Citation: | YE Mao, LI Xin, WU Yong, et al. Research Progress of Biosensors in Detecting Food Allergens[J]. Science and Technology of Food Industry, 2021, 42(18): 397−406. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080167. |
[1] |
Sicherer S H, Sampson H A. Food allergy: a review and update on epidemiology, pathogenesis, diagnosis, prevention, and management[J]. Journal of Allergy and Clinical Immunology,2018,141(1):41−58. doi: 10.1016/j.jaci.2017.11.003
|
[2] |
Mahdavinia M. Food allergy in adults: presentations, evaluation, and treatment[J]. Medical Clinics of North America,2020,104(1):145−155. doi: 10.1016/j.mcna.2019.08.008
|
[3] |
Sova C, Feuling M B, Baumler M, et al. Systematic review of nutrient intake and growth in children with multiple IgE-mediated food allergies[J]. Nutrition in Clinical Practice,2013,28(6):669−675. doi: 10.1177/0884533613505870
|
[4] |
Ho M H K, Wong W H S, Chang C. Clinical spectrum of food allergies: A comprehensive review[J]. Clinical Reviews in Allergy and Immunology,2014,46(3):225−240. doi: 10.1007/s12016-012-8339-6
|
[5] |
Valenta R, Hochwallner H, Linhart B, et al. Food allergies: The basics[J]. Gastroenterology,2015,148(6):1120−1131. doi: 10.1053/j.gastro.2015.02.006
|
[6] |
Courtois J, Bertholet C, Tollenaere S, et al. Detection of wheat allergens using 2D western blot and mass spectrometry[J]. Journal of Pharmaceutical and Biomedical Analysis,2020,178(2020):112907.
|
[7] |
Monaci L, Visconti A. Immunochemical and DNA-based methods in food allergen analysis and quality assurance perspectives[J]. Trends in Food Science and Technology,2010,21(6):272−283. doi: 10.1016/j.jpgs.2010.02.003
|
[8] |
Xu H F, Zhu X, Wang J, et al. Electrochemiluminescent functional nucleic acids-based sensors for food analysis[J]. Luminescence,2019,2019, 34(3):308−315.
|
[9] |
陈红兵. 食物过敏原检测技术的新动态[J]. 食品安全质量检测学报,2019,10(7):1743−1744. [Chen Hongbing. Update on the detection of food allergens[J]. Journal of Food Safety and Quality,2019,10(7):1743−1744. doi: 10.3969/j.issn.2095-0381.2019.07.001
|
[10] |
郭颖慧, 霍胜楠, 孟静, 等. 食品过敏原检测技术研究进展[J]. 食品安全质量检测学报,2019,10(16):5276−5281. [Guo Yinghui, Huo Shengnan, Mengjing, et al. Research progress of detection technologies for allergen in food[J]. Journal of Food Safety and Quality,2019,10(16):5276−5281. doi: 10.3969/j.issn.2095-0381.2019.16.009
|
[11] |
Kim M J. Rapid on-site detection of shrimp allergen tropomyosin using a novel ultrafast PCR system[J]. Food Science and Biotechnology,2019,28(2):591−597. doi: 10.1007/s10068-018-0479-x
|
[12] |
Yuan D, Kong J, Li X, et al. Colorimetric LAMP microfluidic chip for detecting three allergens: Peanut, sesame and soybean[J]. Scientific Reports,2018,8(2018):8682.
|
[13] |
Villa C, Costa J, Oliveira M B P P, et al. Cow’s milk allergens: Screening gene markers for the detection of milk ingredients in complex meat products[J]. Food Control,2020,108(2020):106823.
|
[14] |
Eischeid A C. Development and evaluation of a real-time PCR assay for detection of lobster, a crustacean shellfish allergen[J]. Food Control,2016,59(2016):393−399.
|
[15] |
Costa J, Melo V S, Santos C G, et al. Tracing tree nut allergens in chocolate: A comparison of DNA extraction protocols[J]. Food Chemistry,2015,187:469−476. doi: 10.1016/j.foodchem.2015.04.073
|
[16] |
Orcajo J, Lavilla M, Martínez-De-Marañón I, et al. Specific and sensitive ELISA for measurement of IgE-binding variations of milk allergen β-lactoglobulin in processed foods[J]. Analytica Chimica Acta,2019,1052(2019):163−169.
