Citation: | YANG Qingyu, WANG Yanwen, LI Xiang, et al. Research and Application of Food Raw Materials Based on Food 3D Printing Technology[J]. Science and Technology of Food Industry, 2021, 42(8): 1−7. (in Chinese with English abstract). doi: 10.13386/j.issn 1002-0306.2020080264. |
[1] |
吴世嘉, 张辉, 贾敬敦. 3D打印技术在我国食品加工中的发展前景和建议[J]. 中国农业科技导报,2015,17(1):1−6.
|
[2] |
李光玲. 食品3D打印的发展及挑战[J]. 食品与机械,2015,31(1):231−234.
|
[3] |
杜姗姗, 周爱军, 陈洪, 等. 3D打印技术在食品中的应用进展[J]. 中国农业科技导报,2018,20(3):87−93.
|
[4] |
Barry Berman. 3-D printing: The new industrial revolution[J]. Business Horizons,2012,55(2):155−162. doi: 10.1016/j.bushor.2011.11.003
|
[5] |
Teresa F, Wegrzyn, Matt Golding, et al. Food layered manufacture: A new process for constructing solid foods[J]. Trends in Food Science & Technology,2012,27(2):66−72.
|
[6] |
Schubert Carl, Van Langeveld Mark C, Donoso Larry A. Innovations in 3D printing: A 3D overview from optics to organs[J]. The British Journal of Ophthalmology,2014,98(2):159−161. doi: 10.1136/bjophthalmol-2013-304446
|
[7] |
Günther D, Heymel B, Franz Günther J, et al. Continuous 3D-printing for additive manufacturing[J]. Rapid Prototyping Journal,2014,20(4):320−327. doi: 10.1108/RPJ-08-2012-0068
|
[8] |
Kaur S. Pushing frontiers with the first lady of emerging technologies-How is “Internet of the 3D printed products” going to affect our lives?[J]. IETE Technical Review,2012,29(5):360−364. doi: 10.4103/0256-4602.103164
|
[9] |
Bassoli E, Gatto A, Iuliano L, et al. 3D printing technique applied to rapid casting[J]. Rapid Prototyping Journal,2007,13(3):148−155. doi: 10.1108/13552540710750898
|
[10] |
周涛, 徐书洁, 杨继全. 3D食品打印技术研究的最新进展[J]. 食品工业,2016,37(12):208−212.
|
[11] |
Sun J, Zhou W, Huang D, et al. An overview of 3D printing technologies for food fabrication[J]. Food and Bioprocess Technology,2015,8(8):1605−1615. doi: 10.1007/s11947-015-1528-6
|
[12] |
Godoi F C, Prakash S, Bhandari B R. 3d printing technologies applied for food design: Status and prospects[J]. Journal of Food Engineering,2016,179:44−54. doi: 10.1016/j.jfoodeng.2016.01.025
|
[13] |
Wang J, Shaw L L. Rheological and extrusion behavior of dental porcelain slurries for rapid prototyping applications[J]. Materials Science and Engineering: A,2005,397:314−321. doi: 10.1016/j.msea.2005.02.045
|
[14] |
陈洹. 热挤压3D打印成型性与淀粉材料结构及流变特性的关联研究[D]. 广州: 华南理工大学, 2019.
|
[15] |
杨繁荣. 基于熔融沉积法的蔗糖3D打印工艺研究[D]. 西安: 西安科技大学, 2019.
|
[16] |
Mironov V, Trusk T, Kasyanov V, et al. Biofabrication: A 21st century manufacturing paradigm[J]. Biofabrication,2009,1(2):1−16.
|
[17] |
Hao L, Mellor S, Seaman O, et al. Material characterisation and process development for chocolate additive layer manufacturing[J]. Virtual and Physical Prototyping,2010,5:57−64. doi: 10.1080/17452751003753212
|
[18] |
Diaz J V, Noort W J, Henket J, et al. Method for the production of edible objects using SLS and food products[P]. WO: 2014193226, 2014-12-04.
|
[19] |
丁易人. 基于挤出成型的食材3D打印工艺研究[D]. 杭州: 浙江大学, 2017.
|
[20] |
贾礼宾, 王修春, 王小军, 等. 选择性激光烧结技术研究与应用进展[J]. 信息技术与信息化,2015,191(11):172−175.
|
[21] |
刘倩楠, 张春江, 张良, 等. 食品 3D 打印技术的发展现状[J]. 农业工程学报,2018,34(16):265−273.
