LI Yumei, TANG Runfa, DU Fangfang, et al. Research Progress of Statistical Analysis Methods for Physicochemical Parameters of Edible Frying Oil[J]. Science and Technology of Food Industry, 2021, 42(7): 416−426. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2020080262.
Citation: LI Yumei, TANG Runfa, DU Fangfang, et al. Research Progress of Statistical Analysis Methods for Physicochemical Parameters of Edible Frying Oil[J]. Science and Technology of Food Industry, 2021, 42(7): 416−426. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2020080262.

Research Progress of Statistical Analysis Methods for Physicochemical Parameters of Edible Frying Oil

More Information
  • Received Date: August 26, 2020
  • Available Online: January 27, 2021
  • Frying food is not only pleasant to taste buds, but also faced with the optimal choice of oil type and quality and safety issues. Many scholars have studied the choice of oil type and the frying time. From the perspective of statistics, this paper summarizes the research progress of common statistical data analysis methods in the analysis of frying oil’s physicochemical parameters. First, with table analysis, data of repeated experiments are put into the table in the form of mean value plus minus standard deviation in most research cases, and the three common analyzed physicochemical parameters are acid value, fatty acid and total polar compounds. Second, with visualization methods of straight bar charts, line charts and scatter plots, the straight bar charts are mainly used to show the content of physicochemical parameters under different frying oil, frying time, frying temperature or power levels of heating; the line charts are mainly used to analyze the changes of physicochemical parameters with frying time, frying temperature, frying oil or frying load; the scatter plots are mainly used to analyze the influence of frying time, frying times or oil density on physicochemical parameters, as well as the relationship between physicochemical parameters or the distribution of physicochemical parameters in different waste oil samples. Third, with fitting methods of linear fittings and nonlinear fittings, the linear fittings are mainly used to analyze the linear relationships of physicochemical parameters with frying time, frying times or dielectric constants, as well as the linear relationships between physicochemical parameters and near infrared spectrum, and to analyze the consistency between the measured values of physicochemical parameters and the predicted values of other models; The nonlinear fittings mainly involve the methods of polynomial fitting, exponential function fitting and logistic regression and they are used to analyze the complex relationships between some physicochemical parameters and frying time, and to classify oil according to physicochemical parameters. Fourth, about the correlation analysis of physicochemical parameters, most of the literatures are carried out by calculating the Pearson correlation coefficients between physicochemical parameters, and a small number of literatures use the linear or nonlinear fitting methods between physicochemical parameters to analyze the correlation. Fifth, Analysis of variance is mainly used to study the changes of physicochemical parameters under different frying factors. Sixth, the principal component analysis is mainly used to analyze the importance of each physicochemical parameter to the quality control of frying oil, and so on. Through the above description of the progress of the statistical analysis methods for the physicochemical parameters of frying oil, it provides the researchers with some ideas for the selection of research methods and means.
  • [1]
    田洪芸, 陆垣宏, 李恒,等. 我国食用植物油质量安全状况及监管现状分析[J]. 中国油脂,2019,10(16):5271−5275.
    [2]
    王瑞元. 2018年我国油料油脂生产供应情况浅析[J]. 中国油脂,2019,44(6):1−5. doi: 10.3969/j.issn.1003-7969.2019.06.001
    [3]
    Gertz Christian, Sabine Klostermann, S Parkash Kochhar. Testing and comparing oxidative stability of vegetable oils and fats at frying temperature[J]. European Journal of Lipid Science and Technology,2000,102:8−9, 543-551.
    [4]
    Bard L J, Farkas B E. A method for determining convective heat transfer coefficient during immersion frying[J]. J Food Process Eng,1999,22:201−214. doi: 10.1111/j.1745-4530.1999.tb00481.x
    [5]
    Nayak P K, Dash U, Rayaguru K, et al. Physio-chemical changes during repeated frying of cooked oil: A review[J]. Journal of Food Biochemistry,2016,40(3):371−390. doi: 10.1111/jfbc.12215
    [6]
    Kalogeropoulos N, Salta F N, Chiou A, et al. Formation and distribution of oxidized fatty acids during deep - and pan-frying of potatoes[J]. Eur J Lipid Sci Technol,2007,109:1111−1123. doi: 10.1002/ejlt.200700007
    [7]
    吴时敏. 煎炸用油和油炸食品的质量安全问题及对策[J]. 食品科学技术学报,2015,33(1):6−12. doi: 10.3969/j.issn.2095-6002.2015.01.002
    [8]
    蒋甜燕, 魏为连. 煎炸过程中大豆油品质变化研究[J]. 安徽农业科学,2015,43(13):279−281. doi: 10.3969/j.issn.0517-6611.2015.13.096
    [9]
    沈正贤, 张燕玲, 浦宏娣, 等. 煎炸油品质测定及测试仪的研究[J]. 北京农业工程大学学报,1990,10(1):70−76.
