YANG Qingyu, WANG Yanwen, LI Xiang, et al. Research and Application of Food Raw Materials Based on Food 3D Printing Technology[J]. Science and Technology of Food Industry, 2021, 42(8): 1−7. (in Chinese with English abstract). doi: 10.13386/j.issn 1002-0306.2020080264.
Citation: YANG Qingyu, WANG Yanwen, LI Xiang, et al. Research and Application of Food Raw Materials Based on Food 3D Printing Technology[J]. Science and Technology of Food Industry, 2021, 42(8): 1−7. (in Chinese with English abstract). doi: 10.13386/j.issn 1002-0306.2020080264.

Research and Application of Food Raw Materials Based on Food 3D Printing Technology

More Information
  • Received Date: August 26, 2020
  • Available Online: March 25, 2021
  • As a new emerging digital food processing technology, 3D printing technology has been widely used in food, materials, aerospace, automobiles, building models and other fields. Food 3D printing technology can also be called an “additive manufacturing” technology, which has the advantages of convenience, flexibility and high precision. It can realize the personalized customization of food, such as appearance, color, texture, taste and formula. This paper reviewed the principles of Food 3D printing, 3D food materials and applications, and hopes to lay a foundatsn for the development and application of food 3D printing materials.
  • [1]
    吴世嘉, 张辉, 贾敬敦. 3D打印技术在我国食品加工中的发展前景和建议[J]. 中国农业科技导报,2015,17(1):1−6.
    [2]
    李光玲. 食品3D打印的发展及挑战[J]. 食品与机械,2015,31(1):231−234.
    [3]
    杜姗姗, 周爱军, 陈洪, 等. 3D打印技术在食品中的应用进展[J]. 中国农业科技导报,2018,20(3):87−93.
    [4]
    Barry Berman. 3-D printing: The new industrial revolution[J]. Business Horizons,2012,55(2):155−162. doi: 10.1016/j.bushor.2011.11.003
    [5]
    Teresa F, Wegrzyn, Matt Golding, et al. Food layered manufacture: A new process for constructing solid foods[J]. Trends in Food Science & Technology,2012,27(2):66−72.
    [6]
    Schubert Carl, Van Langeveld Mark C, Donoso Larry A. Innovations in 3D printing: A 3D overview from optics to organs[J]. The British Journal of Ophthalmology,2014,98(2):159−161. doi: 10.1136/bjophthalmol-2013-304446
    [7]
    Günther D, Heymel B, Franz Günther J, et al. Continuous 3D-printing for additive manufacturing[J]. Rapid Prototyping Journal,2014,20(4):320−327. doi: 10.1108/RPJ-08-2012-0068
    [8]
    Kaur S. Pushing frontiers with the first lady of emerging technologies-How is “Internet of the 3D printed products” going to affect our lives?[J]. IETE Technical Review,2012,29(5):360−364. doi: 10.4103/0256-4602.103164
    [9]
    Bassoli E, Gatto A, Iuliano L, et al. 3D printing technique applied to rapid casting[J]. Rapid Prototyping Journal,2007,13(3):148−155. doi: 10.1108/13552540710750898
    [10]
    周涛, 徐书洁, 杨继全. 3D食品打印技术研究的最新进展[J]. 食品工业,2016,37(12):208−212.
    [11]
    Sun J, Zhou W, Huang D, et al. An overview of 3D printing technologies for food fabrication[J]. Food and Bioprocess Technology,2015,8(8):1605−1615. doi: 10.1007/s11947-015-1528-6
    [12]
    Godoi F C, Prakash S, Bhandari B R. 3d printing technologies applied for food design: Status and prospects[J]. Journal of Food Engineering,2016,179:44−54. doi: 10.1016/j.jfoodeng.2016.01.025
    [13]
    Wang J, Shaw L L. Rheological and extrusion behavior of dental porcelain slurries for rapid prototyping applications[J]. Materials Science and Engineering: A,2005,397:314−321. doi: 10.1016/j.msea.2005.02.045
    [14]
    陈洹. 热挤压3D打印成型性与淀粉材料结构及流变特性的关联研究[D]. 广州: 华南理工大学, 2019.