|
[22] |
Zoran A, Coelho M. Cornucopia: The concept of digital gastronomy[J]. Leonardo,2011,44(5):425−431. doi: 10.1162/LEON_a_00243
|
[23] |
Dankar I, Pujolà M, El Omar F, et al. Impact of mechanical and microstructural properties of potato puree-food additive complexes on extrusion-based 3d printing[J]. Food and Bioprocess Technology,2018,11:2021−2031. doi: 10.1007/s11947-018-2159-5
|
[24] |
Dudek P. FDM 3D printing technology in manufacturing composite elements[J]. Archives of Metallurgy and Materialsy,2013,58:1415−1418. doi: 10.2478/amm-2013-0186
|
[25] |
王琳. 鲢鱼糜凝胶体系的挤压式三维打印研究[D]. 无锡: 江南大学, 2017.
|
[26] |
Liu Z, Bhandari B, Prakash S, et al. Linking rheology and printability of a multicomponent gel system of carrageenan-xanthan-starch in extrusion based additive manufacturing[J]. Food Hydrocolloids,2019,87:413−424. doi: 10.1016/j.foodhyd.2018.08.026
|
[27] |
Chen H, Xie F, Chen L, et al. Effect of rheological properties of potato, rice and corn starches on their hot-extrusion 3D printing behaviors[J]. Journal of Food Engineering,2019,244:150−158. doi: 10.1016/j.jfoodeng.2018.09.011
|
[28] |
Cohen D L, Jeffrey I L, Cutler M, et al. Hydrocolloid printing: A novel platform for customized food production[C]//Proceedings of solid freeform fabrication symposium (SFF'09), Austin, TX, 2009: 807−818.
|
[29] |
Truby R L, Lewis J A. Printing soft matter in three dimensions[J]. Nature,2016,540(7633):371−378. doi: 10.1038/nature21003
|
[30] |
Zhang M, Vora A, Han W, et al. Dual-responsive hydrogels for direct-write 3D Printing[J]. Macromolecules,2015,48:6482−6488. doi: 10.1021/acs.macromol.5b01550
|
[31] |
Wegrzyn T F, Golding M, Archer R H. Food Layered Manufacture: A new process for constructing solid foods[J]. Trends in Food Science & Technology,2012,27:66−72.
|
[32] |
Muroi H, Hidema R, Gong J, et al. Development of optical 3D gel printer for fabricating free-form soft & wet industrial materials and evaluation of printed double-network gels[J]. Journal of Solid Mechanics & Materials Engineering,2013,7(2):163−168.
|
[33] |
Hossain S M Z, Luckham R E, Smith A M, et al. Development of a bioactive paper sensor for detection of neurotoxins using piezoelectric inkjet printing of solgelderived bioinks[J]. Analytical Chemistry,2009,81:5474−5483. doi: 10.1021/ac900660p
|
[34] |
Kern C, Weiss J, Hinrichs J. Additive layer manufacturing of semi-hard model cheese: Effect of calcium levels on thermo-rheological properties and shear behavior[J]. Journal of Food Engineering,2018,235:89−97. doi: 10.1016/j.jfoodeng.2018.04.029
|
[35] |
Liu Z, Min Z, Bhandari B, et al. 3D printing: Printing precision and application in food sector[J]. Trends in Food Science & Technology,2017,69:83−94.
|
[36] |
Li J Y, Yeh A I. Relationships between thermal, rheological characteristics and swelling power for various starches[J]. Journal of Food Engineering,2001,50(3):141−148. doi: 10.1016/S0260-8774(00)00236-3
|
[37] |
Feng C X, Wang Q, Li H, et al. Effects of pea protein on the properties of potato starch-based 3D printing materials[J]. International Journal of Food Engineering,2018,14(3):1−10.
|
[38] |
余阳玲, 仝兆斌, 江昊, 等. 淀粉原料3D打印特性[J]. 食品与发酵工业,2020,46(3):194−200.
|
[39] |
Jiang H, Zheng L, Zou Y, et al. 3D food printing: Main components selection by considering rheological properties[J]. Critical Reviews in Food Technology,2019,59(14):2335−2347. doi: 10.1080/10408398.2018.1514363
|
[40] |
Singh N, Singh J, Singh S N. Morphological, thermal, rheological and noodle-making properties of potato and corn starch[J]. Journal of the Science of Food and Agriculture,2002,82(12):1376−1383. doi: 10.1002/jsfa.1194
|
[41] |
Lipton J, Arnold D, Nigl F, et al. Multi-material food printing with complex internal structure suitable for conventional post-processing.[C]//International solid freeform fabrication symposium, Austin, Texas. 2010, 809-815.
|
[42] |
Noort M J, Diaz J V, Van Bommel K J C, et al. Method for the production of an edible object using SLS[P]. USA, US15/528609.
|
[43] |
岑培倩. 中药复合多糖凝胶软糖的3D打印技术研究[D]. 武汉: 华中科技大学, 2019.
|
[44] |
Heertje I. Microstructural studies in fat research[J]. Food structure,1993,12:77−94.
