Citation: | LI Ruiying, YAN Minghui, YOU Chunping. Advances in the Study of Brain-Gut Axis and Intestinal Microorganisms in Neuropsychiatric Diseases[J]. Science and Technology of Food Industry, 2021, 42(18): 427−434. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080250. |
[1] |
Ley R E, Backhed F, Turnbaugh P, et al. Obesity alters gut microbial ecology[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(31):11070−11075. doi: 10.1073/pnas.0504978102
|
[2] |
Ron S, Shai F, Ron M. Revised estimates for the number of human and bacteria cells in the body[J]. PloS Biology,2016,14(8):e1002533. doi: 10.1371/journal.pbio.1002533
|
[3] |
Gebbers J O, Laissue J A. Immunologic structures and functions of the gut[J]. Schweizer Archiv fur Tierheilkunde,1989,131(5):221−238.
|
[4] |
Heiss C N, Olofsson L E. The role of the gut microbiota in development, function and disorders of the central nervous system and the enteric nervous system[J]. Journal of Neuroendocrinology,2019,31(5):e12684. doi: 10.1111/jne.12684
|
[5] |
Schmidt T S B, Raes J, Bork P. The human gut microbiome: From association to modulation[J]. Cell,2018,172(6):1198−1215. doi: 10.1016/j.cell.2018.02.044
|
[6] |
Grochowska M, Wojnar M, Radkowski M. The gut microbiota in neuropsychiatric disorders[J]. Acta Neurobiologiae Experimentalis,2018,78(2):69−81. doi: 10.21307/ane-2018-008
|
[7] |
Gomes A C, Hoffmann C, Mota J F. The human gut microbiota: Metabolism and perspective in obesity[J]. Gut Microbes,2018,9(4):308−325.
|
[8] |
Locey K J, Lennon J T. Scaling laws predict global microbial diversity[J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113(21):5970−5975. doi: 10.1073/pnas.1521291113
|
[9] |
Nelson K E, Weinstock G M, Highlander S K, et al. A catalog of reference genomes from the human microbiome[J]. Science,2010,328(5981):994−999. doi: 10.1126/science.1183605
|
[10] |
Rowland I, Gibson G, Heinken A, et al. Gut microbiota functions: Metabolism of nutrients and other food components[J]. European Journal of Nutrition,2018,57(1):1−24. doi: 10.1007/s00394-017-1445-8
|
[11] |
Daliri E B-M, Wei S, Oh D H, et al. The human microbiome and metabolomics: Current concepts and applications[J]. Critical Reviews in Food Science and Nutrition,2017,57(16):3565−3576. doi: 10.1080/10408398.2016.1220913
|
[12] |
Eisenstein M. Bacterial broadband[J]. Nature,2016,533(7603):S104−S106. doi: 10.1038/533S104a
|
[13] |
Borre Y E, O’keeffe G W, Clarke G, et al. Microbiota and neurodevelopmental windows: Implications for brain disorders[J]. Trends in Molecular Medicine,2014,20(9):509−518. doi: 10.1016/j.molmed.2014.05.002
|
[14] |
Bercik P, Park A J, Sinclair D, et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication[J]. Neurogastroenterology and Motility,2011,23(12):1132−1139. doi: 10.1111/j.1365-2982.2011.01796.x
|
[15] |
Han W F, Tellez L A, Perkins M H, et al. A neural circuit for gut-Induced reward[J]. Cell,2018,175(3):887−888. doi: 10.1016/j.cell.2018.10.018
|
[16] |
Bonaz B, Sinniger V, Pellissier S. Vagus nerve stimulation: A new promising therapeutic tool in inflammatory bowel disease[J]. J Intern Med,2017,282(1):46−63. doi: 10.1111/joim.12611
|
[17] |
Ghia J E, Blennerhassett P, Kumar-Ondiveeran H, et al. The vagus nerve: A tonic inhibitory influence associated with inflammatory bowel disease in a murine model[J]. Gastroenterology,2006,131(4):1122−1130. doi: 10.1053/j.gastro.2006.08.016
|
[18] |
Heck A L, Handa R J. Sex differences in the hypothalamic-pituitary-adrenal axis’ response to stress: An important role for gonadal hormones[J]. Neuropsychopharmacology,2019,44(1):45−58. doi: 10.1038/s41386-018-0167-9
