LI Weiye, WU Haishun, YU Huazhong. Comparison of Different Extraction Methods of Akebia trifoliata Oil and Optimization of Supercritical CO2 Extraction Process[J]. Science and Technology of Food Industry, 2021, 42(10): 203−208. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080255.
Citation: LI Weiye, WU Haishun, YU Huazhong. Comparison of Different Extraction Methods of Akebia trifoliata Oil and Optimization of Supercritical CO2 Extraction Process[J]. Science and Technology of Food Industry, 2021, 42(10): 203−208. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080255.

Comparison of Different Extraction Methods of Akebia trifoliata Oil and Optimization of Supercritical CO2 Extraction Process

More Information
  • Received Date: August 25, 2020
  • Available Online: March 17, 2021
  • Taking Akebia trifoliata (Thunb.) koidz seeds as raw materials, the extraction technology of seed oil by soxhlet extraction method, ultrasonic-assisted extraction method, aqueous enzyme method, three-phase partitioning distribution method and supercritical CO2 extraction method were studied. The results showed that the yield of aqueous enzyme method was the lowest (11.00%), and the seed oil was seriously emulsified. The seed oil extracted by three-phase partitioning distribution method and ultrasonic-assisted extraction method had peculiar smell and poor quality, the yield of seed oil was higher than that of aqueous enzyme method, which was 17.42% and 29.40%. Respectively, the yield of soxhlet extraction method could reach 32.32%, but need a long time. In contrast, supercritical CO2 extraction had the advantages of short extraction time, high yield, simple operation and no organic solvent introduced. The optimum extraction conditions were determined via response surface analysis just as follows: Extraction time, extraction kettle pressure and extraction kettle temperature were 100 min, 28 MPa and 34 ℃. The yield of seed oil was 37.01%. The experiment was repeated for three times under the optimal conditions, and the final yield was 36.87%±0.08%.
  • [1]
    中国科学院中国植物志编辑委员会. 中国植物志: 第29卷[M]. 北京: 科学出版社, 2001: 9.
    [2]
    李朝阁. 八月瓜酒酿造及籽油、多酚提取和抗氧化性研究[D]. 西安: 陕西科技大学, 2016.
    [3]
    周娜娜. 三叶木通籽油提取及生物活性研究[D]. 长沙: 中南林业科技大学, 2018.
    [4]
    殷春燕, 杨明建, 张献忠, 等. 溶剂法提取黄刺玫籽油的工艺研究[J]. 现代食品,2020(11):95−99.
    [5]
    丛凯平, 李婷婷, 吴彩娥, 等. 不同方法提取油茶籽油品质比较及电子鼻分析[J]. 精细化工,2020(2):339−345.
    [6]
    Liu C, Hao L H, Chen F S, et al. Study on extraction of peanut protein and oil bodies by aqueous enzymatic extraction and characterization of protein[J]. Journal of Chemistry,2020:1−11.
    [7]
    Dhanashree C P, Akash G, Virendra K R. Comparative study of ultrasonic pretreatment and ultrasound assisted three phase partitioning for extraction of custard apple seed oil[J]. Ultrasonics Sonochemistry,2020:61.
    [8]
    Thainara B M, Natalia S, Lucio C F, et al. Pumpkin (Cucurbita maxima) by- products: Obtaining seed oil enriched with active compounds from the peel by ultrasonic- assisted extraction[J]. Journal of Food Process Engineering,2019,42(5):e13125.
    [9]
    杨建远, 陈芳, 宋沥文, 等. 油茶籽油提取技术研究进展[J]. 食品与机械,2016,32(2):183−187.
    [10]
    Zhang W M, Pan Y G, Huang W Y, et al. Optimized ultrasonic- assisted extraction of papaya seed oil from Hainan/Eksotika variety[J]. Food Science & Nutrition,2019,7(8):2692−2701.
    [11]
    李杏元, 张旺喜. 微波辅助超临界CO2萃取三叶木通籽油的工艺研究[J]. 中国油脂,2018,43(12):13−17.
    [12]
    Priyanka, Khanam S. Supercritical CO2 extraction of carrot seed oil: screening, optimization and economic analysis[J]. International Journal of Environmental Science and Technology,2020,17(4):2311−2324. doi: 10.1007/s13762-019-02497-y
    [13]
    宋媛媛. 乙醇辅助水酶法提取牡丹籽油工艺研究[D]. 无锡: 江南大学, 2018.
    [14]
    李杨, 江连洲, 杨柳. 水酶法制取植物油的国内外发展动态[J]. 食品工业科技,2009,30(6):383−387.
    [15]
    冷玉娴. 水酶法提取葵花籽油和葵花籽蛋白的回收[D]. 无锡: 江南大学, 2007.
    [16]
    张卫国, 卢春花. 三相分配法从茶籽中提取油脂的研究[J]. 食品工业,2011,32(3):81−83.
    [17]
    张娟, 代鑫鹏, 周研, 等. 水酶法提取牡丹籽油的工艺条件优化[J]. 食品研究与开发,2018,39(18):51−56.
    [18]
    王慧娟, 吴正奇, 黄梦萍, 等. 乙醇预处理水酶法提取牡丹籽油的工艺优化[J]. 食品研究与开发,2020,41(12):135−139.
    [19]
    黄鑫, 张利军, 张保艳. 油茶籽油提取方法对比分析[J]. 中国油脂,2019,44(6):9−13.
    [20]
    Peng L, Ye Q, Liu X Y, et al. Optimization of aqueous enzymatic method for Camellia sinensis oil extraction and reuse of enzymes in the process[J]. Journal of Bioscience and Bioengineering,2019,128(6):716−722. doi: 10.1016/j.jbiosc.2019.05.010
    [21]
    Panadare D C, Rathod V K. Three phase partitioning for extraction of oil: A review[J]. Trends in Food Science & Technology,2017,68:145−151.
    [22]
    Zhang L, Zhou C S, Wang B, et al. Study of ultrasonic cavitation during extraction of the peanut oil at varying frequencies[J]. Ultrasonics Sonochemistry,2017,37:106−113. doi: 10.1016/j.ultsonch.2016.12.034
    [23]
    王小媛, 马宝晨, 纵伟. 不同提取方法对杜仲籽油质量的影响[J]. 食品工业科技,2019,40(23):119−124.
    [24]
    王呈馨, 张忠, 范柳萍, 等. 翅果油超临界CO2流体萃取工艺优化及其不同提取方法的比较[J]. 中国油脂,2019,44(7):12−15.
    [25]
    高妮娜, 刘鸿铖, 邹岩, 等. 提取方法对奇亚籽油品质特性的影响[J]. 食品工业科技,2020,41(6):284−291.
    [26]
    李玉邯, 陈宇飞, 杨柳, 等. 超声辅助超临界二氧化碳萃取紫苏籽油的工艺研究[J]. 粮食与油脂,2016,29(12):45−47.
  • Related Articles