|
[45] |
Narine S S, Marangoni A G. Fractal nature of fat crystal networks[J]. Physical Review E,1999,59(2):1908−1920. doi: 10.1103/PhysRevE.59.1908
|
[46] |
Marangoni A G, Narine S S. Identifying key structural indicators of mechanical strength in networks of fat crystals[J]. Food Research International,2002,35(10):957−969. doi: 10.1016/S0963-9969(02)00158-8
|
[47] |
Deman J M, Beers A M. Fat crystal networks: Structure and rheological properties[J]. Journal of Texture Studies,1987:303−318.
|
[48] |
Narine S S, Marangoni A G. Mechanical and structural model of fractal networks of fat crystals at low deformations[J]. Physical Review E,1999,60(6):6991−7000. doi: 10.1103/PhysRevE.60.6991
|
[49] |
党国帅. 构成月桂酸型代可可脂的甘三酯的合成及其相容性研究[D]. 郑州: 河南工业大学, 2016.
|
[50] |
刘梅森, 高荫榆, 熊春红, 等. 几种巧克力调温过程中的结晶特性研究[J]. 粮油食品科技,2001(3):9−11.
|
[51] |
Chunyan Feng, Min Zhang, Bhesh Bhandari. Materials properties of printable edible inks and printing parameters optimization during 3D printing: A review[J]. Critical Reviews in Food Science and Nutrition,2019,59(19):3074−3081. doi: 10.1080/10408398.2018.1481823
|
[52] |
Derossi A, Caporizzi R, Azzollini D, et al. Application of 3D printing for customized food. A case on the development of a fruit-based snack for children[J]. Journal of Food Engineering,2018,220:65−75. doi: 10.1016/j.jfoodeng.2017.05.015
|
[53] |
杨帆. 典型植物类重组食品挤压式三维打印成型效果及稳定性研究[D]. 无锡: 江南大学, 2018.
|
[54] |
王浩, 谭畅, 陈静, 等. 魔芋胶对蓝莓凝胶体系3D打印特性的影响[J]. 食品科学,2019,40(23):104−110.
|
[55] |
Sun J, Peng Z, Zhou W, et al. A review on 3D printing for customized food fabrication[J]. Procedia Manufacturing,2015,1:308−319. doi: 10.1016/j.promfg.2015.09.057
|
[56] |
Shirazi S F S, Gharehkhani S, Mehrali M, et al. A review on powder-based additive manufacturing for tissue engineering: Selective laser sintering and inkjet 3D printing[J]. Sci Technol Adv Mater,2015,16(3):033502. doi: 10.1088/1468-6996/16/3/033502
|
[57] |
Severini C, Derossi A. Could the 3D printing technology be a useful strategy to obtain customized nutrition[J]. Journal of Clinical Gastroenterology,2016,50:175−178. doi: 10.1097/MCG.0000000000000377
|
[58] |
Nachal N, Moses J A, Karthik P, et al. Applications of 3D printing in food processing[J]. Food Engineering Reviews,2019,11(3):123−141. doi: 10.1007/s12393-019-09199-8
|
[59] |
Liu C, Ho C, Wang J. The development of 3D food printer for printing fibrous meat materials[J]. IOP Conference Series: Materials Science and Engineering,2018,284(1):012019.
|
[60] |
Dick A, Bhandari B, Prakash S. 3D printing of meat[J]. Meat Science,2019,153(7):35−44.
|
[61] |
王明爽, 姜涵骞, 李林, 等. 基于果蔬原料的食品3D打印技术及其应用[J/OL]. 食品科学: 1−10[2021-03-06]. http://kns.cnki.net/kcms/detail/11.2206.TS.20200601.1307.032.html.
|
[62] |
贲宗友, 施宗情, 孙艳辉. 3D打印在食品中的应用研究进展[J]. 轻工科技,2018,34:4−6.
|
[63] |
Vancauwenberghe V, Mbong V B M, Vanstreels E, et al. 3D printing of plant tissue for innovative food manufacturing: Encapsulation of alive plant cells into pectin based bio-ink[J]. Journal of Food Engineering,2017,263:454−464.
|
[64] |
Park S M, Kim H W, Park H J. Callus-based 3D printing for food exemplified with carrot tissues and its potential for innovative food production[J]. Journal of Food Engineering,2020,271:109781. doi: 10.1016/j.jfoodeng.2019.109781
|
[65] |
王琪, 李慧, 王赛, 等. 3D打印技术在食品行业中的应用研究进展[J]. 粮食与油脂,2019,32(1):16−19.
