YE Mao, LI Xin, WU Yong, et al. Research Progress of Biosensors in Detecting Food Allergens[J]. Science and Technology of Food Industry, 2021, 42(18): 397−406. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080167.
Citation: YE Mao, LI Xin, WU Yong, et al. Research Progress of Biosensors in Detecting Food Allergens[J]. Science and Technology of Food Industry, 2021, 42(18): 397−406. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080167.

Research Progress of Biosensors in Detecting Food Allergens

More Information
  • Received Date: August 17, 2020
  • Available Online: July 08, 2021
  • Food allergy is a serious public health problem which affects 5% of adults and 8% of children in the world, and the prevalence is still rising. Because there is currently no cure for food allergy, it is still the best choice for patients that strictly avoiding substitution or contacting with allergen food. The detection of allergen in food is closely related to food production, labelling and risk management, which is one of the critical steps in guarantee of food safety. Therefore, it is critical for protecting sensitive patients to develop rapid, sensitive, accurate, reproducible and standardized methods. Compared with traditional detection methods, biosensor, as an emerging type of multi-disciplinary cross-fusion technology, takes the advantages of high sensitivity, highly automated, easy operation, fast response, less sample usage and so on. It has been widely used in the detection of food allergens. In this article, we elaborate and review the detection of food allergens by optical biosensors, electrochemical biosensors, and piezoelectric immune biosensors from the principles, advantages, disadvantages and applications. Finally, we look forward to the future development trend of biosensor in the detection of food allergens and provide a reliable analysis method for rapid on-site quantitative detection of food allergens.
  • [1]
    Sicherer S H, Sampson H A. Food allergy: a review and update on epidemiology, pathogenesis, diagnosis, prevention, and management[J]. Journal of Allergy and Clinical Immunology,2018,141(1):41−58. doi: 10.1016/j.jaci.2017.11.003
    [2]
    Mahdavinia M. Food allergy in adults: presentations, evaluation, and treatment[J]. Medical Clinics of North America,2020,104(1):145−155. doi: 10.1016/j.mcna.2019.08.008
    [3]
    Sova C, Feuling M B, Baumler M, et al. Systematic review of nutrient intake and growth in children with multiple IgE-mediated food allergies[J]. Nutrition in Clinical Practice,2013,28(6):669−675. doi: 10.1177/0884533613505870
    [4]
    Ho M H K, Wong W H S, Chang C. Clinical spectrum of food allergies: A comprehensive review[J]. Clinical Reviews in Allergy and Immunology,2014,46(3):225−240. doi: 10.1007/s12016-012-8339-6
    [5]
    Valenta R, Hochwallner H, Linhart B, et al. Food allergies: The basics[J]. Gastroenterology,2015,148(6):1120−1131. doi: 10.1053/j.gastro.2015.02.006
    [6]
    Courtois J, Bertholet C, Tollenaere S, et al. Detection of wheat allergens using 2D western blot and mass spectrometry[J]. Journal of Pharmaceutical and Biomedical Analysis,2020,178(2020):112907.
    [7]
    Monaci L, Visconti A. Immunochemical and DNA-based methods in food allergen analysis and quality assurance perspectives[J]. Trends in Food Science and Technology,2010,21(6):272−283. doi: 10.1016/j.jpgs.2010.02.003
    [8]
    Xu H F, Zhu X, Wang J, et al. Electrochemiluminescent functional nucleic acids-based sensors for food analysis[J]. Luminescence,2019,2019, 34(3):308−315.
