure-activity relationships[J]. Journal of Agricultural and Food Chemistry,2014,62(14):3168−3176. doi: 10.1021/jf405633n
    [52]
    吴哲, 任丹丹, 梁馨元, 等. 褐藻胶寡糖的制备分离及生物活性[J]. 食品安全质量检测学报,2020,11(1):1−7. [Wu Z, Ren D D, Liang X Y, et al. Preparation, separation and biological activities of alginate oligosaccharides[J]. Journal of Food Safety and Quality,2020,11(1):1−7.
    [53]
    Shi L, Fang B, Yong Y H, et al. Chitosan oligosaccharide-mediated attenuation of LPS-induced inflammation in IPEC-J2 cells is related to the TLR4/NF-κB signaling pathway[J]. Carbohydrate Polymers,2019,219:269−279. doi: 10.1016/j.carbpol.2019.05.036
    [54]
    Vo T S, Ngo D H, Ta Q V, et al. Protective effect of chitin oligosaccharides against lipopolysaccharide-induced inflammatory response in BV-2 microglia[J]. Cellular Immunology,2012,277(1-2):14−21. doi: 10.1016/j.cellimm.2012.06.005
    [55]
    Chung M J, Park J K, Park Y I. Anti-inflammatory effects of low-molecular weight chitosan oligosaccharides in IgE-antigen complex-stimulated RBL-2H3 cells and asthma model mice[J]. International Immunopharmacology,2012,12(2):453−459. doi: 10.1016/j.intimp.2011.12.027
    [56]
    Guo J, Han S, Lu X, et al. κ-Carrageenan hexamer have significant anti-inflammatory activity and protect RAW264.7 macrophages by inhibiting CD14[J]. Journal of Functional Foods,2019,57:335−344. doi: 10.1016/j.jff.2019.04.029
    [57]
    史旭阳. 褐藻胶寡糖的抗炎活性机制研究[D]. 深圳: 深圳大学, 2015: 10−14.

    Shi X Y. Investigation of the anti-inflammatory activity of alginate-derived oligosaccharides[D]. Shenzhen: Shenzhen University, 2015: 10−14.
    [58]
    Shang Q, Jiang H, Cai C, et al. Gut microbiota fermentation of marine polysaccharides and its effects on intestinal ecology: An overview[J]. Carbohydrate Polymers,2018,179:173−185. doi: 10.1016/j.carbpol.2017.09.059
    [59]
    Marchesi J R, Adams D H, Fava F, et al. The gut microbiota and host health: A new clinical frontier[J]. Gut,2016,65(2):330−339. doi: 10.1136/gutjnl-2015-309990
    [60]
    Tang D, Wang Y H, Kang W Y, et al. Chitosan attenuates obesity by modifying the intestinal microbiota and increasing serum leptin levels in mice[J]. Journal of Functional Foods,2020,64:1−10.
    [61]
    Li S, Li J, Mao G, et al. Effect of the sulfation pattern of sea cucumber-derived fucoidan oligosaccharides on modulating metabolic syndromes and gut microbiota dysbiosis caused by HFD in mice[J]. Journal of Functional Foods,2019,55:193−210. doi: 10.1016/j.jff.2019.02.001
    [62]
    Sun Y J, Cui X Y, Duan M M, et al. In vitro fermentation of κ-carrageenan oligosaccharides by human gut microbiota and its inflammatory effect on HT29 cells[J]. Journal of Functional Foods,2019,59:80−91. doi: 10.1016/j.jff.2019.05.036
    [63]
    Zhang X, Aweya J J, Huang Z X, et al. In vitro fermentation of Gracilaria lemaneiformis sulfated polysaccharides and its agaro-oligosaccharides by human fecal inocula and its impact on microbiota[J]. Carbohydrate Polymers,2020,234:115894. doi: 10.1016/j.carbpol.2020.115894
    [64]
    Guo J J, Ma L L, Shi H T, et al. Alginate oligosaccharide prevents acute doxorubicin cardiotoxicity by suppressing oxidative stress and endoplasmic reticulum-mediated apoptosis[J]. Marine Drugs,2016,14(12):231−243. doi: 10.3390/md14120231
    [65]
    Hu Y, Feng Z, Feng W J, et al. AOS ameliorates monocrotaline-induced pulmonary hypertension by restraining the activation of P-selectin/p38MAPK/NF-κB pathway in rats[J]. Biomedecine & Pharmacotherapie,2019,109:1319−1326.
    [66]
    Zhang Y H, Liu H, Yin H, et al. Nitric oxide mediates alginate oligosaccharides-induced root development in wheat (Triticum aestivum L.)[J]. Plant Physiology & Biochemistry,2013,71:49−56.
    [67]
    Higashimura Y, Naito Y, Takagi T, et al. Preventive effect of agaro-oligosaccharides on non-steroidal anti-inflammatory drug-induced small intestinal injury in mice[J]. Journal of Gastroenterology & Hepatology,2014,29(2):310−317.
    [68]
    郭娜, 姚子昂, 于国友, 等. 海带酶解产物对海参生长及其免疫相关因子的影响[J]. 中国酿造,2019,38(4):160−164. [Guo N, Yao Z A, Yu G Y, et al. Effects of enzymatic hydrolysate of Laminaria japonica on growth and immune-related factors of sea cucumber[J]. China Brewing,2019,38(4):160−164. doi: 10.11882/j.issn.0254-5071.2019.04.031
    [69]
    Shu Z H, Shi X Z, Nie D Q, et al. Low-molecular-weight fucoidan inhibits the viability and invasiveness and triggers apoptosis in IL-1β-treated human rheumatoid arthritis fibroblast synoviocytes[J]. Inflammation,2015,38(5):1777−1786. doi: 10.1007/s10753-015-0155-8
    [70]
    Li S, Li J, Mao G, et al. Fucosylated chondroitin sulfate oligosaccharides from Isostichopus badionotus regulates lipid disorder in C57BL/6 mice fed a high-fat diet[J]. Carbohydrate Polymers,2018,201:634−642. doi: 10.1016/j.carbpol.2018.08.020

Catalog

    Article Metrics

    Article views (433) PDF downloads (52) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return