Citation: | HUANG Shengnan, GAO Mengxiang, LIU Yingbao. Regulatory Effect of 5 Metal Ions on the Spectrum of Major Secondary Metabolites of Monascus purpureus [J]. Science and Technology of Food Industry, 2021, 42(10): 89−99. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080154. |
[1] |
杨树玲, 陈冬, 孔维宝, 等. 红曲霉发酵制品中的代谢产物及其生理活性研究进[J]. 生物学通报,2019,54(9):1−5.
|
[2] |
周香珍, 林书发, 何书华. 红曲药学评价研究进展[J]. 中国现代中药,2016,18(7):936−941.
|
[3] |
何晓娇, 陈璨, 周月婷, 等. 高产γ-氨基丁酸低产桔霉素红曲霉(Monascusruber)突变子1047筛选与发酵特性研究[J]. 微生物学杂志,2014,34(5):38−43.
|
[4] |
黄娟, 姚若一, 黄邵培, 等. 红曲霉产色素和桔霉素影响因素的研究进展[J]. 酿酒科技,2018(2):109−112.
|
[5] |
李贞景, 薛意斌, 刘妍, 等. 红曲菌中桔霉素的控制策略及研究进展[J]. 食品科学,2018,39(1):263−268.
|
[6] |
庄月娥, 陈华观. 高产莫纳可林K、低产桔霉素的红曲霉菌株筛选及其发酵条件优化[J]. 福建农业科技,2020(1):6−10.
|
[7] |
Chiang Y M, Chang S L, Oakley B R, et al. Recent advances in awakening silent biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms[J]. Current Opinion in Chemical Biology,2011,15:137−143. doi: 10.1016/j.cbpa.2010.10.011
|
[8] |
Müller R, Wink J. Future potential for anti-infectives from bacteria-how to exploit biodiversity and genomic potential[J]. International Journal of Food Microbiology,2014,304:3−13.
|
[9] |
Gupta V G, Pandey A. New and future developments in microbial biotechnology and bioengineering[M]. Netherlands: Elsevier, 2019.
|
[10] |
许赣荣, 顾玉梅, 吴苗叶, 等. 红曲色素的色调及发酵工艺条件对色调的影响[J]. 食品与发酵工业,2002,28(7):10−14.
|
[11] |
周波, 朱明军, 吴振强, 等. 金属盐对红曲霉突变菌株代谢生成黄色素的影响[J]. 现代食品科技,2010,26(4):342−347.
|
[12] |
杨晓君. 主要营养源对红曲霉产色素的影响[D]. 福州: 福建农林大学, 2011.
|
[13] |
Bau Y S, Wong H C. Zinc effects on growth, pigmentation and antibacterial activity of Monascus purpureus[J]. Physiologia Plantarum,1979,46:63−67. doi: 10.1111/j.1399-3054.1979.tb03187.x
|
[14] |
Lee B K, Park N H, Piao H Y, et al. Production of red pigments by Monascus purpureus in submerged culture[J]. Biotechnology and Bioprocess Engineering,2001,6(5):341−346. doi: 10.1007/BF02933003
|
[15] |
杨东成, 钱学红, 黄莹琪, 等. Cu2+、Fe2+和Fe3+对红曲霉液态发酵产色素影响[J]. 中国食品添加剂,2017(4):100−102.
|
[16] |
邓加聪, 杜可, 韩艳丽, 等. 红曲霉液态发酵产色素及稳定性的研究[J]. 中国调味品,2019(10):26−30.
|
[17] |
贾氏臣, 赵靖, 徐德雨, 等. 统计学优化金属离子促进红曲菌固态发酵生产红曲黄色素[J]. 中国食品添加剂,2015(10):62−69.
|
[18] |
朱雷. 红曲色素合成机理及红曲霉混合培养的初步研究[D]. 合肥: 安徽农业大学, 2006.
|
[19] |
黄颖颖, 陆东和, 杨成龙, 等. 微量营养源对红曲霉产洛伐他汀开闭环组分的影响[J]. 福建农业学报,2015(3):286−292.
|
[20] |
陈慎, 黄颖颖, 陆东和, 等. 外加营养源对红曲霉固态发酵产莫纳可林K和洛伐他汀的影响[J]. 中国食品添加剂,2017(9):102−113.
|
[21] |
Lin L, Jiang L, Guo H, et al. Optimization of divalent metal cations for maximal concentration of monacolin k in Monascus M1 by response surface methodology[J]. Czech Journal of Food Sciences,2019,37(5):312−318. doi: 10.17221/74/2019-CJFS
|
[22] |
Zhen Z X, Xiong X Q, Liu Y B, et al. NaCl inhibits citrinin and stimulates Monascus pigments and monacolin K production[J]. Toxins (Basel),2019,11(2):118. doi: 10.3390/toxins11020118
|
[23] |
Feng Y, Shao Y, Chen F S. Monascus pigments[J]. Applied Microbiology and Biotechnology,2012,96(6):1421−40. doi: 10.1007/s00253-012-4504-3
|
[24] |
万云雷, 韩红霞, 李利, 等. 低频磁场对紫色红曲菌固态发酵产γ-氨基丁酸的影响[J]. 中国农业科技导报,2015,17(5):94−98.
|
[25] |
李利, 陈莎, 陈福生, 等. 红曲菌次生代谢产物生物合成途径及相关基因的研究进展[J]. 微生物学通报,2013,40(2):294−303.
|
[26] |
Balakrishnan B, Karki S, Chiu S H, et al. Genetic localization and in vivo characterization of a Monascus azaphilone pigment biosynthetic gene cluster[J]. Applied Microbiology and Biotechnology,2013,97(14):6337−6345. doi: 10.1007/s00253-013-4745-9
|
[27] |
Zhang J, Liu Y, Li L, et al. iTRAQ-based quantitative proteomic analysis reveals changes in metabolite biosynthesis in Monascus purpureus in response to a low-frequency magnetic field[J]. Toxins,2018,10(11):440. doi: 10.3390/toxins10110440
|
[28] |
Hong J L, Wu L, Lu J Q, et al. Comparative transcriptomic analysis reveals the regulatory effects of inorganic nitrogen on the biosynthesis of Monascus pigments and citrinin[J]. Royal Society of Chemistry Advances,2020,10:5268−5282.
|
[29] |
陈琳, 张充, 吕凤霞, 等. 重组谷氨酸脱羧酶大肠杆菌合成γ-氨基丁酸条件的优化[J]. 食品科学,2015,36(1):158−163.
|