    [10]
    章海风, 周晓燕, 李辉, 等. 3种食用油在油条煎炸过程中的品质变化比较[J]. 食品科学,2013,34(22):160−164.
    [11]
    安柯静. 油脂煎炸过程极性组分与甘油三酯聚合物及其它组分的关联性研究[D]. 郑州: 河南工业大学, 2018.
    [12]
    Jinkui Ma, Han Z hang, Tomohiro Tuchiya, et al. Rapid determination of degradation of frying oil using near-infrared spectroscopy[J]. Food Science and Technology Research,2014,20(2):217−223. doi: 10.3136/fstr.20.217
    [13]
    Giuffrè A M, Zappia C, Capocasale M. Effects of high temperatures and duration of heating on olive oil properties for food use and biodiesel production[J]. Journal of the American Oil Chemists\" Society,2017,94(6):819−830. doi: 10.1007/s11746-017-2988-9
    [14]
    Adebukola T Omidiran, Olajide P Sobukola, Silifat A Sanni, et al. Evaluation of some quality parameters of cassava starch and soy protein isolate matrices during deep fat frying in soybean oil[J]. Food Science Nutrition,2019,7:656−666. doi: 10.1002/fsn3.904
    [15]
    DéboraRavelli, Matsuoka C R, Regina Célia Della Modesta, et al. Determination of deep frying soybean oil disposal point by a sensory method[J]. Journal of the American Oil Chemists Society,2010,87(5):515−520. doi: 10.1007/s11746-009-1524-y
    [16]
    Fatemeh Esfarjani, Khadijeh Khoshtinat, Aziz Zargaraan, et al. Evaluating the rancidity and quality of discarded oils in fast food restaurants[J]. Food Science Nutrition,2019,7:2302−2311. doi: 10.1002/fsn3.1072
    [17]
    Giuffrè Angelo Maria, Capocasale M, Zappia C, et al. Influence of high temperature and duration of heating on the sunflower seed oil properties for food use and bio-diesel production[J]. Journal of Oleo Science,2017,66(11):1193−1205. doi: 10.5650/jos.ess17109
    [18]
    Millin T M, Medina-Meza I G, Walters B C, et al. Frying oil temperature: impact on physical and structural properties of french fries during the par and finish frying processes[J]. Food & Bioprocess Technology,2016,9(12):1−12.
    [19]
    E Aydınkaptan, I BarutçuMazı. Monitoring the physicochemical features of sunflower oil and French fries during repeated microwave frying and deep-fat frying[J]. Grasas Y Aceites,2017,68(2):e202.
    [20]
    Ying Liu, Jinwei Li, Yajun Cheng, et al. Effect of frying oils’ fatty acid profile on quality, free radical and volatiles over deep-frying process: A comparative study using chemometrics[J]. LWT-Food Science and Technology,2019,101:331−341. doi: 10.1016/j.lwt.2018.11.033
    [21]
    Nancy Idun-Acquah, George Y Obeng, Ebenezer Mensah. Repetitive use of vegetable cooking oil and effects on physico-chemical properties–case of frying with redfish (Lutjanus fulgens)[J]. Science and Technology,2016,6(1):8−14.
    [22]
    Aladedunye F A, Przybylski R. Degradation and nutritional quality changes of oil during frying[J]. Journal of the American Oil Chemists' Society,2009,86(2):149−156. doi: 10.1007/s11746-008-1328-5
    [23]
    Ruhollah Sayyad. Effects of deep-fat frying process on the oil quality during Frenchfries preparation[J]. Journal of Food Science and Technology,2017,54(8):2224−2229. doi: 10.1007/s13197-017-2657-x
    [24]
    Ki Seon Yu, Hyunnho Cho, KeumTaek Hwang. Physicochemical properties and oxidative stability of frying oilsduring repeated frying of potato chips[J]. Food Science & Biotechnology,2018,27(3):651−659.