    [15]
    杨繁荣. 基于熔融沉积法的蔗糖3D打印工艺研究[D]. 西安: 西安科技大学, 2019.
    [16]
    Mironov V, Trusk T, Kasyanov V, et al. Biofabrication: A 21st century manufacturing paradigm[J]. Biofabrication,2009,1(2):1−16.
    [17]
    Hao L, Mellor S, Seaman O, et al. Material characterisation and process development for chocolate additive layer manufacturing[J]. Virtual and Physical Prototyping,2010,5:57−64. doi: 10.1080/17452751003753212
    [18]
    Diaz J V, Noort W J, Henket J, et al. Method for the production of edible objects using SLS and food products[P]. WO: 2014193226, 2014-12-04.
    [19]
    丁易人. 基于挤出成型的食材3D打印工艺研究[D]. 杭州: 浙江大学, 2017.
    [20]
    贾礼宾, 王修春, 王小军, 等. 选择性激光烧结技术研究与应用进展[J]. 信息技术与信息化,2015,191(11):172−175.
    [21]
    刘倩楠, 张春江, 张良, 等. 食品 3D 打印技术的发展现状[J]. 农业工程学报,2018,34(16):265−273.
    [22]
    Zoran A, Coelho M. Cornucopia: The concept of digital gastronomy[J]. Leonardo,2011,44(5):425−431. doi: 10.1162/LEON_a_00243
    [23]
    Dankar I, Pujolà M, El Omar F, et al. Impact of mechanical and microstructural properties of potato puree-food additive complexes on extrusion-based 3d printing[J]. Food and Bioprocess Technology,2018,11:2021−2031. doi: 10.1007/s11947-018-2159-5
    [24]
    Dudek P. FDM 3D printing technology in manufacturing composite elements[J]. Archives of Metallurgy and Materialsy,2013,58:1415−1418. doi: 10.2478/amm-2013-0186
    [25]
    王琳. 鲢鱼糜凝胶体系的挤压式三维打印研究[D]. 无锡: 江南大学, 2017.
    [26]
    Liu Z, Bhandari B, Prakash S, et al. Linking rheology and printability of a multicomponent gel system of carrageenan-xanthan-starch in extrusion based additive manufacturing[J]. Food Hydrocolloids,2019,87:413−424. doi: 10.1016/j.foodhyd.2018.08.026
    [27]
    Chen H, Xie F, Chen L, et al. Effect of rheological properties of potato, rice and corn starches on their hot-extrusion 3D printing behaviors[J]. Journal of Food Engineering,2019,244:150−158. doi: 10.1016/j.jfoodeng.2018.09.011
    [28]
    Cohen D L, Jeffrey I L, Cutler M, et al. Hydrocolloid printing: A novel platform for customized food production[C]//Proceedings of solid freeform fabrication symposium (SFF'09), Austin, TX, 2009: 807−818.
    [29]
    Truby R L, Lewis J A. Printing soft matter in three dimensions[J]. Nature,2016,540(7633):371−378. doi: 10.1038/nature21003
    [30]
    Zhang M, Vora A, Han W, et al. Dual-responsive hydrogels for direct-write 3D Printing[J]. Macromolecules,2015,48:6482−6488. doi: 10.1021/acs.macromol.5b01550
    [31]
    Wegrzyn T F, Golding M, Archer R H. Food Layered Manufacture: A new process for constructing solid foods[J]. Trends in Food Science & Technology,2012,27:66−72.
    [32]
    Muroi H, Hidema R, Gong J, et al. Development of optical 3D gel printer for fabricating free-form soft & wet industrial materials and evaluation of printed double-network gels[J]. Journal of Solid Mechanics & Materials Engineering,2013,7(2):163−168.