|
[17] |
Li X, Li Z, Xu E, et al. Determination of lactoferrin in camel milk by ultrahigh-performance liquid chromatography-tandem mass spectrometry using an isotope-labeled winged peptide as internal standard[J]. Molecules,2019,24(22):1−11.
|
[18] |
Zhang M Y, Wu P, Wu J, et al. Advanced DNA-based methods for the detection of peanut allergens in processed food[J]. Trends in Analytical Chemistry,2019,114(2019):278−292.
|
[19] |
Gomaa A, Boye J. Simultaneous detection of multi-allergens in an incurred food matrix using ELISA, multiplex flow cytometry and liquid chromatography mass spectrometry (LC-MS)[J]. Food Chemistry,2015,175(2015):585−592.
|
[20] |
Wang Y, Deng R, Zhang G, et al. Rapid and sensitive detection of the food allergen glycinin in powdered milk using a lateral flow colloidal gold immunoassay strip test[J]. Journal of Agricultural and Food Chemistry,2015,63(8):2172−2178. doi: 10.1021/jf5052128
|
[21] |
Alves R C, Pimentel F B, Nouws H P A. Improving the extraction of Ara h 6 (a peanut allergen) from a chocolate-based matrix for immunosensing detection: Influence of time, temperature and additives[J]. Food Chemistry,2017,218(2017):242−248.
|
[22] |
Shukla S, Haldorai Y, K V. Electrochemical coupled immunosensing platform based on graphene oxide/gold nanocomposite for sensitive detection of cronobacter sakazakii in powdered infant formula[J]. Biosensors and Bioelectronics,2018,109(2018):139−149.
|
[23] |
Juronen D, Kuusk A, Kivirand K, et al. Immunosensing system for rapid multiplex detection of mastitis-causing pathogens in milk[J]. Talanta,2018,178(2018):949−954.
|
[24] |
Yakes B, Buijs J, Elliott C, et al. Surface plasmon resonance biosensing: Approaches for screening and characterising antibodies for food diagnostics[J]. Talanta,2016,157(2016):55−63.
|
[25] |
王彬, 曾冬冬, 徐晓慧, 等. 电化学生物传感器的应用[J]. 北京生物医学工程,2020,39(3):311−312. [Wang Bin, Zeng Dongdong, Xu Xiaohui, et al. Application of electrochemical biosensor[J]. Beijing Biomedical Engineering,2020,39(3):311−312. doi: 10.3969/j.issn.1002-3208.2020.03.015.
|
[26] |
Amor-Gutiérrez O, Buijs J, Elliott C T, et al. Folding-based electrochemical aptasensor for the determination of β-lactoglobulin on poly-l-lysine modified graphite electrodes[J]. Sensors,2020,20(8):2349. doi: 10.3390/s20082349
|
[27] |
Čadková M, Metelka R, Holubová L, et al. Magnetic beads-based electrochemical immunosensor for monitoring allergenic food proteins[J]. Analytical Biochemistry,2015,484(1):4−8.
|
[28] |
Jiang D L, Jian J, Lu A, et al. Mast cell-based electrochemical biosensor for quantification of the major shrimp allergen Pen a 1 (tropomyosin)[J]. Biosensors and Bioelectronics,2013,50(2013):150−156.
|
[29] |
Hohensinner V, Maier I, Pittner F. A ‘gold cluster-linked immunosorbent assay’: Optical near-field biosensor chip for the detection of allergenic β-lactoglobulin in processed milk matrices[J]. Journal of Biotechnology,2007,130(2007):385−388.
|
[30] |
Maier I, Lindner W, Pittner F, et al. Antigenicity of heat-treated and trypsin-digested milk samples studied by an optical immunochip biosensor[J]. Monatshefte für Chemie - Chemical Monthly,2009,140(2009):921−929.
|
[31] |
Billakanti J M, Fee C J, Lane F R, et al. Simultaneous, quantitative detection of five whey proteins in multiple samples by surface plasmon resonance[J]. International Dairy Journal,2010,20(2010):96−105.
|
[32] |
Álvarez J, Laura S, Marina C, et al. Real time optical immunosensing with flow-through porous alumina membranes[J]. Sensors and Actuators, B: Chemical,2014,202:834−839. doi: 10.1016/j.snb.2014.06.027
|
[33] |
Wu X L, Cheng Q, Cui W, et al. Two-site antibody immunoanalytical detection of food allergens by surface plasmon resonance[J]. Food Analytical Methods,2016,9(3):582−588. doi: 10.1007/s12161-015-0232-5
|
[34] |
Ashley J, Roberta D A, Monika P, et al. Development of a β-lactoglobulin sensor based on SPR for milk allergens detection[J]. Biosensors,2018,8(32):2−11.