    [25]
    Xu Li, Xiaojing Wu, Ruijie Liu, et al. Effect of frying conditions on fatty acid profile and total polar materials via viscosity[J]. Journal of Food Engineering,2015,166:349−355. doi: 10.1016/j.jfoodeng.2015.07.007
    [26]
    Magda Aniołowska, Agnieszka Kita. The effect of frying on glycidyl esters content in palm oil[J]. Food Chemistry,2016,203:95−103. doi: 10.1016/j.foodchem.2016.02.028
    [27]
    JuHee Song, Mi-Ja Kim, Young-Jun Kim, et al. Monitoring changes in acid value, total polar material, and antioxidant capacity of oils used for frying chicken[J]. Food Chemistry,2017,220:306−312. doi: 10.1016/j.foodchem.2016.09.174
    [28]
    Nur Ul Atikah Ibrahim, Samsuzana Abd Aziz, Norhashila Hashim, et al. Dielectric spectroscopy of palm olein during batch deep frying and their relation with degradation parameters[J]. Journal of Food Science,2019,84(4):792−797. doi: 10.1111/1750-3841.14436
    [29]
    S Feitosa, E F Boffo, C S C Batista, et al. A real case study on the physicochemical changes in crude palm oil (Elaeis guineensis) during the deep-frying of akara, traditional cowpea-paste balls, in Brazil[J]. Grasas Y Aceites,2019,70(2):e305. doi: 10.3989/gya.0703182
    [30]
    Chen Wang, Guanqun Su, Xin Wang, et al. Rapid assessment of deep frying oil quality as well as water and fat contents in french fries by low-field nuclear magnetic resonance[J]. J Agric Food Chem,2019,67:2361−2368.
    [31]
    Márcio Antônio Mendonça, Wilma Maria Coelho Araújo, Luiz AntônioBorgo, et al. Deep-frying oil: Heat-induced changes[J]. Journal of Culinary Science & Technology,2015,13:116−132.
    [32]
    Iness Jabri Karoui, Wissal Dhifi, Meriam Ben Jemia, et al. Thermal stability of corn oil flavoured with Thymus capitatus under heating and deep-frying conditions[J]. Journal of Science Food Agriculture,2011,91:927−933. doi: 10.1002/jsfa.4267
    [33]
    Nuri Kim, KiSeon Yu, Jaecheol Kim. Chemical characteristics of potato chips fried in repeatedly used oils[J]. Journal of Food Measurement and Characterization,2018,12:1863−1871. doi: 10.1007/s11694-018-9800-x
    [34]
    Ying Liu, Yuanpeng Wang, Peirang Cao, et al. Combination of gas chromatography-mass spectrometry and electron spin resonance spectroscopy for analysis of oxidative stability in soybean oil during deep-frying process[J]. Food Analytical Methods,2018,11:1485−1492. doi: 10.1007/s12161-017-1132-7
    [35]
    Hamid Reza Tavakoli, Mehdi Naderi, Seid Mahdi Jafari, et al. Postmarketing surveillance of the oxidative stability for cooking oils, frying oils, and vanaspati supplied in the retail market[J]. Food Science Nutrition,2019,7:1455−1465. doi: 10.1002/fsn3.982
    [36]
    Aydinkaptan E, Mazi B G, Barutcu Mazi I. Microwave heating of sunflower oil at frying temperatures: Effect of power levels on physicochemical properties[J]. Journal of Food Process Engineering,2017,40:e12402. doi: 10.1111/jfpe.12402
    [37]
    Abenoza, María, Patricia D L H, Benito M, et al. Changes in the physicochemical and nutritional parameters of picual and arbequina olive oils during frying[J]. Journal of Food Processing and Preservation,2016,40(3):353−361. doi: 10.1111/jfpp.12612
    [38]
    Fatma Nur Arslan, Ayça Nesibe ŞapçI, Fatma Duru, et al. A study on monitoring of frying performance and oxidative stability of cottonseed and palm oil blends in comparison with original oils[J]. International Journal of Food Properties,2017,20(3):704−717. doi: 10.1080/10942912.2016.1177544
    [39]
    Ali M A, Najmaldien A H A, Latip R A, et al. Effect of heating at frying temperature on the quality characteristics of regular and high-oleic acid sunflower oils[J]. Acta Scientiarum Polonorum, Technologia Alimentaria,2013,12(2):159−167.
