HUANG Shengnan, GAO Mengxiang, LIU Yingbao. Regulatory Effect of 5 Metal Ions on the Spectrum of Major Secondary Metabolites of Monascus purpureus [J]. Science and Technology of Food Industry, 2021, 42(10): 89−99. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080154.
Citation: HUANG Shengnan, GAO Mengxiang, LIU Yingbao. Regulatory Effect of 5 Metal Ions on the Spectrum of Major Secondary Metabolites of Monascus purpureus [J]. Science and Technology of Food Industry, 2021, 42(10): 89−99. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080154.

Regulatory Effect of 5 Metal Ions on the Spectrum of Major Secondary Metabolites of Monascus purpureus

More Information
  • Received Date: August 16, 2020
  • Available Online: March 21, 2021
  • Objective: This study was to investigate the regulatory effect of Cu2+, Zn2+, Mg2+, Mn2+ and Co2+ on the growth and the major secondary metabolite of M. purpureus. Methods: The spores of M. purpureus were inoculated into solid medium with different concentration of metal ions, and investigate the effects of different ions on their growth and pigments synthesis. Meanwhile, different concentrations of metal ions and 8-hydroxyquinoline were added into the liquid medium respectively, and biomass, the main secondary products such as Monascus pigment, monacolin K, γ-aminobutyric acid, citrinin and changes in the metabolite profile in the fermentation broth were measured. Results: The result showed that Cu2+ (0.5 mmol/L) leads to a 1.01, 1.07 and 0.73 times increase in the yield of water-soluble red, orange and yellow pigments, respectively, and alcohol-soluble pigments increased by 2.83, 1.74 and 1.95 times, respectively. Monacolin K and citrinin increased by 1.78 and 5.53 times, respectively. The water-soluble and alcohol-soluble pigments under Zn2+ (0.5 mmol/L) increased by 93.3%, 78.6%, 57.6%, and 2.9, 1.54, and 0.54 times, respectively, monacolin K and citrinin increased by 0.92 and 6.91 times, respectively. Biomass was no changed under Mg2+(0.5 mmol/L) treatment, but the water-soluble and alcohol-soluble pigments were increased by 2.68, 2.25, 2.02-fold and 1.26, 1.23 and 1.82-fold, respectively, monacolin K increased by 51.8%. Whereas, citrinin increased by 1.79 times at the concentration of 0.25 mmol/L Mg2+. Mn2+ (0.5 mmol/L) led to increase of the yields of water-soluble and alcohol-soluble pigments by 48.3%, 29.9%, 24.8% and 131.1%, 83.6% and 49.2%, respectively, and monacolin K increased by 1.01-fold. Citrinin increased by 92.3% under the stimulation of 1 mmol/L Mn2+. Co2+ (0.5, 1 mmol/L) led to a 47.9% and 53.7% reduction of biomass, respectively. The alcohol-soluble pigments was improved by 4.07, 5.04, 2.62 times, and 3.07, 3.41, 2.70 times, respectively, citrinin decreased by 90.8% and 93.9%, respectively, with no effect on the Monacolin K synthesis. None of the above ions were detrimental to the synthesis of γ-aminobutyric acid. The metal ion chelator 8-hydroxyquinoline(20 μmol/L) was responsible for a 26.9% decrease in biomass and a 40.6%, 34.3% and 26% decrease in water-soluble pigments, respectively, and monacolin K and citrinin decreased by 56.7% and 90.1%, respectively. The spectrum (200~600 nm) scanning of fermentation broth showed that the metal ions did not change the metabolite types, but only regulated the metabolite content. Conclusion: The results suggested that metal ions not only affect the growth of M. purpureus, but also significantly regulate its main secondary metabolite profile.
  • [1]
    杨树玲, 陈冬, 孔维宝, 等. 红曲霉发酵制品中的代谢产物及其生理活性研究进[J]. 生物学通报,2019,54(9):1−5.
    [2]
    周香珍, 林书发, 何书华. 红曲药学评价研究进展[J]. 中国现代中药,2016,18(7):936−941.
    [3]
    何晓娇, 陈璨, 周月婷, 等. 高产γ-氨基丁酸低产桔霉素红曲霉(Monascusruber)突变子1047筛选与发酵特性研究[J]. 微生物学杂志,2014,34(5):38−43.
    [4]
    黄娟, 姚若一, 黄邵培, 等. 红曲霉产色素和桔霉素影响因素的研究进展[J]. 酿酒科技,2018(2):109−112.
    [5]
    李贞景, 薛意斌, 刘妍, 等. 红曲菌中桔霉素的控制策略及研究进展[J]. 食品科学,2018,39(1):263−268.