|
[35] |
Shi M L, Cen Y, Sohail M, et al. Aptamer based fluorometric β-lactoglobulin assay based on the use of magnetic nanoparticles and carbon dots[J]. Microchimica Acta,2018,185(1):1−8. doi: 10.1007/s00604-017-2562-z
|
[36] |
Eissa S, Tlili C, L’hocine L, et al. Electrochemical immunosensor for the milk allergen β-lactoglobulin based on electrografting of organic film on graphene modified screen-printed carbon electrodes[J]. Biosensors and Bioelectronics,2012,38(2012):308−313.
|
[37] |
Eissa S, Zourob M. In vitro selection of DNA aptamers targeting β-lactoglobulin and their integration in graphene-based biosensor for the detection of milk allergen[J]. Biosensors and Bioelectronics,2017,91(2017):169−174.
|
[38] |
Lettieri M, Oana H, Alina A, et al. Beta-lactoglobulin electrochemical detection based with an innovative platform based on composite polymer[J]. Electroanalysis,2019,31(2019):1−10.
|
[39] |
Chen Y, Wang P, Wang W, et al. Optical thin film biochips for detecting allergens in food[J]. Handbook of Food Allergen Detection and Control,2015:265−271.
|
[40] |
Sun X L, Guan L, Shan X, et al. Electrochemical detection of peanut allergen ara h 1 using a sensitive dna biosensor based on stem-loop probe[J]. Journal of Agricultural and Food Chemistry,2012,60(44):10979−10984. doi: 10.1021/jf3027233
|
[41] |
Nehra M, Lettieri M, Dilbaghi N, et al. Nano-biosensing platforms for detection of cow’s milk allergens: An overview[J]. Sensors,2020,20(1):1−21. doi: 10.1109/JSEN.2019.2959158
|
[42] |
Maier I, Morgan M R A, Lindner W, et al. Optical resonance-enhanced absorption-based near-field immunochip biosensor for allergen detection[J]. Analytical Chemistry,2008,80(8):2694−2703. doi: 10.1021/ac702107k
|
[43] |
张一芳. 基于纳米材料的生物传感技术在食品安全中的应用[D]. 长沙: 湖南大学, 2011.
Zhang Y F. Analytical application of biosensing technology based on nano materials in the food safety[D]. Changsha: Hunan University, 2011.
|
[44] |
Jiang D L, Jiang H, Ji J, et al. Mast cell-based fluorescence biosensor for rapid detection of major fish allergen parvalbumin[J]. Journal of Agricultural and Food Chemistry,2014,62(27):6473−6480. doi: 10.1021/jf501382t
|
[45] |
Chen Z, Li H, Jia W, et al. Bivalent aptasensor based on silver-enhanced fluorescence polarization for rapid detection of lactoferrin in milk[J]. Analytical Chemistry,2017,89(11):5900−5908. doi: 10.1021/acs.analchem.7b00261
|
[46] |
Phadke C, Seiichi T, Izumi K, et al. Instantaneous detection of αs-casein in cow’s milk using fluorogenic peptide aptamers[J]. Analytical Methods,2020,12(10):1368−1373. doi: 10.1039/C9AY02542A
|
[47] |
Zhou J, Qi Q Q, Wang C, et al. Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices[J]. Biosensors and Bioelectronics,2019,142(4):111449.
|
[48] |
Weng X, Gaur G, Neethirajan S, et al. Rapid detection of food allergens by microfluidics ELISA-based optical sensor[J]. Biosensors,2016,6(24):2−10.
|
[49] |
Weng X, Neethirajan S. A microfluidic biosensor using graphene oxide and aptamer-functionalized quantum dots for peanut allergen detection[J]. Biosensors and Bioelectronics,2016,85(2016):649−656.
|
[50] |
Pollet J, Delport F, Janssen K P F, et al. Fast and accurate peanut allergen detection with nanobead enhanced optical fiber SPR biosensor[J]. Talanta,2011,83(2011):1436−1441.
|
[51] |
Angelopoulou M, Petrou P S, Makarona E, et al. Ultrafast multiplexed-allergen detection through advanced fluidic design and monolithic interferometric silicon chips[J]. Analytical Chemistry,2018,90(15):9559−9567. doi: 10.1021/acs.analchem.8b02321
|
[52] |
Tuteja S K, Duffield T, Neethirajan S. Liquid exfoliation of 2D MoS2 nanosheets and their utilization as a label-free electrochemical immunoassay for subclinical ketosis[J]. Nanoscale,2017,9(2017):10886−10896.