    [40]
    Ibtissem Ben Hammouda, Akram Zribi, Amir Ben Mansour, et al. Effect of deep-frying on 3-MCPD esters and glycidyl esters contents and quality control of refined olive pomace oil blended with refined palm oil[J]. European Food Research Technology,2017,243:1219−1227. doi: 10.1007/s00217-016-2836-4
    [41]
    Delfanian M, Kenari R E, Sahari M A. Effect of natural extracted antioxidants from Eriobotrya japonica (Lindl.) fruit skin on thermo oxidative stability of soybean oil during deep frying[J]. International Journal of Food Properties,2016,19(5):958−973. doi: 10.1080/10942912.2015.1041039
    [42]
    Raza S A, Rashid A, William J, et al. Evaluation of oxidative stability of sunflower oil at frying temperature in presence of butylated hydroxytoluene and methanolic extracts of medicinally important plants of Pakistan[J]. International Food Research Journal,2014,21(1):331−334.
    [43]
    Ying Liu, Yuanpeng Wang, Peirang Cao, et al. Degradation of edible oil during deep-frying process by electron spin resonance spectroscopy and physicochemical appreciation[J]. European Journalof Lipid Science Technology,2018,120:1700376. doi: 10.1002/ejlt.201700376
    [44]
    Picouet P A, Gou P, Pruneri V, et al. Implementation of a quality by design approach in the potato chips frying process[J]. Journal of Food Engineering,2019,260:22−29. doi: 10.1016/j.jfoodeng.2019.04.013
    [45]
    Ibtissem Ben Hammouda, Gloria Márquez-Ruiz, Francisca Holgado, et al. Comparative study of polymers and total polar compounds as indicators of refined oil degradation during frying[J]. European Food Research and Technology,2019,245(5):967−976. doi: 10.1007/s00217-018-3202-5
    [46]
    蒋晓菲, 杨叶波, 金青哲, 等. 5种精制食用油在煎炸薯条过程中的品质变化[J]. 中国油脂,2014,39(8):47−51.
    [47]
    钟宏星, 张晶, 梁伟健, 等. 煎炸时间对不同食用油脂品质的影响[J]. 食品安全质量检测学报,2017,8(12):4694−4697. doi: 10.3969/j.issn.2095-0381.2017.12.032
    [48]
    郝丹辉, 梁永铭, 茅春辉, 等. 食用油脂煎炸过程中理化指标分析及其在监管中的应用[J]. 工业微生物,2017,47(2):61−67. doi: 10.3969/j.issn.1001-6678.2017.02.011
    [49]
    Shyu Shyi-Liang, Lung-Bin Hau, Lucy Sun Hwang. Effect of vacuum frying on the oxidative stability of oils[J]. Journal of the American Oil Chemists' Society,1998,75(10):1393−1398. doi: 10.1007/s11746-998-0188-3
    [50]
    Roiaini M, Ardiannie T, Norhayati H. Physicochemical properties of canola oil, olive oil and palm olein blends[J]. International Food Research Journal,2015,22(3):1227−1233.
    [51]
    Nikolaos K Andrikopoulos, George V Z Dedoussis, Ageliki Falirea, et al. Deterioration of natural antioxidant species of vegetable edible oils during the domestic deep-frying and pan-frying of potatoes[J]. International Journal of Food Sciences and Nutrition,2002,53:351−363. doi: 10.1080/09637480220138098
    [52]
    Durmaz F, Talpur M Y. Oxidation on the stability of canola oil blended with stinging nettle oil at frying temperature[J]. International Journal of Food Properties,2015,18(7):1402−1415. doi: 10.1080/10942912.2014.917097
    [53]
    刘玉兰, 石龙凯, 陈梦莹, 等. 3种油脂在煎炸过程中维生素E组分及理化指标变化研究[J]. 中国油脂,2016,41(4):32−36. doi: 10.3969/j.issn.1003-7969.2016.04.008
    [54]
    曹亮. 茶油煎炸后品质变化及评价[D]. 哈尔滨: 东北农业大学, 2015.