    [33]
    Hossain S M Z, Luckham R E, Smith A M, et al. Development of a bioactive paper sensor for detection of neurotoxins using piezoelectric inkjet printing of solgelderived bioinks[J]. Analytical Chemistry,2009,81:5474−5483. doi: 10.1021/ac900660p
    [34]
    Kern C, Weiss J, Hinrichs J. Additive layer manufacturing of semi-hard model cheese: Effect of calcium levels on thermo-rheological properties and shear behavior[J]. Journal of Food Engineering,2018,235:89−97. doi: 10.1016/j.jfoodeng.2018.04.029
    [35]
    Liu Z, Min Z, Bhandari B, et al. 3D printing: Printing precision and application in food sector[J]. Trends in Food Science & Technology,2017,69:83−94.
    [36]
    Li J Y, Yeh A I. Relationships between thermal, rheological characteristics and swelling power for various starches[J]. Journal of Food Engineering,2001,50(3):141−148. doi: 10.1016/S0260-8774(00)00236-3
    [37]
    Feng C X, Wang Q, Li H, et al. Effects of pea protein on the properties of potato starch-based 3D printing materials[J]. International Journal of Food Engineering,2018,14(3):1−10.
    [38]
    余阳玲, 仝兆斌, 江昊, 等. 淀粉原料3D打印特性[J]. 食品与发酵工业,2020,46(3):194−200.
    [39]
    Jiang H, Zheng L, Zou Y, et al. 3D food printing: Main components selection by considering rheological properties[J]. Critical Reviews in Food Technology,2019,59(14):2335−2347. doi: 10.1080/10408398.2018.1514363
    [40]
    Singh N, Singh J, Singh S N. Morphological, thermal, rheological and noodle-making properties of potato and corn starch[J]. Journal of the Science of Food and Agriculture,2002,82(12):1376−1383. doi: 10.1002/jsfa.1194
    [41]
    Lipton J, Arnold D, Nigl F, et al. Multi-material food printing with complex internal structure suitable for conventional post-processing.[C]//International solid freeform fabrication symposium, Austin, Texas. 2010, 809-815.
    [42]
    Noort M J, Diaz J V, Van Bommel K J C, et al. Method for the production of an edible object using SLS[P]. USA, US15/528609.
    [43]
    岑培倩. 中药复合多糖凝胶软糖的3D打印技术研究[D]. 武汉: 华中科技大学, 2019.
    [44]
    Heertje I. Microstructural studies in fat research[J]. Food structure,1993,12:77−94.
    [45]
    Narine S S, Marangoni A G. Fractal nature of fat crystal networks[J]. Physical Review E,1999,59(2):1908−1920. doi: 10.1103/PhysRevE.59.1908
    [46]
    Marangoni A G, Narine S S. Identifying key structural indicators of mechanical strength in networks of fat crystals[J]. Food Research International,2002,35(10):957−969. doi: 10.1016/S0963-9969(02)00158-8
    [47]
    Deman J M, Beers A M. Fat crystal networks: Structure and rheological properties[J]. Journal of Texture Studies,1987:303−318.
    [48]
    Narine S S, Marangoni A G. Mechanical and structural model of fractal networks of fat crystals at low deformations[J]. Physical Review E,1999,60(6):6991−7000. doi: 10.1103/PhysRevE.60.6991
    [49]
    党国帅. 构成月桂酸型代可可脂的甘三酯的合成及其相容性研究[D]. 郑州: 河南工业大学, 2016.
    [50]
    刘梅森, 高荫榆, 熊春红, 等. 几种巧克力调温过程中的结晶特性研究[J]. 粮油食品科技,2001(3):9−11.
    [51]
    Chunyan Feng, Min Zhang, Bhesh Bhandari. Materials properties of printable edible inks and printing parameters optimization during 3D printing: A review[J]. Critical Reviews in Food Science and Nutrition,2019,59(19):3074−3081. doi: 10.1080/10408398.2018.1481823
    [52]
    Derossi A, Caporizzi R, Azzollini D, et al. Application of 3D printing for customized food. A case on the development of a fruit-based snack for children[J]. Journal of Food Engineering,2018,220:65−75. doi: 10.1016/j.jfoodeng.2017.05.015
    [53]
    杨帆. 典型植物类重组食品挤压式三维打印成型效果及稳定性研究[D]. 无锡: 江南大学, 2018.