    [9]
    陈红兵. 食物过敏原检测技术的新动态[J]. 食品安全质量检测学报,2019,10(7):1743−1744. [Chen Hongbing. Update on the detection of food allergens[J]. Journal of Food Safety and Quality,2019,10(7):1743−1744. doi: 10.3969/j.issn.2095-0381.2019.07.001
    [10]
    郭颖慧, 霍胜楠, 孟静, 等. 食品过敏原检测技术研究进展[J]. 食品安全质量检测学报,2019,10(16):5276−5281. [Guo Yinghui, Huo Shengnan, Mengjing, et al. Research progress of detection technologies for allergen in food[J]. Journal of Food Safety and Quality,2019,10(16):5276−5281. doi: 10.3969/j.issn.2095-0381.2019.16.009
    [11]
    Kim M J. Rapid on-site detection of shrimp allergen tropomyosin using a novel ultrafast PCR system[J]. Food Science and Biotechnology,2019,28(2):591−597. doi: 10.1007/s10068-018-0479-x
    [12]
    Yuan D, Kong J, Li X, et al. Colorimetric LAMP microfluidic chip for detecting three allergens: Peanut, sesame and soybean[J]. Scientific Reports,2018,8(2018):8682.
    [13]
    Villa C, Costa J, Oliveira M B P P, et al. Cow’s milk allergens: Screening gene markers for the detection of milk ingredients in complex meat products[J]. Food Control,2020,108(2020):106823.
    [14]
    Eischeid A C. Development and evaluation of a real-time PCR assay for detection of lobster, a crustacean shellfish allergen[J]. Food Control,2016,59(2016):393−399.
    [15]
    Costa J, Melo V S, Santos C G, et al. Tracing tree nut allergens in chocolate: A comparison of DNA extraction protocols[J]. Food Chemistry,2015,187:469−476. doi: 10.1016/j.foodchem.2015.04.073
    [16]
    Orcajo J, Lavilla M, Martínez-De-Marañón I, et al. Specific and sensitive ELISA for measurement of IgE-binding variations of milk allergen β-lactoglobulin in processed foods[J]. Analytica Chimica Acta,2019,1052(2019):163−169.
    [17]
    Li X, Li Z, Xu E, et al. Determination of lactoferrin in camel milk by ultrahigh-performance liquid chromatography-tandem mass spectrometry using an isotope-labeled winged peptide as internal standard[J]. Molecules,2019,24(22):1−11.
    [18]
    Zhang M Y, Wu P, Wu J, et al. Advanced DNA-based methods for the detection of peanut allergens in processed food[J]. Trends in Analytical Chemistry,2019,114(2019):278−292.
    [19]
    Gomaa A, Boye J. Simultaneous detection of multi-allergens in an incurred food matrix using ELISA, multiplex flow cytometry and liquid chromatography mass spectrometry (LC-MS)[J]. Food Chemistry,2015,175(2015):585−592.
    [20]
    Wang Y, Deng R, Zhang G, et al. Rapid and sensitive detection of the food allergen glycinin in powdered milk using a lateral flow colloidal gold immunoassay strip test[J]. Journal of Agricultural and Food Chemistry,2015,63(8):2172−2178. doi: 10.1021/jf5052128
    [21]
    Alves R C, Pimentel F B, Nouws H P A. Improving the extraction of Ara h 6 (a peanut allergen) from a chocolate-based matrix for immunosensing detection: Influence of time, temperature and additives[J]. Food Chemistry,2017,218(2017):242−248.
    [22]
    Shukla S, Haldorai Y, K V. Electrochemical coupled immunosensing platform based on graphene oxide/gold nanocomposite for sensitive detection of cronobacter sakazakii in powdered infant formula[J]. Biosensors and Bioelectronics,2018,109(2018):139−149.
    [23]
    Juronen D, Kuusk A, Kivirand K, et al. Immunosensing system for rapid multiplex detection of mastitis-causing pathogens in milk[J]. Talanta,2018,178(2018):949−954.
    [24]
    Yakes B, Buijs J, Elliott C, et al. Surface plasmon resonance biosensing: Approaches for screening and characterising antibodies for food diagnostics[J]. Talanta,2016,157(2016):55−63.
