LI Ruiying, YAN Minghui, YOU Chunping. Advances in the Study of Brain-Gut Axis and Intestinal Microorganisms in Neuropsychiatric Diseases[J]. Science and Technology of Food Industry, 2021, 42(18): 427−434. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080250.
Citation: LI Ruiying, YAN Minghui, YOU Chunping. Advances in the Study of Brain-Gut Axis and Intestinal Microorganisms in Neuropsychiatric Diseases[J]. Science and Technology of Food Industry, 2021, 42(18): 427−434. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080250.

Advances in the Study of Brain-Gut Axis and Intestinal Microorganisms in Neuropsychiatric Diseases

More Information
  • Received Date: August 25, 2020
  • Available Online: July 12, 2021
  • There are a large number and a wide variety of enteric microorganism in the human intestinal tract, gut microbiota plays an important role in many physiological processes in the human body. More recently, studies have shown that intestinal flora can regulate the development and behavior of the body’s brain through the brain-gut axis, thus playing a key role in the prevention and treatment of autism spectrum disorders, schizophrenia, depression, anxiety disorders and so on. In this article, the bidirectional regulation mechanism of the brain- intestine axis is described, the changes and possible mechanisms of the factors directly related to various mental disorders are summarized, and the recent domestic and foreign research progress on intestinal microbial changes in various mental diseases is further generalized, which provide a new idea and theoretical reference for the study of early probiotics intervention treatment for patients with mental diseases mentioned above.
  • [1]
    Ley R E, Backhed F, Turnbaugh P, et al. Obesity alters gut microbial ecology[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(31):11070−11075. doi: 10.1073/pnas.0504978102
    [2]
    Ron S, Shai F, Ron M. Revised estimates for the number of human and bacteria cells in the body[J]. PloS Biology,2016,14(8):e1002533. doi: 10.1371/journal.pbio.1002533
    [3]
    Gebbers J O, Laissue J A. Immunologic structures and functions of the gut[J]. Schweizer Archiv fur Tierheilkunde,1989,131(5):221−238.
    [4]
    Heiss C N, Olofsson L E. The role of the gut microbiota in development, function and disorders of the central nervous system and the enteric nervous system[J]. Journal of Neuroendocrinology,2019,31(5):e12684. doi: 10.1111/jne.12684
    [5]
    Schmidt T S B, Raes J, Bork P. The human gut microbiome: From association to modulation[J]. Cell,2018,172(6):1198−1215. doi: 10.1016/j.cell.2018.02.044
    [6]
    Grochowska M, Wojnar M, Radkowski M. The gut microbiota in neuropsychiatric disorders[J]. Acta Neurobiologiae Experimentalis,2018,78(2):69−81. doi: 10.21307/ane-2018-008
    [7]
    Gomes A C, Hoffmann C, Mota J F. The human gut microbiota: Metabolism and perspective in obesity[J]. Gut Microbes,2018,9(4):308−325.
    [8]
    Locey K J, Lennon J T. Scaling laws predict global microbial diversity[J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113(21):5970−5975. doi: 10.1073/pnas.1521291113
    [9]
    Nelson K E, Weinstock G M, Highlander S K, et al. A catalog of reference genomes from the human microbiome[J]. Science,2010,328(5981):994−999. doi: 10.1126/science.1183605
    [10]
    Rowland I, Gibson G, Heinken A, et al. Gut microbiota functions: Metabolism of nutrients and other food components[J]. European Journal of Nutrition,2018,57(1):1−24. doi: 10.1007/s00394-017-1445-8
    [11]
    Daliri E B-M, Wei S, Oh D H, et al. The human microbiome and metabolomics: Current concepts and applications[J]. Critical Reviews in Food Science and Nutrition,2017,57(16):3565−3576. doi: 10.1080/10408398.2016.1220913
    [12]
    Eisenstein M. Bacterial broadband[J]. Nature,2016,533(7603):S104−S106. doi: 10.1038/533S104a