|
[19] |
Rea K, Dinan T G, Cryan J F. The microbiome: A key regulator of stress and neuroinflammation[J]. Neurobiology of stress,2016,4:23−33. doi: 10.1016/j.ynstr.2016.03.001
|
[20] |
Barouei J, Moussavi M, Hodgson D M. Effect of maternal probiotic intervention on HPA Axis, immunity and gut microbiota in a Rat model of irritable bowel syndrome[J]. PloS One,2012,7:e46051. doi: 10.1371/journal.pone.0046051
|
[21] |
Filaretova L, Bagaeva T. The realization of the brain-gut interactions with corticotropin-releasing factor and glucocorticoids[J]. Curr Neuropharmacol,2016,14(8):876−881. doi: 10.2174/1570159X14666160614094234
|
[22] |
Mayer E A, Tillisch K, Gupta A. Gut/brain axis and the microbiota[J]. The Journal of Clinical Investigation,2015,125(3):926−938. doi: 10.1172/JCI76304
|
[23] |
Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells[J]. Nature,2014,506(7487):446−450.
|
[24] |
Kayama H, Okumura R, Takeda K. Interaction between the microbiota, epithelia, and immune cells in the intestine[J]. Annual Review of Immunology,2020,38(1):23−48. doi: 10.1146/annurev-immunol-070119-115104
|
[25] |
Levy M, Kolodziejczyk A A, Thaiss C A, et al. Dysbiosis and the immune system[J]. Nature Reviews Immunology,2017,17(4):219−232. doi: 10.1038/nri.2017.7
|
[26] |
Rogers G B, Keating D J, Young R L, et al. From gut dysbiosis to altered brain function and mental illness: Mechanisms and pathways[J]. Mol Psychiatr,2016,21(6):738−748. doi: 10.1038/mp.2016.50
|
[27] |
Hlatky M A, Boothroyd D, Vittinghoff E, et al. Quality-of-life and depressive symptoms in postmenopausal women after receiving hormone therapy-results from the heart and estrogen/progestin replacement study (HERS) trial[J]. Jama-Journal of the American Medical Association,2002,287(5):591−597. doi: 10.1001/jama.287.5.591
|
[28] |
Dinan T G, Cryan J F. Melancholic microbes: A link between gut microbiota and depression?[J]. Neurogastroenterology & Motility,2013,25(9):713−719.
|
[29] |
Zheng P, Zeng B, Zhou C, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism[J]. Molecular Psychiatry,2016,21(6):786−796. doi: 10.1038/mp.2016.44
|
[30] |
Jiang H Y, Ling Z X, Zhang Y H, et al. Altered fecal microbiota composition in patients with major depressive disorder[J]. Brain Behav Immun,2015,48:186−194. doi: 10.1016/j.bbi.2015.03.016
|
[31] |
李宁. 肠道菌群紊乱与粪菌移植[J]. 肠外与肠内营养,2014,21(4):193−197. [Li Ning. Intestinal flora disorder and fecal bacteria transplantation[J]. Parenteral and Enteral Nutrition,2014,21(4):193−197.
|
[32] |
Cheung S G, Goldenthal A R, Uhlemann A C, et al. Systematic review of gut microbiota and major depression[J]. Front Psychiatry,2019,10:17.
|
[33] |
Guida F, Turco F, Iannotta M, et al. Antibiotic-induced microbiota perturbation causes gut endocannabinoidome changes, hippocampal neuroglial reorganization and depression in mice[J]. Brain Behav Immun,2018,67:230−245. doi: 10.1016/j.bbi.2017.09.001
|
[34] |
Kelly J R, Borre Y, Brien C O, et al. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat[J]. J Psychiatr Res,2016,82:109−118. doi: 10.1016/j.jpsychires.2016.07.019
|
[35] |
Liang S, Wang T, Hu X, et al. Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress[J]. Neuroscience,2015,310:561−577. doi: 10.1016/j.neuroscience.2015.09.033
|
[36] |
Park H, Lee J Y, Shin C M, et al. Characterization of gastrointestinal disorders in patients with parkinsonian syndromes[J]. Parkinsonism & Related Disorders,2015,21(5):455−460.