    [55]
    Xiaodan Li, Jinwei Li, Yong Wang, et al. Effects of frying oils’ fatty acids profile on the formation of polar lipids components and their retention in French fries over deep-frying process[J]. Food Chemistry,2017,237:98−105. doi: 10.1016/j.foodchem.2017.05.100
    [56]
    Azmil Haizam Ahmad Tarmizi, Elina Hishamuddin, Raznim ArniAbd Razak. Impartial assessment of oil degradation through partitioning of polar compounds in vegetable oils under simulated frying practice of fast food restaurants[J]. Food Control,2019,96:445−455. doi: 10.1016/j.foodcont.2018.10.010
    [57]
    M Uscanga-Ramos, A Ramı´rez-Martı´nez, M A Garcı´a-Alvarado, et al. Effect of repeated frying on the physical characteristics, the formation of acrylamide and oil uptake of tortilla chips subjected to pre-drying treatment[J]. Journal of Food Science Technology,2019,56(4):1708−1714. doi: 10.1007/s13197-019-03594-z
    [58]
    Xu Li, Gangcheng Wu, Fan Yang, et al. Influence of fried food and oil type on the distribution of polar compounds in discarded oil during restaurant deep frying[J]. Food Chemistry,2019,272:12−17. doi: 10.1016/j.foodchem.2018.08.023
    [59]
    Carla S P Santos, Lucı´a Molina Garcı´, Rebeca Cruz, et al. Impact of potatoes deep-frying on common monounsaturated-rich vegetable oils: A comparative study[J]. Journal of Food Scienceand Technology,2019,56(1):290−301. doi: 10.1007/s13197-018-3489-z
    [60]
    Wang S N, Sui X N, Wang Z J, et al. Improvement in thermal stability of soybean oil by blending with camellia oil during deep fat frying[J]. European Journal of Lipid Science and Technology,2016,118(4):524−531. doi: 10.1002/ejlt.201500085
    [61]
    慕鸿雁, 郑琦. 3种食用油在薯条煎炸过程中的品质变化[J]. 食品科学,2012,33(19):168−171.
    [62]
    李杨, 马文君, 齐宝坤, 等. 调和大豆油煎炸过程品质变化的研究[J]. 食品工业,2015,36(6):21−24.
    [63]
    王进英, 钟海雁, 周波. 油脂在深度煎炸过程中发生的化学反应及其主要产物[J]. 中国油脂,2015,40(11):37−43. doi: 10.3969/j.issn.1003-7969.2015.11.008
    [64]
    张铁英, 姜元荣, 陈雅琼. 煎炸油在煎炸过程中脂肪酸组成的变化[J]. 食品科学,2013,34(5):132−136.
    [65]
    夏季亮, 陈玎玎, 吴晶. 煎炸时间与煎炸温度对花生油脂肪酸组成的影响[J]. 中国油脂,2013,38(7):76−81. doi: 10.3969/j.issn.1003-7969.2013.07.020
    [66]
    Gertz C, Aladedunye F, Matthäus B. A new analytical and statistical approach to predict the sensory properties of deep frying fats and oils to determine the point of discard during processing[J]. European Journal of Lipid Science and Technology,2017:e201600393.
    [67]
    Laranjeira Cristina, C Ventura, S M C S Bermejo, et al. Used food oils: Physical-chemical indicators of quality degradation[J]. Baltic Conference on Food Science and Technology,2017,11:154−159.
    [68]
    Ortiz Rojas, Yamid, Liliam Palomeque. A new method for oxidation degree estimation: Polynuclear compounds as an indicator of edible oil degradation[J]. Food studies: An Interdisciplinary Journal,2017,7(3):13−21. doi: 10.18848/2160-1933/CGP/v07i03/13-21
    [69]
    Zribi A, Jabeur H, Flamini G, et al. Quality assessment of refined oil blends during repeated deep frying monitored by SPME-GC-EIMS, GC and chemometrics[J]. International Journal of Food Science & Technology,2016,51(7):1594−1603.