    [13]
    Borre Y E, O’keeffe G W, Clarke G, et al. Microbiota and neurodevelopmental windows: Implications for brain disorders[J]. Trends in Molecular Medicine,2014,20(9):509−518. doi: 10.1016/j.molmed.2014.05.002
    [14]
    Bercik P, Park A J, Sinclair D, et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication[J]. Neurogastroenterology and Motility,2011,23(12):1132−1139. doi: 10.1111/j.1365-2982.2011.01796.x
    [15]
    Han W F, Tellez L A, Perkins M H, et al. A neural circuit for gut-Induced reward[J]. Cell,2018,175(3):887−888. doi: 10.1016/j.cell.2018.10.018
    [16]
    Bonaz B, Sinniger V, Pellissier S. Vagus nerve stimulation: A new promising therapeutic tool in inflammatory bowel disease[J]. J Intern Med,2017,282(1):46−63. doi: 10.1111/joim.12611
    [17]
    Ghia J E, Blennerhassett P, Kumar-Ondiveeran H, et al. The vagus nerve: A tonic inhibitory influence associated with inflammatory bowel disease in a murine model[J]. Gastroenterology,2006,131(4):1122−1130. doi: 10.1053/j.gastro.2006.08.016
    [18]
    Heck A L, Handa R J. Sex differences in the hypothalamic-pituitary-adrenal axis’ response to stress: An important role for gonadal hormones[J]. Neuropsychopharmacology,2019,44(1):45−58. doi: 10.1038/s41386-018-0167-9
    [19]
    Rea K, Dinan T G, Cryan J F. The microbiome: A key regulator of stress and neuroinflammation[J]. Neurobiology of stress,2016,4:23−33. doi: 10.1016/j.ynstr.2016.03.001
    [20]
    Barouei J, Moussavi M, Hodgson D M. Effect of maternal probiotic intervention on HPA Axis, immunity and gut microbiota in a Rat model of irritable bowel syndrome[J]. PloS One,2012,7:e46051. doi: 10.1371/journal.pone.0046051
    [21]
    Filaretova L, Bagaeva T. The realization of the brain-gut interactions with corticotropin-releasing factor and glucocorticoids[J]. Curr Neuropharmacol,2016,14(8):876−881. doi: 10.2174/1570159X14666160614094234
    [22]
    Mayer E A, Tillisch K, Gupta A. Gut/brain axis and the microbiota[J]. The Journal of Clinical Investigation,2015,125(3):926−938. doi: 10.1172/JCI76304
    [23]
    Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells[J]. Nature,2014,506(7487):446−450.
    [24]
    Kayama H, Okumura R, Takeda K. Interaction between the microbiota, epithelia, and immune cells in the intestine[J]. Annual Review of Immunology,2020,38(1):23−48. doi: 10.1146/annurev-immunol-070119-115104
    [25]
    Levy M, Kolodziejczyk A A, Thaiss C A, et al. Dysbiosis and the immune system[J]. Nature Reviews Immunology,2017,17(4):219−232. doi: 10.1038/nri.2017.7
    [26]
    Rogers G B, Keating D J, Young R L, et al. From gut dysbiosis to altered brain function and mental illness: Mechanisms and pathways[J]. Mol Psychiatr,2016,21(6):738−748. doi: 10.1038/mp.2016.50
    [27]
    Hlatky M A, Boothroyd D, Vittinghoff E, et al. Quality-of-life and depressive symptoms in postmenopausal women after receiving hormone therapy-results from the heart and estrogen/progestin replacement study (HERS) trial[J]. Jama-Journal of the American Medical Association,2002,287(5):591−597. doi: 10.1001/jama.287.5.591
    [28]
    Dinan T G, Cryan J F. Melancholic microbes: A link between gut microbiota and depression?[J]. Neurogastroenterology & Motility,2013,25(9):713−719.
    [29]
    Zheng P, Zeng B, Zhou C, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism[J]. Molecular Psychiatry,2016,21(6):786−796. doi: 10.1038/mp.2016.44
    [30]
    Jiang H Y, Ling Z X, Zhang Y H, et al. Altered fecal microbiota composition in patients with major depressive disorder[J]. Brain Behav Immun,2015,48:186−194. doi: 10.1016/j.bbi.2015.03.016
    [31]
    李宁. 肠道菌群紊乱与粪菌移植[J]. 肠外与肠内营养,2014,21(4):193−197. [Li Ning. Intestinal flora disorder and fecal bacteria transplantation[J]. Parenteral and Enteral Nutrition,2014,21(4):193−197.