    [1]Longlong LUO, Weihe REN, Linhai CAI, Siru LIU, Ulamubek·duiSheikhdale, Alimat Sharizah, Gongtao DING, Li SONG, Li LUO, Shien CHEN. Research Progress on the Mechanism of Lactic Acid Bacteria in Improving Diabetes Metabolism[J]. Science and Technology of Food Industry, 2021, 42(8): 404-409. DOI: 10.13386/j.issn1002-0306.2020070270
    [2]Qisen XIANG, Rong ZHANG, Guihong DU, Limin WANG, Aimin JIANG. Inactivation Effects and Mechanisms of Plasma-Activated Water against S. typhimurium[J]. Science and Technology of Food Industry, 2021, 42(8): 138-143. DOI: 10.13386/j.issn1002-0306.2020080241
    [3]LI Ke, YU Lan-xiu, LIU Xiao-yu, LIU Dong, ZHANG Wei-guang. Research Progress on Improving Sleep Mechanism of γ-aminobutyric Acid[J]. Science and Technology of Food Industry, 2019, 40(14): 353-358. DOI: 10.13386/j.issn1002-0306.2019.14.058
    [4]LU Jing-jing, WANG Na-na, JIAO Wen-shu, HUO Gui-cheng. The Mechanism and Research Progress of Probiotics in Relieving Obesity[J]. Science and Technology of Food Industry, 2019, 40(3): 296-299,306. DOI: 10.13386/j.issn1002-0306.2019.03.047
    [5]WANG Hui, ZHAO Jiang, YANG Sheng-nan, ZHANG Xiao-han, CHENG Jing, WANG Hao. Anti-aging Effects and Underling Mechanism of D-chiro-inosiol on Glucose-Induced Oxidative Damage in Caenorhabditis elegans[J]. Science and Technology of Food Industry, 2019, 40(2): 282-286. DOI: 10.13386/j.issn1002-0306.2019.02.049
    [6]ZHOU Ting-ting, CAO Shao-qian, LI Si-si, QI Xiang-yang. Advances in oxidation deterioration mechanisms of oils and fats under non-thermal treatment[J]. Science and Technology of Food Industry, 2017, (10): 385-388. DOI: 10.13386/j.issn1002-0306.2017.10.066
    [7]ZHANG Hong, ZHOU Ying-yu, LU Wei-hong, CHEN Cui-lin, GAO Xin, SHAN Shan. Overview on anti-tumor mechanism and effect of diosmin[J]. Science and Technology of Food Industry, 2016, (24): 376-379. DOI: 10.13386/j.issn1002-0306.2016.24.065

Catalog

    Article Metrics

    Article views (254) PDF downloads (17) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return