    [25]
    王彬, 曾冬冬, 徐晓慧, 等. 电化学生物传感器的应用[J]. 北京生物医学工程,2020,39(3):311−312. [Wang Bin, Zeng Dongdong, Xu Xiaohui, et al. Application of electrochemical biosensor[J]. Beijing Biomedical Engineering,2020,39(3):311−312. doi: 10.3969/j.issn.1002-3208.2020.03.015.
    [26]
    Amor-Gutiérrez O, Buijs J, Elliott C T, et al. Folding-based electrochemical aptasensor for the determination of β-lactoglobulin on poly-l-lysine modified graphite electrodes[J]. Sensors,2020,20(8):2349. doi: 10.3390/s20082349
    [27]
    Čadková M, Metelka R, Holubová L, et al. Magnetic beads-based electrochemical immunosensor for monitoring allergenic food proteins[J]. Analytical Biochemistry,2015,484(1):4−8.
    [28]
    Jiang D L, Jian J, Lu A, et al. Mast cell-based electrochemical biosensor for quantification of the major shrimp allergen Pen a 1 (tropomyosin)[J]. Biosensors and Bioelectronics,2013,50(2013):150−156.
    [29]
    Hohensinner V, Maier I, Pittner F. A ‘gold cluster-linked immunosorbent assay’: Optical near-field biosensor chip for the detection of allergenic β-lactoglobulin in processed milk matrices[J]. Journal of Biotechnology,2007,130(2007):385−388.
    [30]
    Maier I, Lindner W, Pittner F, et al. Antigenicity of heat-treated and trypsin-digested milk samples studied by an optical immunochip biosensor[J]. Monatshefte für Chemie - Chemical Monthly,2009,140(2009):921−929.
    [31]
    Billakanti J M, Fee C J, Lane F R, et al. Simultaneous, quantitative detection of five whey proteins in multiple samples by surface plasmon resonance[J]. International Dairy Journal,2010,20(2010):96−105.
    [32]
    Álvarez J, Laura S, Marina C, et al. Real time optical immunosensing with flow-through porous alumina membranes[J]. Sensors and Actuators, B: Chemical,2014,202:834−839. doi: 10.1016/j.snb.2014.06.027
    [33]
    Wu X L, Cheng Q, Cui W, et al. Two-site antibody immunoanalytical detection of food allergens by surface plasmon resonance[J]. Food Analytical Methods,2016,9(3):582−588. doi: 10.1007/s12161-015-0232-5
    [34]
    Ashley J, Roberta D A, Monika P, et al. Development of a β-lactoglobulin sensor based on SPR for milk allergens detection[J]. Biosensors,2018,8(32):2−11.
    [35]
    Shi M L, Cen Y, Sohail M, et al. Aptamer based fluorometric β-lactoglobulin assay based on the use of magnetic nanoparticles and carbon dots[J]. Microchimica Acta,2018,185(1):1−8. doi: 10.1007/s00604-017-2562-z
    [36]
    Eissa S, Tlili C, L’hocine L, et al. Electrochemical immunosensor for the milk allergen β-lactoglobulin based on electrografting of organic film on graphene modified screen-printed carbon electrodes[J]. Biosensors and Bioelectronics,2012,38(2012):308−313.
    [37]
    Eissa S, Zourob M. In vitro selection of DNA aptamers targeting β-lactoglobulin and their integration in graphene-based biosensor for the detection of milk allergen[J]. Biosensors and Bioelectronics,2017,91(2017):169−174.
    [38]
    Lettieri M, Oana H, Alina A, et al. Beta-lactoglobulin electrochemical detection based with an innovative platform based on composite polymer[J]. Electroanalysis,2019,31(2019):1−10.
    [39]
    Chen Y, Wang P, Wang W, et al. Optical thin film biochips for detecting allergens in food[J]. Handbook of Food Allergen Detection and Control,2015:265−271.