    [6]
    庄月娥, 陈华观. 高产莫纳可林K、低产桔霉素的红曲霉菌株筛选及其发酵条件优化[J]. 福建农业科技,2020(1):6−10.
    [7]
    Chiang Y M, Chang S L, Oakley B R, et al. Recent advances in awakening silent biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms[J]. Current Opinion in Chemical Biology,2011,15:137−143. doi: 10.1016/j.cbpa.2010.10.011
    [8]
    Müller R, Wink J. Future potential for anti-infectives from bacteria-how to exploit biodiversity and genomic potential[J]. International Journal of Food Microbiology,2014,304:3−13.
    [9]
    Gupta V G, Pandey A. New and future developments in microbial biotechnology and bioengineering[M]. Netherlands: Elsevier, 2019.
    [10]
    许赣荣, 顾玉梅, 吴苗叶, 等. 红曲色素的色调及发酵工艺条件对色调的影响[J]. 食品与发酵工业,2002,28(7):10−14.
    [11]
    周波, 朱明军, 吴振强, 等. 金属盐对红曲霉突变菌株代谢生成黄色素的影响[J]. 现代食品科技,2010,26(4):342−347.
    [12]
    杨晓君. 主要营养源对红曲霉产色素的影响[D]. 福州: 福建农林大学, 2011.
    [13]
    Bau Y S, Wong H C. Zinc effects on growth, pigmentation and antibacterial activity of Monascus purpureus[J]. Physiologia Plantarum,1979,46:63−67. doi: 10.1111/j.1399-3054.1979.tb03187.x
    [14]
    Lee B K, Park N H, Piao H Y, et al. Production of red pigments by Monascus purpureus in submerged culture[J]. Biotechnology and Bioprocess Engineering,2001,6(5):341−346. doi: 10.1007/BF02933003
    [15]
    杨东成, 钱学红, 黄莹琪, 等. Cu2+、Fe2+和Fe3+对红曲霉液态发酵产色素影响[J]. 中国食品添加剂,2017(4):100−102.
    [16]
    邓加聪, 杜可, 韩艳丽, 等. 红曲霉液态发酵产色素及稳定性的研究[J]. 中国调味品,2019(10):26−30.
    [17]
    贾氏臣, 赵靖, 徐德雨, 等. 统计学优化金属离子促进红曲菌固态发酵生产红曲黄色素[J]. 中国食品添加剂,2015(10):62−69.
    [18]
    朱雷. 红曲色素合成机理及红曲霉混合培养的初步研究[D]. 合肥: 安徽农业大学, 2006.
    [19]
    黄颖颖, 陆东和, 杨成龙, 等. 微量营养源对红曲霉产洛伐他汀开闭环组分的影响[J]. 福建农业学报,2015(3):286−292.
    [20]
    陈慎, 黄颖颖, 陆东和, 等. 外加营养源对红曲霉固态发酵产莫纳可林K和洛伐他汀的影响[J]. 中国食品添加剂,2017(9):102−113.
    [21]
    Lin L, Jiang L, Guo H, et al. Optimization of divalent metal cations for maximal concentration of monacolin k in Monascus M1 by response surface methodology[J]. Czech Journal of Food Sciences,2019,37(5):312−318. doi: 10.17221/74/2019-CJFS
    [22]
    Zhen Z X, Xiong X Q, Liu Y B, et al. NaCl inhibits citrinin and stimulates Monascus pigments and monacolin K production[J]. Toxins (Basel),2019,11(2):118. doi: 10.3390/toxins11020118
    [23]
    Feng Y, Shao Y, Chen F S. Monascus pigments[J]. Applied Microbiology and Biotechnology,2012,96(6):1421−40. doi: 10.1007/s00253-012-4504-3
    [24]
    万云雷, 韩红霞, 李利, 等. 低频磁场对紫色红曲菌固态发酵产γ-氨基丁酸的影响[J]. 中国农业科技导报,2015,17(5):94−98.
    [25]
    李利, 陈莎, 陈福生, 等. 红曲菌次生代谢产物生物合成途径及相关基因的研究进展[J]. 微生物学通报,2013,40(2):294−303.
    [26]
    Balakrishnan B, Karki S, Chiu S H, et al. Genetic localization and in vivo characterization of a Monascus azaphilone pigment biosynthetic gene cluster[J]. Applied Microbiology and Biotechnology,2013,97(14):6337−6345. doi: 10.1007/s00253-013-4745-9
    [27]
    Zhang J, Liu Y, Li L, et al. iTRAQ-based quantitative proteomic analysis reveals changes in metabolite biosynthesis in Monascus purpureus in response to a low-frequency magnetic field[J]. Toxins,2018,10(11):440. doi: 10.3390/toxins10110440
    [28]
    Hong J L, Wu L, Lu J Q, et al. Comparative transcriptomic analysis reveals the regulatory effects of inorganic nitrogen on the biosynthesis of Monascus pigments and citrinin[J]. Royal Society of Chemistry Advances,2020,10:5268−5282.
    [29]
    陈琳, 张充, 吕凤霞, 等. 重组谷氨酸脱羧酶大肠杆菌合成γ-氨基丁酸条件的优化[J]. 食品科学,2015,36(1):158−163.
  • Cited by

    Periodical cited type(5)

    1. 庞文倩,于蕊,李大婧,刘春菊,白冰. 紫玉米花色苷辅色配方优化及其对紫玉米品质的影响. 食品与机械. 2024(03): 196-202+216 .
    2. 邱晓坤,宿珈嘉,聂江力,李喜宏,裴毅. 黑加仑果胶酶酶解榨汁工艺优化. 食品研究与开发. 2024(15): 117-123 .
    3. 郑杰,杨敏,王楠,甄晨波. 天然大分子对花色苷的负载研究进展. 食品与发酵工业. 2022(10): 290-298 .
    4. 赵佳伟,袁杰彬,安明哲,李茂,张伟建,陆培. 黄酮类化合物对肠道微生物的影响及其机制研究进展. 酿酒科技. 2021(04): 89-95 .
    5. 曾德玉,龙安金,曾珍,黄锐,叶阳. 膨化玉米粉配方优化及冲调性分析. 食品工业. 2021(12): 147-151 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (183) PDF downloads (21) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return