|
[37] |
Luo Y, Zeng B, Zeng L, et al. Gut microbiota regulates mouse behaviors through glucocorticoid receptor pathway genes in the hippocampus[J]. Translational Psychiatry,2018,8:187. doi: 10.1038/s41398-018-0240-5
|
[38] |
Abildgaard A, Elfving B, Hokland M, et al. Probiotic treatment reduces depressive-like behaviour in rats independently of diet[J]. Psychoneuroendocrinology,2017,79:40−48. doi: 10.1016/j.psyneuen.2017.02.014
|
[39] |
Moya-Perez A, Perez-Villalba A, Benitez-Paez A, et al. Bifidobacterium CECT 7765 modulates early stress-induced immune, neuroendocrine and behavioral alterations in mice[J]. Brain Behavior and Immunity,2017,65:43−56. doi: 10.1016/j.bbi.2017.05.011
|
[40] |
Rudzki L, Ostrowska L, Pawlak D, et al. Probiotic Lactobacillus plantarum 299v decreases kynurenine concentration and improves cognitive functions in patients with major depression: A double-blind, randomized, placebo controlled study[J]. Psychoneuroendocrinology,2019,100:213−222. doi: 10.1016/j.psyneuen.2018.10.010
|
[41] |
Nemani K, Ghomi R H, Mccormick B, et al. Schizophrenia and the gut-brain axis[J]. Progress in Neuro-Psychopharmacology & Biological Psychiatry,2015,56:155−160.
|
[42] |
Severance E G, Prandovszky E, Castiglione J, et al. Gastroenterology issues in schizophrenia: Why the gut matters[J]. Current Psychiatry Reports,2015,17(5):S25−S26.
|
[43] |
Castronallar E, Bendall M L, Pérezlosada M, et al. Composition, taxonomy and functional diversity of the oropharynx microbiome in individuals with schizophrenia and controls[J]. 2015, 3(8): e1140.
|
[44] |
Yolken R H, Severance E G, Sabunciyan S, et al. Metagenomic sequencing indicates that the oropharyngeal phageome of individuals with schizophrenia differs from that of controls[J]. Schizophrenia Bulletin,2015,41(5):1153−1161. doi: 10.1093/schbul/sbu197
|
[45] |
Zhu F, Ju Y, Wang W, et al. Metagenome-wide association of gut microbiome features for schizophrenia[J]. Nature Communications,2020,11(1):1612. doi: 10.1038/s41467-020-15457-9
|
[46] |
Zheng P, Zeng B H, Liu M L, et al. The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice[J]. Sci Adv,2019,5(2):11.