    [40]
    Sun X L, Guan L, Shan X, et al. Electrochemical detection of peanut allergen ara h 1 using a sensitive dna biosensor based on stem-loop probe[J]. Journal of Agricultural and Food Chemistry,2012,60(44):10979−10984. doi: 10.1021/jf3027233
    [41]
    Nehra M, Lettieri M, Dilbaghi N, et al. Nano-biosensing platforms for detection of cow’s milk allergens: An overview[J]. Sensors,2020,20(1):1−21. doi: 10.1109/JSEN.2019.2959158
    [42]
    Maier I, Morgan M R A, Lindner W, et al. Optical resonance-enhanced absorption-based near-field immunochip biosensor for allergen detection[J]. Analytical Chemistry,2008,80(8):2694−2703. doi: 10.1021/ac702107k
    [43]
    张一芳. 基于纳米材料的生物传感技术在食品安全中的应用[D]. 长沙: 湖南大学, 2011.

    Zhang Y F. Analytical application of biosensing technology based on nano materials in the food safety[D]. Changsha: Hunan University, 2011.
    [44]
    Jiang D L, Jiang H, Ji J, et al. Mast cell-based fluorescence biosensor for rapid detection of major fish allergen parvalbumin[J]. Journal of Agricultural and Food Chemistry,2014,62(27):6473−6480. doi: 10.1021/jf501382t
    [45]
    Chen Z, Li H, Jia W, et al. Bivalent aptasensor based on silver-enhanced fluorescence polarization for rapid detection of lactoferrin in milk[J]. Analytical Chemistry,2017,89(11):5900−5908. doi: 10.1021/acs.analchem.7b00261
    [46]
    Phadke C, Seiichi T, Izumi K, et al. Instantaneous detection of αs-casein in cow’s milk using fluorogenic peptide aptamers[J]. Analytical Methods,2020,12(10):1368−1373. doi: 10.1039/C9AY02542A
    [47]
    Zhou J, Qi Q Q, Wang C, et al. Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices[J]. Biosensors and Bioelectronics,2019,142(4):111449.
    [48]
    Weng X, Gaur G, Neethirajan S, et al. Rapid detection of food allergens by microfluidics ELISA-based optical sensor[J]. Biosensors,2016,6(24):2−10.
    [49]
    Weng X, Neethirajan S. A microfluidic biosensor using graphene oxide and aptamer-functionalized quantum dots for peanut allergen detection[J]. Biosensors and Bioelectronics,2016,85(2016):649−656.
    [50]
    Pollet J, Delport F, Janssen K P F, et al. Fast and accurate peanut allergen detection with nanobead enhanced optical fiber SPR biosensor[J]. Talanta,2011,83(2011):1436−1441.
    [51]
    Angelopoulou M, Petrou P S, Makarona E, et al. Ultrafast multiplexed-allergen detection through advanced fluidic design and monolithic interferometric silicon chips[J]. Analytical Chemistry,2018,90(15):9559−9567. doi: 10.1021/acs.analchem.8b02321
    [52]
    Tuteja S K, Duffield T, Neethirajan S. Liquid exfoliation of 2D MoS2 nanosheets and their utilization as a label-free electrochemical immunoassay for subclinical ketosis[J]. Nanoscale,2017,9(2017):10886−10896.
    [53]
    Sun X B, Ye Y, He S, et al. A novel oriented antibody immobilization based voltammetric immunosensor for allergenic activity detection of lectin in kidney bean by using AuNPs-PEI-MWCNTs modified electrode[J]. Biosensors and Bioelectronics,2019,143(2019):111607.
    [54]
    Alves R C, Barroso M F. New trends in food allergens detection: towards biosensing strategies[J]. Critical Reviews in Food Science and Nutrtion,2016,56(14):2304−2319. doi: 10.1080/10408398.2013.831026
    [55]
    Ruiz-Valdepeñas M V, Campuzano S, Conzuelo F, et al. Electrochemical magnetoimmunosensing platform for determination of the milk allergen β-lactoglobulin[J]. Talanta,2015,131(2015):156−162.