    [54]
    王浩, 谭畅, 陈静, 等. 魔芋胶对蓝莓凝胶体系3D打印特性的影响[J]. 食品科学,2019,40(23):104−110.
    [55]
    Sun J, Peng Z, Zhou W, et al. A review on 3D printing for customized food fabrication[J]. Procedia Manufacturing,2015,1:308−319. doi: 10.1016/j.promfg.2015.09.057
    [56]
    Shirazi S F S, Gharehkhani S, Mehrali M, et al. A review on powder-based additive manufacturing for tissue engineering: Selective laser sintering and inkjet 3D printing[J]. Sci Technol Adv Mater,2015,16(3):033502. doi: 10.1088/1468-6996/16/3/033502
    [57]
    Severini C, Derossi A. Could the 3D printing technology be a useful strategy to obtain customized nutrition[J]. Journal of Clinical Gastroenterology,2016,50:175−178. doi: 10.1097/MCG.0000000000000377
    [58]
    Nachal N, Moses J A, Karthik P, et al. Applications of 3D printing in food processing[J]. Food Engineering Reviews,2019,11(3):123−141. doi: 10.1007/s12393-019-09199-8
    [59]
    Liu C, Ho C, Wang J. The development of 3D food printer for printing fibrous meat materials[J]. IOP Conference Series: Materials Science and Engineering,2018,284(1):012019.
    [60]
    Dick A, Bhandari B, Prakash S. 3D printing of meat[J]. Meat Science,2019,153(7):35−44.
    [61]
    王明爽, 姜涵骞, 李林, 等. 基于果蔬原料的食品3D打印技术及其应用[J/OL]. 食品科学: 1−10[2021-03-06]. http://kns.cnki.net/kcms/detail/11.2206.TS.20200601.1307.032.html.
    [62]
    贲宗友, 施宗情, 孙艳辉. 3D打印在食品中的应用研究进展[J]. 轻工科技,2018,34:4−6.
    [63]
    Vancauwenberghe V, Mbong V B M, Vanstreels E, et al. 3D printing of plant tissue for innovative food manufacturing: Encapsulation of alive plant cells into pectin based bio-ink[J]. Journal of Food Engineering,2017,263:454−464.
    [64]
    Park S M, Kim H W, Park H J. Callus-based 3D printing for food exemplified with carrot tissues and its potential for innovative food production[J]. Journal of Food Engineering,2020,271:109781. doi: 10.1016/j.jfoodeng.2019.109781
    [65]
    王琪, 李慧, 王赛, 等. 3D打印技术在食品行业中的应用研究进展[J]. 粮食与油脂,2019,32(1):16−19.