    [32]
    Cheung S G, Goldenthal A R, Uhlemann A C, et al. Systematic review of gut microbiota and major depression[J]. Front Psychiatry,2019,10:17.
    [33]
    Guida F, Turco F, Iannotta M, et al. Antibiotic-induced microbiota perturbation causes gut endocannabinoidome changes, hippocampal neuroglial reorganization and depression in mice[J]. Brain Behav Immun,2018,67:230−245. doi: 10.1016/j.bbi.2017.09.001
    [34]
    Kelly J R, Borre Y, Brien C O, et al. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat[J]. J Psychiatr Res,2016,82:109−118. doi: 10.1016/j.jpsychires.2016.07.019
    [35]
    Liang S, Wang T, Hu X, et al. Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress[J]. Neuroscience,2015,310:561−577. doi: 10.1016/j.neuroscience.2015.09.033
    [36]
    Park H, Lee J Y, Shin C M, et al. Characterization of gastrointestinal disorders in patients with parkinsonian syndromes[J]. Parkinsonism & Related Disorders,2015,21(5):455−460.
    [37]
    Luo Y, Zeng B, Zeng L, et al. Gut microbiota regulates mouse behaviors through glucocorticoid receptor pathway genes in the hippocampus[J]. Translational Psychiatry,2018,8:187. doi: 10.1038/s41398-018-0240-5
    [38]
    Abildgaard A, Elfving B, Hokland M, et al. Probiotic treatment reduces depressive-like behaviour in rats independently of diet[J]. Psychoneuroendocrinology,2017,79:40−48. doi: 10.1016/j.psyneuen.2017.02.014
    [39]
    Moya-Perez A, Perez-Villalba A, Benitez-Paez A, et al. Bifidobacterium CECT 7765 modulates early stress-induced immune, neuroendocrine and behavioral alterations in mice[J]. Brain Behavior and Immunity,2017,65:43−56. doi: 10.1016/j.bbi.2017.05.011
    [40]
    Rudzki L, Ostrowska L, Pawlak D, et al. Probiotic Lactobacillus plantarum 299v decreases kynurenine concentration and improves cognitive functions in patients with major depression: A double-blind, randomized, placebo controlled study[J]. Psychoneuroendocrinology,2019,100:213−222. doi: 10.1016/j.psyneuen.2018.10.010
    [41]
    Nemani K, Ghomi R H, Mccormick B, et al. Schizophrenia and the gut-brain axis[J]. Progress in Neuro-Psychopharmacology & Biological Psychiatry,2015,56:155−160.
    [42]
    Severance E G, Prandovszky E, Castiglione J, et al. Gastroenterology issues in schizophrenia: Why the gut matters[J]. Current Psychiatry Reports,2015,17(5):S25−S26.
    [43]
    Castronallar E, Bendall M L, Pérezlosada M, et al. Composition, taxonomy and functional diversity of the oropharynx microbiome in individuals with schizophrenia and controls[J]. 2015, 3(8): e1140.
    [44]
    Yolken R H, Severance E G, Sabunciyan S, et al. Metagenomic sequencing indicates that the oropharyngeal phageome of individuals with schizophrenia differs from that of controls[J]. Schizophrenia Bulletin,2015,41(5):1153−1161. doi: 10.1093/schbul/sbu197
    [45]
    Zhu F, Ju Y, Wang W, et al. Metagenome-wide association of gut microbiome features for schizophrenia[J]. Nature Communications,2020,11(1):1612. doi: 10.1038/s41467-020-15457-9
    [46]
    Zheng P, Zeng B H, Liu M L, et al. The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice[J]. Sci Adv,2019,5(2):11.