    [56]
    惠媛媛, 王毕妮, 彭海霞. 电化学生物传感器在黄曲霉毒素检测中的应用研究进展[J]. 食品工业科技,2019,40(2):300−305. [Hui Yuanyuan, Wang Bini, Peng Haixia. Application research development of electrochemical biosensors in detection of aflatoxins[J]. Science and Technology of Food Industry,2019,40(2):300−305.
    [57]
    孙秀兰, 管露, 单晓红, 等. 食品过敏原体外检测方法研究进展[J]. 东北农业大学学报,2012,43(2):126−132. [Sun Xiulan, Guan Lu, Shan Xiaohong, et al. Research on food allergen detection methods in vitro[J]. Journal of Northeast Agricultural University,2012,43(2):126−132. doi: 10.3969/j.issn.1005-9369.2012.02.025
    [58]
    Jiang H, Jiang D L, Wang L F, et al. A novel mast cell co-culture microfluidic chip for the electrochemical evaluation of food allergen[J]. Biosensors and Bioelectronics,2016,83(2016):126−133.
    [59]
    关桦楠, 宋岩, 龚德状, 等. 基于电化学生物传感器检测食源性致病菌及其毒素的研究进展[J]. 食品研究与开发,2019,40(8):206−211. [Guan Huanan, Song Yan, Gong Dezhuang, et al. Research progress in the detection of food-borne pathogenic bacteria and toxins based on electrochemical biosensor[J]. Food Research and Development,2019,40(8):206−211. doi: 10.3969/j.issn.1005-6521.2019.08.036
    [60]
    Sun X L, Jia M. Enzymatic amplification detection of peanut allergen Ara h1 using a stem-loop DNA biosensor modified with a chitosan-mutiwalled carbon nanotube nanocomposite and spongy gold film[J]. Talanta,2015,131(2015):521−527.
    [61]
    Ruiz-Valdepeñas M V, Campuzano S, Torrente-Rodríguez R M, et al. Electrochemical magnetic beads-based immunosensing platform for the determination of α-lactalbumin in milk[J]. Food Chemistry,2016,213(2016):595−601.
    [62]
    Angulo-Ibáñez A, Eletxigerra U. Electrochemical tropomyosin allergen immunosensor for complex food matrix analysis[J]. Analytica Chimica Acta,2019,1079(2019):94−102.
    [63]
    Conzuelo F, Gamella M, Campuzano S, et al. Disposable amperometric magneto-immunosensor for direct detection of tetracyclines antibiotics residues in milk[J]. Analytica Chimica Acta,2012,737(2012):29−36.
    [64]
    Cao Q, Zhao H. Electrochemical immunosensor for casein based on gold nanoparticles and poly (L-arginine)/multi-walled carbon nanotubes composite film functionalized interface[J]. Biosensors and Bioelectronics,2011,26(2011):3469−3474.
    [65]
    Haghshenas E, Madrakian T, Afkhami A, et al. A label-free electrochemical biosensor based on tubulin immobilized on gold nanoparticle/glassy carbon electrode for the determination of vinblastine[J]. Analytical and Bioanalytical Chemistry,2017,409(22):5269−5278. doi: 10.1007/s00216-017-0471-y
    [66]
    López M Sánchez P. Development of a genosensor for peanut allergen Ara h 2 detection and its optimization by surface response methodology[J]. Biosensors and Bioelectronics,2014,62(2014):350−356.
    [67]
    Alves R C, Pimentel F B, Nouws H P A, et al. Detection of the peanut allergen Ara h 6 in foodstuffs using a voltammetric biosensing approach[J]. Analytical and Bioanalytical Chemistry,2015,407(2015):7157−7163.