    [70]
    卫星华, 董曼曼, 李涛, 等. 影响煎炸油中极性组分含量的研究[J]. 食品安全质量检测学报,2018,9(7):1660−1664. doi: 10.3969/j.issn.2095-0381.2018.07.033
    [71]
    周雅琳, 周令国, 郑连姬, 冯璨, 等. 食用油煎炸过程中影响极性成分生成因素的研究[J]. 中国油脂,2008,33(2):70−72. doi: 10.3321/j.issn:1003-7969.2008.02.022
    [72]
    Nomali Ziphorah Ngobese, Tilahun Seyoum Workneh, Muthulisi Siwela. Effect of low-temperature long-time and high-temperature short-time blanching and frying treatments on the French fry quality of six Irish potato cultivars[J]. Journal of Food Science Technology,2017,54(2):507−517. doi: 10.1007/s13197-017-2495-x
    [73]
    Arias-Mendez A, Warning A, Datta A K, et al. Quality and safety driven optimal operation of deep-fat frying of potato chips[J]. Journal of Food Engineering,2013,119(1):125−134. doi: 10.1016/j.jfoodeng.2013.05.001
    [74]
    Touffet M, Patsioura A, Ziaiifar A M, et al. Online reconstruction of oil oxidation kinetics and reaction schemes during deep-frying by deconvolution of ATR-FTIR spectra[J]. Journal of Food Engineering, Journal of Food Engineering,2018,224:1−16.
    [75]
    郭锐, 庞敏, 操丽丽, 等. 茶籽油煎炸过程中的品质变化研究[J]. 安徽农业科学,2017,45(11):75−79. doi: 10.3969/j.issn.0517-6611.2017.11.023
    [76]
    翟金玲, 陈季旺, 夏文水. 加热温度及时间对食用煎炸油品质的影响[J]. 食品安全质量检测学报,2015,6(8):3247−3254.
    [77]
    Liu M, Xie S, Ge J, et al. A microfluidic system for assessing frying oil quality[C]// 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2016.
    [78]
    Santina Romani, Mara Bacchiocca, Pietro Rocculi, et al. Effect of frying time on acrylamide content and quality aspects of French fries[J]. European Food Research Technology,2008,226:555−560. doi: 10.1007/s00217-007-0570-7
    [79]
    Pavlovska G, Shurkova N, Jankuloska V. Oxidative stability of refined sunflower oil at room temperature and during conventional frying[J]. Journal of Faculty of Food Engineering,2017,16(1):29−33.
    [80]
    R Bou, J A Navas, A Tres, et al. Quality assessment of frying fats and fried snacks during continuous deep-fat frying at different large-scale producers[J]. Food Control,2012,27:254e267.
    [81]
    陈锋亮, 魏益民, 钟耕. 大豆油高温煎炸质变过程的研究[J]. 中国油脂,2006,31(8):19−22. doi: 10.3321/j.issn:1003-7969.2006.08.006
    [82]
    常明, 刘睿杰, 金青哲, 等. 大豆油煎炸过程理化指标与煎炸时间相关性研究[J]. 中国油脂,2014(4):93−95, 96.
    [83]
    王欣, 夏义苗, 史然, 等. 基于LF-NMR及主成分回归分析的油脂煎炸品质预测[J]. 中国食品学报,2015,15(4):155−163.
    [84]
    Franklin E M E, Pushpadass H A, Neethu K C, et al. Modeling the kinetics of physicochemical and textural qualities of pantoa (indian dairy dessert) during deep-fat frying[J]. Journal of Food Processing & Preservation,2017,41(2):1−10.
    [85]
    夏义苗, 王欣, 毛锐, 等. 基于理化指标及主成分分析的葵花籽油品质综合评价指标的建立[J]. 分析测试学报,2015,34(9):999−1007. doi: 10.3969/j.issn.1004-4957.2015.09.004
    [86]
    Yungang Shen, Shunsheng Chen, Rui Du, et al. Rapid assessment of the quality of deep frying oils used by street vendors with Fourier transform infrared spectroscopy[J]. Food Measure,2014,8:336−342. doi: 10.1007/s11694-014-9194-3
    [87]
    Xu L, Zhu X, Yu X, et al. Rapid and simultaneous determination of the iodine value and saponification number of edible oils by ftir spectroscopy: IV and SN determination of edible oils by FTIR[J]. European Journal of Lipid Science & Technology,2018,120(4):1700396.
    [88]
    Yang J, Zhao KS, He YJ. Quality evaluation of frying oil deterioration by dielectric spectroscopy[J]. Journal of Food Engineering, 2016, 180: 69−76.
    [89]
    ShahidiNoghabi M, Kaviani M, Niazmdand R. Modeling of oxidation stability of canola oil using artificial neural networks during deep fat frying of potatoes[J]. Journal of Food Processing and Preservation,2015,39(6):1006−1015. doi: 10.1111/jfpp.12314

Catalog

    Article Metrics

    Article views (367) PDF downloads (33) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return