    [47]
    Shen Y, Xu J T, Li Z Y, et al. Analysis of gut microbiota diversity and auxiliary diagnosis as a biomarker in patients with schizophrenia: A cross-sectional study[J]. Schizophr Res,2018,197:470−477. doi: 10.1016/j.schres.2018.01.002
    [48]
    Agrawal R, Kalmady S V, Venkatasubramanian G. In silico model-driven assessment of the effects of brain-derived neurotrophic factor deficiency on glutamate and gamma-aminobutyric acid: Implications for understanding schizophrenia pathophysiology[J]. Clinical Psychopharmacology and Neuroscience,2017,15(2):115−125. doi: 10.9758/cpn.2017.15.2.115
    [49]
    Caso J R, Balanza-Martinez V, Palomo T, et al. The microbiota and gut-brain axis: Contributions to the immunopathogenesis of schizophrenia[J]. Current Pharmaceutical Design,2016,22(40):6122−6133. doi: 10.2174/1381612822666160906160911
    [50]
    Baio J, Wiggins L, Christensen D L, et al. Prevalence of autism spectrum disorder among children aged 8 years-autism and developmental disabilities monitoring network[J]. Mmwr-Morbidity and Mortality Weekly Report,2020,69(16):503−503. doi: 10.15585/mmwr.mm6916a4
    [51]
    Coretti L, Paparo L, Riccio M P, et al. Gut microbiota features in young children with autism spectrum disorders[J]. Front Microbiol,2018,9:12. doi: 10.3389/fmicb.2018.00012
    [52]
    Tabouy L, Getselter D, Ziv O, et al. Dysbiosis of microbiome and probiotic treatment in a genetic model of autism spectrum disorders[J]. Brain Behav Immun,2018,73:310−319. doi: 10.1016/j.bbi.2018.05.015
    [53]
    Sgritta M, Dooling S W, Buffington S A, et al. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder[J]. Neuron,2019,101(2):246−259. doi: 10.1016/j.neuron.2018.11.018
    [54]
    Hsiao E Y, Mcbride S W, Hsien S, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders[J]. Cell,2013,155(7):1451−1463. doi: 10.1016/j.cell.2013.11.024
    [55]
    Principi N, Esposito S. Gut microbiota and central nervous system development[J]. Journal of Infection,2016,73(6):536−546. doi: 10.1016/j.jinf.2016.09.010
    [56]
    Shaaban S Y, El Gendy Y G, Mehanna N S, et al. The role of probiotics in children with autism spectrum disorder: A prospective, open-label study[J]. Nutritional Neuroscience,2018,21(9):676−681. doi: 10.1080/1028415X.2017.1347746
    [57]
    Tomova A, Babinska K, Kubranska A, et al. The difference of gastrointestinal microbiota of children with and without autism in Slovakia[J]. Acta Physiologica,2017,221:150−150.
    [58]
    Mcelhanon B O, Mccracken C, Karpen S, et al. Gastrointestinal symptoms in autism spectrum disorder: A meta-analysis[J]. Pediatrics,2014,133(5):872−883. doi: 10.1542/peds.2013-3995
    [59]
    Meltzer A, Van De Water J. The role of the immune system in autism spectrum disorder[J]. Neuropsychopharmacology,2017,42(1):284−298. doi: 10.1038/npp.2016.158
    [60]
    Lee G R. The balance of Th17 versus Treg Cells in autoimmunity[J]. International Journal of Molecular Sciences,2018,19(3):730. doi: 10.3390/ijms19030730
    [61]
    Azhari A, Azizan F, Esposito G. A systematic review of gut-immune-brain mechanisms in autism spectrum disorder[J]. Developmental Psychobiology,2019,61(5):752−771. doi: 10.1002/dev.21803
    [62]
    Vogt N M, Kerby R L, Dill-Mcfarland K A, et al. Gut microbiome alterations in Alzheimer’s disease[J]. Scientific Reports,2017,7:13537. doi: 10.1038/s41598-017-13601-y
    [63]
    Mancuso C, Santangelo R. Alzheimer's disease and gut microbiota modifications: The long way between preclinical studies and clinical evidence[J]. Pharmacological Research,2018,129:329−336. doi: 10.1016/j.phrs.2017.12.009
    [64]
    Yano J M, Yu K, Donaldson G P, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis[J]. Cell,2015,161(2):264−276. doi: 10.1016/j.cell.2015.02.047
    [65]
    Cirstea M S, Yu A C, Golz E, et al. Microbiota composition and metabolism are associated with gut function in Parkinson's disease[J]. Movement Disorders,2020,35(7):1208−1217. doi: 10.1002/mds.28052
    [66]
    Pietrucci D, Teofani A, Unida V, et al. Can gut microbiota be a good predictor for Parkinson's disease? A machine learning approach[J]. Brain ences,2020,10(4):242.