|
[53] |
Sun X B, Ye Y, He S, et al. A novel oriented antibody immobilization based voltammetric immunosensor for allergenic activity detection of lectin in kidney bean by using AuNPs-PEI-MWCNTs modified electrode[J]. Biosensors and Bioelectronics,2019,143(2019):111607.
|
[54] |
Alves R C, Barroso M F. New trends in food allergens detection: towards biosensing strategies[J]. Critical Reviews in Food Science and Nutrtion,2016,56(14):2304−2319. doi: 10.1080/10408398.2013.831026
|
[55] |
Ruiz-Valdepeñas M V, Campuzano S, Conzuelo F, et al. Electrochemical magnetoimmunosensing platform for determination of the milk allergen β-lactoglobulin[J]. Talanta,2015,131(2015):156−162.
|
[56] |
惠媛媛, 王毕妮, 彭海霞. 电化学生物传感器在黄曲霉毒素检测中的应用研究进展[J]. 食品工业科技,2019,40(2):300−305. [Hui Yuanyuan, Wang Bini, Peng Haixia. Application research development of electrochemical biosensors in detection of aflatoxins[J]. Science and Technology of Food Industry,2019,40(2):300−305.
|
[57] |
孙秀兰, 管露, 单晓红, 等. 食品过敏原体外检测方法研究进展[J]. 东北农业大学学报,2012,43(2):126−132. [Sun Xiulan, Guan Lu, Shan Xiaohong, et al. Research on food allergen detection methods in vitro[J]. Journal of Northeast Agricultural University,2012,43(2):126−132. doi: 10.3969/j.issn.1005-9369.2012.02.025
|
[58] |
Jiang H, Jiang D L, Wang L F, et al. A novel mast cell co-culture microfluidic chip for the electrochemical evaluation of food allergen[J]. Biosensors and Bioelectronics,2016,83(2016):126−133.
|
[59] |
关桦楠, 宋岩, 龚德状, 等. 基于电化学生物传感器检测食源性致病菌及其毒素的研究进展[J]. 食品研究与开发,2019,40(8):206−211. [Guan Huanan, Song Yan, Gong Dezhuang, et al. Research progress in the detection of food-borne pathogenic bacteria and toxins based on electrochemical biosensor[J]. Food Research and Development,2019,40(8):206−211. doi: 10.3969/j.issn.1005-6521.2019.08.036
|
[60] |
Sun X L, Jia M. Enzymatic amplification detection of peanut allergen Ara h1 using a stem-loop DNA biosensor modified with a chitosan-mutiwalled carbon nanotube nanocomposite and spongy gold film[J]. Talanta,2015,131(2015):521−527.
|
[61] |
Ruiz-Valdepeñas M V, Campuzano S, Torrente-Rodríguez R M, et al. Electrochemical magnetic beads-based immunosensing platform for the determination of α-lactalbumin in milk[J]. Food Chemistry,2016,213(2016):595−601.
|
[62] |
Angulo-Ibáñez A, Eletxigerra U. Electrochemical tropomyosin allergen immunosensor for complex food matrix analysis[J]. Analytica Chimica Acta,2019,1079(2019):94−102.
|
[63] |
Conzuelo F, Gamella M, Campuzano S, et al. Disposable amperometric magneto-immunosensor for direct detection of tetracyclines antibiotics residues in milk[J]. Analytica Chimica Acta,2012,737(2012):29−36.
|
[64] |
Cao Q, Zhao H. Electrochemical immunosensor for casein based on gold nanoparticles and poly (L-arginine)/multi-walled carbon nanotubes composite film functionalized interface[J]. Biosensors and Bioelectronics,2011,26(2011):3469−3474.
|
[65] |
Haghshenas E, Madrakian T, Afkhami A, et al. A label-free electrochemical biosensor based on tubulin immobilized on gold nanoparticle/glassy carbon electrode for the determination of vinblastine[J]. Analytical and Bioanalytical Chemistry,2017,409(22):5269−5278. doi: 10.1007/s00216-017-0471-y
|
[66] |
López M Sánchez P. Development of a genosensor for peanut allergen Ara h 2 detection and its optimization by surface response methodology[J]. Biosensors and Bioelectronics,2014,62(2014):350−356.
