REN Yi, WANG Chengquan, Bonah Ernest, et al. Storage Quality Prediction of Green Onions by Hyperspectral Imaging [J]. Science and Technology of Food Industry, 2021, 42(10): 267−274. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306. 2020080271.
Citation: REN Yi, WANG Chengquan, Bonah Ernest, et al. Storage Quality Prediction of Green Onions by Hyperspectral Imaging [J]. Science and Technology of Food Industry, 2021, 42(10): 267−274. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306. 2020080271.

Storage Quality Prediction of Green Onions by Hyperspectral Imaging

More Information
  • Received Date: August 26, 2020
  • Available Online: March 21, 2021
  • Green onions are important flavoring food with a limited shelf life. Moisture and chlorophyll content are two important parameters for the post-harvest quality assessment of green onions. The aim of this paper was to obtain moisture and chlorophyll distribution of green onion under different postharvest storage conditions by means of a hyperspectral imaging (HSI) technique. The HSI was used to obtain the reflectance spectral data for green onions at 431~962 nm band. The original spectrum was transformed by three pretreatment methods of convolutional smoothing (SG), multiple scattering correction (MSC), and standard normal variation (SNV) to convert the original spectrum accordingly, and established the prediction model of moisture and chlorophyll content respectively. After comparing the prediction accuracy of the model, the MSC was found to have the best noise reduction effect was selected as the final spectral pretreatment method. Then a competitive adaptive weighted sampling method was used to select 11 and 20 optimal wavelengths for moisture and chlorophyll content predictions, respectively. Based on the selected wavelengths, partial least squares regression and support vector machine regression algorithms were used to establish the prediction model for moisture and chlorophyll contents. The prediction models based on the optimal wavelengths for moisture and chlorophyll content yielded 0.9046 and 0.9143, respectively. Finally, distribution maps of the moisture and chlorophyll content of green onions under the different storage conditions were obtained. In summary, the hyperspectral imaging might be used to rapidly detect the distribution of moisture and chlorophyll in green onion. This study would provide a theoretical basis for the subsequent development of portable measuring instruments for moisture and chlorophyll distribution in fruits and vegetables.
  • [1]
    Memon N, Gat Y, Arya S, et al. Combined effect of chemical preservative and different doses of irradiation on green onions to enhance shelf life[J]. Journal of the Saudi Society of Agricultural Sciences,2020,19(3):207−15. doi: 10.1016/j.jssas.2018.09.006
    [2]
    中华人民共和国国家卫生部. GB 5009.3-2010 食品中水分的测定[S]. 北京: 中国标准出版社, 2016.
    [3]
    中华人民共和国农业部. NY/T 3082-2017 水果、蔬菜及其制品中叶绿素含量的测定[S]. 北京: 中国农业出版社, 2017.
    [4]
    Bonah E, Huang X, Aheto J H, et al. Comparison of variable selection algorithms on vis-NIR hyperspectral imaging spectra for quantitative monitoring and visualization of bacterial foodborne pathogens in fresh pork muscles[J]. Infrared Physics & Technology,2020,107(6):103327.
    [5]
    Berger K, Verrelst J, Feret J B, et al. Crop nitrogen monitoring: Recent progress and principal developments in the context of imaging spectroscopy missions[J]. Remote Sensing of Environment,2020,242(6):111758.
    [6]
    Amiratul Diyana Amirruddin, Farrah Melissa Muharam, Mohd Hasmadi Ismail, et al. Hyperspectral remote sensing for assessment of chlorophyll sufficiency levels in mature oil palm (Elaeis guineensis) based on frond numbers: Analysis of decision tree and random forest[J]. Computers and Electronics in Agriculture,2020,169(2):105221.
    [7]
    Wang Y J, Li LQ, Shen S S, et al. Rapid detection of quality index of postharvest fresh tea leaves using hyperspectral imaging[J]. Journal of the Science of Food and Agriculture,2020,100(10):3803−11. doi: 10.1002/jsfa.10393
    [8]
    Ke J X, Rao L B, Zhou L M, et al. Non-destructive determination of volatile oil and moisture content and discrimination of geographical origins of Zanthoxylum bungeanum Maxim by hyperspectral imaging[J]. Infrared Physics & Technology,2020,105(5):103185.
    [9]
    Lin X H, Xu J L, Sun D W. Comparison of moisture uniformity between microwave-vacuum and hot-air dried ginger slices using hyperspectral information combined with semivariogram[J]. Drying Technology,2020,22(7):1741006.
    [10]
    Tao Zheng, Ning Liu, Li Wu, et al. Estimation of chlorophyll content in potato leaves based on spectral red edge position[J]. IFAC-PapersOnLine,2018,51(17):602−606. doi: 10.1016/j.ifacol.2018.08.131
    [11]
    Xiao Q L, Bai X L, He Y. Rapid screen of the color and water content of fresh-cut potato tuber slices using hyperspectral imaging coupled with multivariate analysis[J]. Foods,2020,9(1):9010094.
    [12]
    Šalgovičová I, Lojanová Z, Hudák J. Plastid structure and chlorophyll content in leaf primordia of onion bulbs[J]. Journal of Plant Physiology,2007,164(1):19−22. doi: 10.1016/j.jplph.2005.11.015
    [13]
    Barman U, Choudhury R D. Smartphone image based digital chlorophyll meter to estimate the value of citrus leaves chlorophyll using Linear Regression, LMBP-ANN and SCGBP-ANN[J]. Journal of King Saud University - Computer and Information Sciences,2020.
    [14]
    Mishra P, Roger J M, Rutledge D N, et al. SPORT pre-processing can improve near-infrared quality prediction models for fresh fruits and agro-materials[J]. Postharvest Biology and Technology,2020,168:111271. doi: 10.1016/j.postharvbio.2020.111271
    [15]
    Martens H, Nielsen J P, Engelsen S B. Light scattering and light absorbance separated by extended multiplicative signal correction: Application to near-infrared transmission analysis of powder mixtures[J]. Analytical Chemistry,2003,75(3):394−404. doi: 10.1021/ac020194w
    [16]
    Isaksson T, Næs T. The effect of multiplicative scatter correction (MSC) and linearity improvement in NIR spectroscopy[J]. Appl Spectrosc,1988,42(7):1273−84. doi: 10.1366/0003702884429869
    [17]
    第五鹏瑶, 卞希慧, 王姿方, 等. 光谱预处理方法选择研究[J]. 光谱学与光谱分析,2019,9:2800−2806.
    [18]
    Sadeghi M, Behnia F, Amiri R. Window selection of the savitzky-golay filters for signal recovery from noisy measurements[J]. Ieee Transactions on Instrumentation and Measurement,2020,69(8):5418−27. doi: 10.1109/TIM.2020.2966310
    [19]
    周莉萍, 赵艳菇, 余克强, 等. 基于高光谱技术的覆盖保鲜膜菠菜货架期预测研究[J]. 光谱学与光谱分析,2017,37(2):423−8.
    [20]
    徐毅, 阙建全. 青花椒干燥过程叶绿素光降解原因初探[J]. 中国食品学报,2015,15(11):135−41.
    [21]
    Sun Y N, Li W X. Effects the mechanism of micro-vacuum storage on broccoli chlorophyll degradation and builds prediction model of chlorophyll content based on the color parameter changes[J]. Scientia Horticulturae,2017,224:206−14. doi: 10.1016/j.scienta.2017.06.040
    [22]
    Lara M A, Lleo L, Diezma-Iglesias B, et al. Monitoring spinach shelf-life with hyperspectral image through packaging films[J]. Journal of Food Engineering,2013,119(2):353−61. doi: 10.1016/j.jfoodeng.2013.06.005
    [23]
    Sun Y, Wang Y H, Xiao H, et al. Hyperspectral imaging detection of decayed honey peaches based on their chlorophyll content[J]. Food Chemistry,2017,235:194−202. doi: 10.1016/j.foodchem.2017.05.064
    [24]
    Ali A, Imran M M. Evaluating the potential of red edge position (REP) of hyperspectral remote sensing data for real time estimation of LAI & chlorophyll content of kinnow mandarin (Citrus reticulata) fruit orchards[J]. Scientia Horticulturae,2020,267:109326. doi: 10.1016/j.scienta.2020.109326
    [25]
    Beghi R, Giovenzana V, Tugnolo A, et al. Application of visible/near infrared spectroscopy to quality control of fresh fruits and vegetables in large-scale mass distribution channels: A preliminary test on carrots and tomatoes[J]. Journal of the Science of Food and Agriculture,2018,98(7):2729−2734. doi: 10.1002/jsfa.8768
  • Cited by