    [67]
    Cheung S G, Goldenthal A R, Uhlemann A-C, et al. Systematic review of gut microbiota and major depression[J]. Frontiers in Psychiatry,2019,10:34. doi: 10.3389/fpsyt.2019.00034
    [68]
    黄霞, 卓敏, 李时佳, 等. 精神分裂症患者肠道菌群结构特征初步观察与分析[J]. 中国神经精神疾病杂志,2019,45(7):401−406. [Huang Xia, Zhuo min, Li Shijia, et al. Preliminary observation and analysis on the structural characteristics of intestinal flora in patients with schizophrenia[J]. Chinese Journal of Nervous and Mental Diseases,2019,45(7):401−406. doi: 10.3969/j.issn.1002-0152.2019.07.004
    [69]
    Iglesias-Vázquez L, Riba G V G, Arija V, et al. Composition of gut microbiota in children with autism spectrum disorder: A systematic review and meta-analysis[J]. Nutrients,2020,12(3):792. doi: 10.3390/nu12030792
    [70]
    Li B, He Y, Ma J, et al. Mild cognitive impairment has similar alterations as Alzheimer's disease in gut microbiota[J]. Alzheimers & Dementia,2019,15(10):1357−1366.
    [71]
    赵程, 于会艳, 李微, 等. 帕金森病患者肠道菌群变化的研究[J]. 中华神经科杂志,2018,51(7):498−503. [Zhao Cheng, Yu Huiyan, Li Wei, et al. A study of intestinal flora changes in Parkinson disease patients[J]. Chinese Journal of Neurology,2018,51(7):498−503. doi: 10.3760/cma.j.issn.1006-7876.2018.07.004
  • Cited by

    Periodical cited type(12)

    1. 何海华,刘邵凡. 食用菌多糖与运动功能关系研究进展. 江苏调味副食品. 2024(02): 6-9 .
    2. 林雨蝶,李治赫,张付云. 丝状真菌胞外多糖的研究进展. 农产品加工. 2024(12): 104-107 .
    3. 陈秉彦,林晓姿,李维新,杨超,何志刚. 乳酸菌联合酿酒酵母发酵对龙须菜多糖结构特征及抗氧化性的影响. 食品科学技术学报. 2023(03): 107-115+147 .
    4. 桑雨梅,高郁超,武济萍,葛少钦,薛宏坤. 食用真菌多糖提取、纯化及结构表征研究进展. 食品研究与开发. 2023(13): 210-218 .
    5. 刘志洋,孙琪瑶,宫世平,徐建舒,王亚慧,张铭泽,于悦. 鹿皮胶多糖对酒精性肝损伤的保护作用. 食品工业科技. 2021(23): 334-340 . 本站查看
    6. 赵可,李汉清,蒋嘉烨,可燕. 关白附多糖纯化工艺优化及抑制结肠癌肝转移. 世界科学技术-中医药现代化. 2021(09): 3281-3288 .
    7. 张明,王瑶,马超,王崇队,杨立风,范祺,张博华,孟晓峰. 芦笋老茎多糖体外抗氧化及降血糖作用研究. 食品科技. 2020(02): 219-224 .
    8. 贾杰,郑瑞峰,李淑兰,张道敬. 多粘类芽孢杆菌HY96-2胞外多糖的分离纯化. 分析科学学报. 2020(01): 42-46 .
    9. 张喜康,赵宇慧,刘军,李佩佩,马露,王聪,王丽萍,刘敦华. 枸杞不同生长期多糖的理化特性及结构分析. 食品科学. 2020(16): 158-164 .
    10. 野津,张文森,王知斌,杨春娟,匡海学. DEAE-52在中药多糖分离纯化中的应用. 化学工程师. 2019(11): 43-45+22 .
    11. 赵明智,吕延成. 古尼虫草纯化多糖免疫调节活性研究. 食品安全质量检测学报. 2018(10): 2493-2500 .
    12. 孙玉姣,侯淑婷,鱼喆喆,崔湘怡,谭梓杉,戚歆宇,康雨芳. 宁夏红果枸杞多糖提取及其体外抗氧化活性研究. 陕西科技大学学报. 2018(05): 39-45 .

    Other cited types(25)

Catalog

    Article Metrics

    Article views (715) PDF downloads (65) Cited by(37)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return