    [68]
    Kokkinos C, Angelopoulou M, Economou A, et al. Lab-on-a-membrane foldable devices for duplex drop-volume electrochemical biosensing using quantum dot tags[J]. Analytical Chemistry,2016,88(13):6897−6904. doi: 10.1021/acs.analchem.6b01625
    [69]
    Farooq U, Yang Q, Ullah M W, et al. Bacterial biosensing: recent advances in phage-based bioassays and biosensors[J]. Biosensors and Bioelectronics,2018,118(2018):204−216.
    [70]
    Sun X L, Yin Z Z, Jing D S, et al. A quartz crystal microbalance-based immunosensor for shrimp allergen determination in food[J]. European Food Research Technology,2010,231(2010):563−570.
    [71]
    Chu Pei-Tzu, Lin C, Chen W, et al. Detection of gliadin in foods using a quartz crystal microbalance biosensor that incorporates gold nanoparticles[J]. Journal of Agricultural and Food Chemistry,2012,60(26):6483−6492. doi: 10.1021/jf2047866
    [72]
    Funari R, Terracciano I, Della V B, et al. Label-free detection of gliadin in food by quartz crystal microbalance-based immunosensor[J]. Journal of Agricultural and Food Chemistry,2017,65(6):1281−1289. doi: 10.1021/acs.jafc.6b04830
  • Cited by

    Periodical cited type(12)

    1. 崔蓬勃,梁健亲,程天宇,吕飞,丁玉庭. 日本鲭的保鲜技术研究进展. 水产学报. 2024(07): 3-17 .
    2. 罗振玲,高海波,杨挺,付余. 超高效液相色谱-串联质谱法同时测定小黄花鱼中9种生物胺. 食品工业科技. 2023(05): 251-257 . 本站查看
    3. 杨梓璐,石懿平,郑火建,李洪彪,汪立平. 产胺菌拮抗菌的筛选鉴定及其抑菌物质特性研究. 湖北民族大学学报(自然科学版). 2023(03): 308-313+330 .
    4. 黄岩,鲜双,李倩,陈其青,徐飞,陈安均. 豇豆泡菜中产生物胺菌株的筛选鉴定及其产胺特性研究. 食品与发酵工业. 2023(23): 119-126 .
    5. 高建操,杜金梁,邵乃麟,张幸,李昺之,宋超,徐跑,徐钢春. 中华绒螯蟹质量安全新兴检测与控制技术研究进展. 中国渔业质量与标准. 2022(04): 62-70 .
    6. 杨姗姗,王晓雯,林翠苹. 水产品中生物胺的研究进展. 青岛农业大学学报(自然科学版). 2021(01): 65-73 .
    7. 王纯纯,刘智禹,黄鹭强. 水产品中微生物产胺的研究概况. 福建轻纺. 2021(11): 8-12 .
    8. 李璇,刘琪,朱蔚姗,陈静,张佩娜,蒋立文. 不同发酵豆制品中生物胺调查分析. 食品安全质量检测学报. 2020(01): 298-305 .
    9. 李少丽,邓建朝,李春生,杨贤庆,吴燕燕,陈胜军,马海霞. 生食大眼金枪鱼中生物胺产生菌的分离与鉴定. 食品与发酵工业. 2020(14): 121-126 .
    10. 孙项丽,王联珠,郭莹莹,江艳华,王婧媛,尹大芳. 不同储藏温度下鲅鱼组胺含量与其品质变化的关系. 南方农业学报. 2020(08): 2005-2012 .
    11. 孙项丽,郭莹莹,于秀娟,王静媛,文艺晓,王联珠. 鲭鱼品质评价及品质变化与组胺含量研究进展. 食品安全质量检测学报. 2019(12): 3708-3713 .
    12. 邓建朝,李少丽,杨贤庆,陈胜军,吴燕燕,李春生,马海霞,荣辉. 金枪鱼中生物胺的防控技术与检测技术的研究发展. 食品与发酵工业. 2019(24): 262-268 .

    Other cited types(12)

Catalog

    Article Metrics

    Article views (675) PDF downloads (70) Cited by(24)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return