|
[47] |
Shen Y, Xu J T, Li Z Y, et al. Analysis of gut microbiota diversity and auxiliary diagnosis as a biomarker in patients with schizophrenia: A cross-sectional study[J]. Schizophr Res,2018,197:470−477. doi: 10.1016/j.schres.2018.01.002
|
[48] |
Agrawal R, Kalmady S V, Venkatasubramanian G. In silico model-driven assessment of the effects of brain-derived neurotrophic factor deficiency on glutamate and gamma-aminobutyric acid: Implications for understanding schizophrenia pathophysiology[J]. Clinical Psychopharmacology and Neuroscience,2017,15(2):115−125. doi: 10.9758/cpn.2017.15.2.115
|
[49] |
Caso J R, Balanza-Martinez V, Palomo T, et al. The microbiota and gut-brain axis: Contributions to the immunopathogenesis of schizophrenia[J]. Current Pharmaceutical Design,2016,22(40):6122−6133. doi: 10.2174/1381612822666160906160911
|
[50] |
Baio J, Wiggins L, Christensen D L, et al. Prevalence of autism spectrum disorder among children aged 8 years-autism and developmental disabilities monitoring network[J]. Mmwr-Morbidity and Mortality Weekly Report,2020,69(16):503−503. doi: 10.15585/mmwr.mm6916a4
|
[51] |
Coretti L, Paparo L, Riccio M P, et al. Gut microbiota features in young children with autism spectrum disorders[J]. Front Microbiol,2018,9:12. doi: 10.3389/fmicb.2018.00012
|
[52] |
Tabouy L, Getselter D, Ziv O, et al. Dysbiosis of microbiome and probiotic treatment in a genetic model of autism spectrum disorders[J]. Brain Behav Immun,2018,73:310−319. doi: 10.1016/j.bbi.2018.05.015
|
[53] |
Sgritta M, Dooling S W, Buffington S A, et al. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder[J]. Neuron,2019,101(2):246−259. doi: 10.1016/j.neuron.2018.11.018
|
[54] |
Hsiao E Y, Mcbride S W, Hsien S, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders[J]. Cell,2013,155(7):1451−1463. doi: 10.1016/j.cell.2013.11.024
|
[55] |
Principi N, Esposito S. Gut microbiota and central nervous system development[J]. Journal of Infection,2016,73(6):536−546. doi: 10.1016/j.jinf.2016.09.010
|
[56] |
Shaaban S Y, El Gendy Y G, Mehanna N S, et al. The role of probiotics in children with autism spectrum disorder: A prospective, open-label study[J]. Nutritional Neuroscience,2018,21(9):676−681. doi: 10.1080/1028415X.2017.1347746
|
[57] |
Tomova A, Babinska K, Kubranska A, et al. The difference of gastrointestinal microbiota of children with and without autism in Slovakia[J]. Acta Physiologica,2017,221:150−150.
|
[58] |
Mcelhanon B O, Mccracken C, Karpen S, et al. Gastrointestinal symptoms in autism spectrum disorder: A meta-analysis[J]. Pediatrics,2014,133(5):872−883. doi: 10.1542/peds.2013-3995
|
[59] |
Meltzer A, Van De Water J. The role of the immune system in autism spectrum disorder[J]. Neuropsychopharmacology,2017,42(1):284−298. doi: 10.1038/npp.2016.158
|
[60] |
Lee G R. The balance of Th17 versus Treg Cells in autoimmunity[J]. International Journal of Molecular Sciences,2018,19(3):730. doi: 10.3390/ijms19030730
|
[61] |
Azhari A, Azizan F, Esposito G. A systematic review of gut-immune-brain mechanisms in autism spectrum disorder[J]. Developmental Psychobiology,2019,61(5):752−771. doi: 10.1002/dev.21803
|
[62] |
Vogt N M, Kerby R L, Dill-Mcfarland K A, et al. Gut microbiome alterations in Alzheimer’s disease[J]. Scientific Reports,2017,7:13537. doi: 10.1038/s41598-017-13601-y
|
[63] |
Mancuso C, Santangelo R. Alzheimer's disease and gut microbiota modifications: The long way between preclinical studies and clinical evidence[J]. Pharmacological Research,2018,129:329−336. doi: 10.1016/j.phrs.2017.12.009
|
[64] |
Yano J M, Yu K, Donaldson G P, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis[J]. Cell,2015,161(2):264−276. doi: 10.1016/j.cell.2015.02.047
|
[65] |
Cirstea M S, Yu A C, Golz E, et al. Microbiota composition and metabolism are associated with gut function in Parkinson's disease[J]. Movement Disorders,2020,35(7):1208−1217. doi: 10.1002/mds.28052
|
[66] |
Pietrucci D, Teofani A, Unida V, et al. Can gut microbiota be a good predictor for Parkinson's disease? A machine learning approach[J]. Brain ences,2020,10(4):242.