    Periodical cited type(7)

    1. 曲美霖,胡俊君,程哲,李云龙. 绿豆预熟化工艺及品质研究进展. 食品与机械. 2024(02): 227-232 .
    2. 张亮,崔燕,邵兴锋,宣晓婷,董翼飞,沈佳峰,凌建刚. 籼粳杂交稻变温-缓苏干燥工艺优化及蛋白结构研究. 食品工业科技. 2024(14): 165-174 . 本站查看
    3. 吴文青,钱海峰,李言,樊铭聪,王立. 烘焙用乳化剂研究进展. 食品与发酵工业. 2024(15): 389-397 .
    4. 赵康程,李森,谭斌,吴娜娜. 不同加工方式对谷物及豆类蛋白结构、功能特性的影响研究进展. 中国粮油学报. 2024(10): 198-206 .
    5. 李娇,梁雅琪,王景雪,李晨. 白酒糟醇溶蛋白的磷酸化改性及功能性质. 食品工业科技. 2023(09): 60-67 . 本站查看
    6. 刁静静,陶阳,国慧,陈洪生,王长远,张东杰,朱永胜. 加热温度对牡荆素-绿豆蛋白互作物结构和功能性的影响. 中国食品学报. 2023(08): 197-207 .
    7. 林瑞榕,陈佳琪,刘思迪,郭泽镔. 食物在烹饪过程中有害物质形成与减控技术研究进展. 食品安全质量检测学报. 2021(22): 8918-8926 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (193) PDF downloads (17) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return