|
[1] | CHEN Yongfang, LI Yanke, ZHANG Shujing. Mechanism of Poria cocos Polysaccharide Regulating Autophagy and Chemotherapy Resistance of Hepatocellular Carcinoma Cells through LncRNAHCG11/miR-539-3p 539-3p[J]. Science and Technology of Food Industry, 2024, 45(22): 322-330. DOI: 10.13386/j.issn1002-0306.2023110291 |
[2] | LÜ Chenhao, LI Junjian, CHEN Chang'an, HE Zhilin, DU Bing, LI Pan. Anti-aging and in Vitro Antioxidant Effects of Water Extracts of Fermented Pericarpium Citri Reticulatae on Caenorhabditis elegans[J]. Science and Technology of Food Industry, 2023, 44(17): 428-437. DOI: 10.13386/j.issn1002-0306.2022110162 |
[3] | YAN Jing, XUE Qiuyan, WANG Yang, CHEN Wenyi, XIE Shiqing, JIANG Jinjin, LI Pan, DU Bing. Hypolipidemic and Antioxidant Effects of Fermented Rice Buckwheat on High-fat Caenorhabditis elegans[J]. Science and Technology of Food Industry, 2023, 44(6): 8-15. DOI: 10.13386/j.issn1002-0306.2022070044 |
[4] | WANG Gaojian, WANG Zhenzhen, LI Jiajia, FAN Haoan, SHA Ruyi, MAO Jianwei. Antioxidant Activity in Vitro and Promoting Resistance to Oxidative Stress in Caenorhabditis elegans of Blueberry Jiaosu[J]. Science and Technology of Food Industry, 2021, 42(15): 343-350. DOI: 10.13386/j.issn1002-0306.2020110157 |
[5] | LIU Chang, XU Yue, SHAN Cheng-ying, ZHU Chang-ling, ZHAO Fei, ZHANG Huan-shi. Exploring the Antioxidant Activity in Vivo of Coriander Extract in Caenorhabditis elegans[J]. Science and Technology of Food Industry, 2020, 41(20): 285-289. DOI: 10.13386/j.issn1002-0306.2020.20.047 |
[6] | XU Jie, WANG Jun, TAN Xin-tong, LI Da-peng. Research Progress of Foodborne Flavonoids Interfering with Diseases by Regulating Autophagy[J]. Science and Technology of Food Industry, 2020, 41(16): 326-333. DOI: 10.13386/j.issn1002-0306.2020.16.052 |
[7] | SUN Yan, CUI Xu-sheng, LIU Jing, TIAN He, YANG Yan-fang, LI Ya-fen, BAO Jing-jing, LI Chun-lin, WANG Qing, ZHANG Yan-qing, XIE Jun-bo. Optimization of Extraction Process of Flavonoids from Ziziphus jujuba Mill var. spinosa Leaves and Its Antioxidant Damage Activity in Caenorhabditis elegans[J]. Science and Technology of Food Industry, 2020, 41(8): 143-150. DOI: 10.13386/j.issn1002-0306.2020.08.023 |
[8] | XIE Yong-lei, CUI Ming-chen, HUANG Ya-nan, LI Pan-xin, XU Wan-ling, MA Yong-chao. Effects of Soybean Peptide on Haemodynamics and Myocardial Autophagy Levels in Rats with Exhaustive Exercise[J]. Science and Technology of Food Industry, 2019, 40(22): 316-320. DOI: 10.13386/j.issn1002-0306.2019.22.055 |
[9] | LIAO Xin, CHEN Wen-ying, LI Yi-zhou, LI Chen, LIU Xin-miao, SHEN Xiao-li. Oleanolic Acid Antagonized Autophagic Death of HEK293T Cells Induced by Ochratoxin A[J]. Science and Technology of Food Industry, 2019, 40(3): 286-289,295. DOI: 10.13386/j.issn1002-0306.2019.03.045 |
[10] | CHEN Jing-yao, ZHOU Jie, HAN Bin, LI Fei, ZHU Yan-feng, YU Xiao-ping. Delphinidin sensitizes anti-tumor effect to HER-2+breast cancer cells by combining with 3-MA[J]. Science and Technology of Food Industry, 2017, (02): 354-357. DOI: 10.13386/j.issn1002-0306.2017.02.060 |
1. |
杨宇恒,郑宇航,王文卓,刘芳,张新笑,孙芝兰. 真空包装鸡肉肠产气微生物分离鉴定及胀袋原因探析. 肉类研究. 2024(04): 36-42 .
![]() | |
2. |
胡文静,刘小雪,梁栋,焦凌霞. 肌苷对酸土脂环酸芽孢杆菌生长及生物膜形成的影响. 中国食品学报. 2023(09): 242-251 .
![]() | |
3. |
许育民,任兰兰,张颖,刘亚慧,王海花,张晓静,张晓峰. 抗食源性病原菌细菌素的筛选及特性研究. 食品安全质量检测学报. 2022(04): 1170-1175 .
![]() | |
4. |
刘小杰,舒志成,赵志红,左迪. 调节血脂保健粥的研制. 食品工业科技. 2021(22): 240-245 .
![]() |