  • Related Articles

    [1]CHEN Yongfang, LI Yanke, ZHANG Shujing. Mechanism of Poria cocos Polysaccharide Regulating Autophagy and Chemotherapy Resistance of Hepatocellular Carcinoma Cells through LncRNAHCG11/miR-539-3p 539-3p[J]. Science and Technology of Food Industry, 2024, 45(22): 322-330. DOI: 10.13386/j.issn1002-0306.2023110291
    [2]LÜ Chenhao, LI Junjian, CHEN Chang'an, HE Zhilin, DU Bing, LI Pan. Anti-aging and in Vitro Antioxidant Effects of Water Extracts of Fermented Pericarpium Citri Reticulatae on Caenorhabditis elegans[J]. Science and Technology of Food Industry, 2023, 44(17): 428-437. DOI: 10.13386/j.issn1002-0306.2022110162
    [3]YAN Jing, XUE Qiuyan, WANG Yang, CHEN Wenyi, XIE Shiqing, JIANG Jinjin, LI Pan, DU Bing. Hypolipidemic and Antioxidant Effects of Fermented Rice Buckwheat on High-fat Caenorhabditis elegans[J]. Science and Technology of Food Industry, 2023, 44(6): 8-15. DOI: 10.13386/j.issn1002-0306.2022070044
    [4]WANG Gaojian, WANG Zhenzhen, LI Jiajia, FAN Haoan, SHA Ruyi, MAO Jianwei. Antioxidant Activity in Vitro and Promoting Resistance to Oxidative Stress in Caenorhabditis elegans of Blueberry Jiaosu[J]. Science and Technology of Food Industry, 2021, 42(15): 343-350. DOI: 10.13386/j.issn1002-0306.2020110157
    [5]LIU Chang, XU Yue, SHAN Cheng-ying, ZHU Chang-ling, ZHAO Fei, ZHANG Huan-shi. Exploring the Antioxidant Activity in Vivo of Coriander Extract in Caenorhabditis elegans[J]. Science and Technology of Food Industry, 2020, 41(20): 285-289. DOI: 10.13386/j.issn1002-0306.2020.20.047
    [6]XU Jie, WANG Jun, TAN Xin-tong, LI Da-peng. Research Progress of Foodborne Flavonoids Interfering with Diseases by Regulating Autophagy[J]. Science and Technology of Food Industry, 2020, 41(16): 326-333. DOI: 10.13386/j.issn1002-0306.2020.16.052
    [7]SUN Yan, CUI Xu-sheng, LIU Jing, TIAN He, YANG Yan-fang, LI Ya-fen, BAO Jing-jing, LI Chun-lin, WANG Qing, ZHANG Yan-qing, XIE Jun-bo. Optimization of Extraction Process of Flavonoids from Ziziphus jujuba Mill var. spinosa Leaves and Its Antioxidant Damage Activity in Caenorhabditis elegans[J]. Science and Technology of Food Industry, 2020, 41(8): 143-150. DOI: 10.13386/j.issn1002-0306.2020.08.023
    [8]XIE Yong-lei, CUI Ming-chen, HUANG Ya-nan, LI Pan-xin, XU Wan-ling, MA Yong-chao. Effects of Soybean Peptide on Haemodynamics and Myocardial Autophagy Levels in Rats with Exhaustive Exercise[J]. Science and Technology of Food Industry, 2019, 40(22): 316-320. DOI: 10.13386/j.issn1002-0306.2019.22.055
    [9]LIAO Xin, CHEN Wen-ying, LI Yi-zhou, LI Chen, LIU Xin-miao, SHEN Xiao-li. Oleanolic Acid Antagonized Autophagic Death of HEK293T Cells Induced by Ochratoxin A[J]. Science and Technology of Food Industry, 2019, 40(3): 286-289,295. DOI: 10.13386/j.issn1002-0306.2019.03.045
    [10]CHEN Jing-yao, ZHOU Jie, HAN Bin, LI Fei, ZHU Yan-feng, YU Xiao-ping. Delphinidin sensitizes anti-tumor effect to HER-2+breast cancer cells by combining with 3-MA[J]. Science and Technology of Food Industry, 2017, (02): 354-357. DOI: 10.13386/j.issn1002-0306.2017.02.060
  • Cited by

    Periodical cited type(4)

    1. 杨宇恒,郑宇航,王文卓,刘芳,张新笑,孙芝兰. 真空包装鸡肉肠产气微生物分离鉴定及胀袋原因探析. 肉类研究. 2024(04): 36-42 .
    2. 胡文静,刘小雪,梁栋,焦凌霞. 肌苷对酸土脂环酸芽孢杆菌生长及生物膜形成的影响. 中国食品学报. 2023(09): 242-251 .
    3. 许育民,任兰兰,张颖,刘亚慧,王海花,张晓静,张晓峰. 抗食源性病原菌细菌素的筛选及特性研究. 食品安全质量检测学报. 2022(04): 1170-1175 .
    4. 刘小杰,舒志成,赵志红,左迪. 调节血脂保健粥的研制. 食品工业科技. 2021(22): 240-245 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return