|
[67] |
Alves R C, Pimentel F B, Nouws H P A, et al. Detection of the peanut allergen Ara h 6 in foodstuffs using a voltammetric biosensing approach[J]. Analytical and Bioanalytical Chemistry,2015,407(2015):7157−7163.
|
[68] |
Kokkinos C, Angelopoulou M, Economou A, et al. Lab-on-a-membrane foldable devices for duplex drop-volume electrochemical biosensing using quantum dot tags[J]. Analytical Chemistry,2016,88(13):6897−6904. doi: 10.1021/acs.analchem.6b01625
|
[69] |
Farooq U, Yang Q, Ullah M W, et al. Bacterial biosensing: recent advances in phage-based bioassays and biosensors[J]. Biosensors and Bioelectronics,2018,118(2018):204−216.
|
[70] |
Sun X L, Yin Z Z, Jing D S, et al. A quartz crystal microbalance-based immunosensor for shrimp allergen determination in food[J]. European Food Research Technology,2010,231(2010):563−570.
|
[71] |
Chu Pei-Tzu, Lin C, Chen W, et al. Detection of gliadin in foods using a quartz crystal microbalance biosensor that incorporates gold nanoparticles[J]. Journal of Agricultural and Food Chemistry,2012,60(26):6483−6492. doi: 10.1021/jf2047866
|
[72] |
Funari R, Terracciano I, Della V B, et al. Label-free detection of gliadin in food by quartz crystal microbalance-based immunosensor[J]. Journal of Agricultural and Food Chemistry,2017,65(6):1281−1289. doi: 10.1021/acs.jafc.6b04830
|
1. |
崔蓬勃,梁健亲,程天宇,吕飞,丁玉庭. 日本鲭的保鲜技术研究进展. 水产学报. 2024(07): 3-17 .
![]() | |
2. |
罗振玲,高海波,杨挺,付余. 超高效液相色谱-串联质谱法同时测定小黄花鱼中9种生物胺. 食品工业科技. 2023(05): 251-257 .
![]() | |
3. |
杨梓璐,石懿平,郑火建,李洪彪,汪立平. 产胺菌拮抗菌的筛选鉴定及其抑菌物质特性研究. 湖北民族大学学报(自然科学版). 2023(03): 308-313+330 .
![]() | |
4. |
黄岩,鲜双,李倩,陈其青,徐飞,陈安均. 豇豆泡菜中产生物胺菌株的筛选鉴定及其产胺特性研究. 食品与发酵工业. 2023(23): 119-126 .
![]() | |
5. |
高建操,杜金梁,邵乃麟,张幸,李昺之,宋超,徐跑,徐钢春. 中华绒螯蟹质量安全新兴检测与控制技术研究进展. 中国渔业质量与标准. 2022(04): 62-70 .
![]() | |
6. |
杨姗姗,王晓雯,林翠苹. 水产品中生物胺的研究进展. 青岛农业大学学报(自然科学版). 2021(01): 65-73 .
![]() | |
7. |
王纯纯,刘智禹,黄鹭强. 水产品中微生物产胺的研究概况. 福建轻纺. 2021(11): 8-12 .
![]() | |
8. |
李璇,刘琪,朱蔚姗,陈静,张佩娜,蒋立文. 不同发酵豆制品中生物胺调查分析. 食品安全质量检测学报. 2020(01): 298-305 .
![]() | |
9. |
李少丽,邓建朝,李春生,杨贤庆,吴燕燕,陈胜军,马海霞. 生食大眼金枪鱼中生物胺产生菌的分离与鉴定. 食品与发酵工业. 2020(14): 121-126 .
![]() | |
10. |
孙项丽,王联珠,郭莹莹,江艳华,王婧媛,尹大芳. 不同储藏温度下鲅鱼组胺含量与其品质变化的关系. 南方农业学报. 2020(08): 2005-2012 .
![]() | |
11. |
孙项丽,郭莹莹,于秀娟,王静媛,文艺晓,王联珠. 鲭鱼品质评价及品质变化与组胺含量研究进展. 食品安全质量检测学报. 2019(12): 3708-3713 .
![]() | |
12. |
邓建朝,李少丽,杨贤庆,陈胜军,吴燕燕,李春生,马海霞,荣辉. 金枪鱼中生物胺的防控技术与检测技术的研究发展. 食品与发酵工业. 2019(24): 262-268 .
![]() |