|
[67] |
Cheung S G, Goldenthal A R, Uhlemann A-C, et al. Systematic review of gut microbiota and major depression[J]. Frontiers in Psychiatry,2019,10:34. doi: 10.3389/fpsyt.2019.00034
|
[68] |
黄霞, 卓敏, 李时佳, 等. 精神分裂症患者肠道菌群结构特征初步观察与分析[J]. 中国神经精神疾病杂志,2019,45(7):401−406. [Huang Xia, Zhuo min, Li Shijia, et al. Preliminary observation and analysis on the structural characteristics of intestinal flora in patients with schizophrenia[J]. Chinese Journal of Nervous and Mental Diseases,2019,45(7):401−406. doi: 10.3969/j.issn.1002-0152.2019.07.004
|
[69] |
Iglesias-Vázquez L, Riba G V G, Arija V, et al. Composition of gut microbiota in children with autism spectrum disorder: A systematic review and meta-analysis[J]. Nutrients,2020,12(3):792. doi: 10.3390/nu12030792
|
[70] |
Li B, He Y, Ma J, et al. Mild cognitive impairment has similar alterations as Alzheimer's disease in gut microbiota[J]. Alzheimers & Dementia,2019,15(10):1357−1366.
|
[71] |
赵程, 于会艳, 李微, 等. 帕金森病患者肠道菌群变化的研究[J]. 中华神经科杂志,2018,51(7):498−503. [Zhao Cheng, Yu Huiyan, Li Wei, et al. A study of intestinal flora changes in Parkinson disease patients[J]. Chinese Journal of Neurology,2018,51(7):498−503. doi: 10.3760/cma.j.issn.1006-7876.2018.07.004
|
1. |
何海华,刘邵凡. 食用菌多糖与运动功能关系研究进展. 江苏调味副食品. 2024(02): 6-9 .
![]() | |
2. |
林雨蝶,李治赫,张付云. 丝状真菌胞外多糖的研究进展. 农产品加工. 2024(12): 104-107 .
![]() | |
3. |
陈秉彦,林晓姿,李维新,杨超,何志刚. 乳酸菌联合酿酒酵母发酵对龙须菜多糖结构特征及抗氧化性的影响. 食品科学技术学报. 2023(03): 107-115+147 .
![]() | |
4. |
桑雨梅,高郁超,武济萍,葛少钦,薛宏坤. 食用真菌多糖提取、纯化及结构表征研究进展. 食品研究与开发. 2023(13): 210-218 .
![]() | |
5. |
刘志洋,孙琪瑶,宫世平,徐建舒,王亚慧,张铭泽,于悦. 鹿皮胶多糖对酒精性肝损伤的保护作用. 食品工业科技. 2021(23): 334-340 .
![]() | |
6. |
赵可,李汉清,蒋嘉烨,可燕. 关白附多糖纯化工艺优化及抑制结肠癌肝转移. 世界科学技术-中医药现代化. 2021(09): 3281-3288 .
![]() | |
7. |
张明,王瑶,马超,王崇队,杨立风,范祺,张博华,孟晓峰. 芦笋老茎多糖体外抗氧化及降血糖作用研究. 食品科技. 2020(02): 219-224 .
![]() | |
8. |
贾杰,郑瑞峰,李淑兰,张道敬. 多粘类芽孢杆菌HY96-2胞外多糖的分离纯化. 分析科学学报. 2020(01): 42-46 .
![]() | |
9. |
张喜康,赵宇慧,刘军,李佩佩,马露,王聪,王丽萍,刘敦华. 枸杞不同生长期多糖的理化特性及结构分析. 食品科学. 2020(16): 158-164 .
![]() | |
10. |
野津,张文森,王知斌,杨春娟,匡海学. DEAE-52在中药多糖分离纯化中的应用. 化学工程师. 2019(11): 43-45+22 .
![]() | |
11. |
赵明智,吕延成. 古尼虫草纯化多糖免疫调节活性研究. 食品安全质量检测学报. 2018(10): 2493-2500 .
![]() | |
12. |
孙玉姣,侯淑婷,鱼喆喆,崔湘怡,谭梓杉,戚歆宇,康雨芳. 宁夏红果枸杞多糖提取及其体外抗氧化活性研究. 陕西科技大学学报. 2018(05): 39-45 .
![]() |