Citation: | LU Xuechun, XIN Jiaying, ZHANG Shuai, et al. Research Progress of Lipase Immobilization and Its Application in Food Field[J]. Science and Technology of Food Industry, 2021, 42(17): 423−431. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080096. |
[1] |
Schoemaker, Mink, Wubbolts. Dispelling the myths-biocatalysis in industrial synthesis[J]. Science,2003,299(5613):1694−1967. doi: 10.1126/science.1079237
|
[2] |
Koeller, Wong. Enzymes for chemical synthesis[J]. Nature,2001,409:232−240. doi: 10.1038/35051706
|
[3] |
Kasche V. Mechanism and yields in enzyme catalyzed equillbrium and kinetically controlled synthesis of p-lactam antibiotics, peptides and other condensation products[J]. Enzyme & Microbial Technology,1986,8(1):4−16.
|
[4] |
隋颖, 张立平. 吸附法固定化脂肪酶研究进展[J]. 山东化工,2013,42(10):46−47. [Sui Y, Zhang L P. The research advance of adsorption-based lipase immobilization[J]. Shandong Chemical Industry,2013,42(10):46−47.
|
[5] |
王诗路, 赵国明, 刘辉, 等. 固定化脂肪酶催化合成癸二酸二(2-乙基己基)酯[J]. 化学反应工程与工艺,2012,28(4):330−334. [Wang S L, Zhao G H, Liu H, et al. Synthesis of bis (2-ethylhexyl) sebacate catalyzed by immobilized lipase[J]. Chemical Reaction Engineering and Process,2012,28(4):330−334.
|
[6] |
李阳, 韦伟, 曹茜, 等. 脂肪酶固定化新材料[J]. 中国粮油学报,2014,29(7):122−128. [Li Y, Wei W, Cao Q, et al. New material immobilized by lipase[J]. Journal of the Chinese Cereals and Oils Association,2014,29(7):122−128.
|
[7] |
Cao S L, Huang Y M, Li X H, et al. Preparation and characterization of immobilized from Pseudomonas cepacia onto magneti cellulose nanocrystals[J]. Scientific Reports,2016,6:1−12. doi: 10.1038/s41598-016-0001-8
|
[8] |
Salihu, Alamm. Solvent tolerant lipases: A review[J]. Process Biochemistry,2014,50(1):86−96.
|
[9] |
夏高辉. 磁性金属一生物分子框架材料固定化黑曲霉脂肪酶及其应用研究[D]. 广州: 华南理工大学, 2017.
Xia G H. Study on the immobilization of Aspergillus niger lipase onto magnetic metal-biomolecule-frameworks (BioMOFs) and its application[D]. Guangzhou: Guangzhou South China University of Technology, 2017.
|
[10] |
王智, 冯雁,等. 微量水对有机溶剂中酶催化的影响与控制方法[J]. 自然科学进展,2002,12:130−133. [Wang Z, Feng Y. Effect of trace water on enzyme catalysis in organic solvents and its control method[J]. Progress in Natural Science,2002,12:130−133. doi: 10.3321/j.issn:1002-008X.2002.02.003
|
[11] |
Manecke, Singer. Uber einige chemische umsetzungen am polyaminostyrol[J]. Makromolekulare Chemie,1960,37:119−142. doi: 10.1002/macp.1960.020370112
|
[12] |
侯晨. 磁性酚类仿生粘附复合材料的制备及固定化脂肪酶研究[D]. 兰州: 兰州大学, 2016.
Hou C. Preparation of magnetic phenolic biomimetic adhesive composite materials for lipase immobilization[D]. Lanzhou: Lanzhou University, 2016.
|
[13] |
Liu J, Ma R T, Shi Y P. Recent advances on support materials for lipase immobilization and applicability as biocatalysts in inhibitors screening methods-A review[J]. Analytica Chimica Acta,2020,1101:9−22. doi: 10.1016/j.aca.2019.11.073
|
[14] |
Sagiroglu, Ozcan, H M. Production of ricinoleic acid from castor oil by immobilised lipases[J]. Preparative Biochemistry and Biotechnology,2009,39(2):170−182. doi: 10.1080/10826060902800841
|
[15] |
刘媛媛, 郑永杰, 田景芝. 改性硅藻土对脂肪酶固定化研究[J]. 化学工程师,2014,28(3):14−17. [Liu Y Y, Zheng Y J, Tian J Z. Study on modified diatomite for lipase immobilization[J]. Chemical Engineer,2014,28(3):14−17.
|
[16] |
Zhao M, Zhang X M, Hui D C. Rational synthesis of novel recyclable Fe3O4@MOF nanocomposites for enzymatic digestion[J]. Chemical Communications,2015,51(38):8116−8119. doi: 10.1039/C5CC01908G
|
[17] |
黄静, 梁密. 改性蛭石吸附-包埋法固定化脂肪酶的研究[J]. 食品与发酵工业,2020,46(14):103−107. [Huang J, Liang M. Lipase immobilization by modified vermiculite adsorption-embedding method[J]. Food and Fermentation Industries,2020,46(14):103−107.
|
[18] |
Shuler L M, Kargi F. Bioprocess engineering basic concepts[M]. NJ, Prentice Hall, 2002: 57−104.
|
[19] |
Shi J, Zhang S H, Wang X L, et al. Preparation and enzymatic application of flower-like hybrid microcapsules through a biomimetic mineralization approach[J]. Journal of Materials Chemistry B,2014,2(27):4289−4296. doi: 10.1039/c4tb00507d
|
[20] |
Okada T, Mprrissey M T. Production of n-3 polyunsaturated fatty acid concentrate from sardine oilby immobilized Candida rugosalipase[J]. Food Science,2008,73(3):146−150. doi: 10.1111/j.1750-3841.2008.00661.x
|
[21] |
Zou B, Chu Y H, Xia J J, et al. Immobilization of lipase by ionic liquid-modified mesoporous SiO2 adsorption and calcium alginate-embedding method[J]. Applied Biochemistry and Biotechnology,2017.
|
[22] |
王宇. 酶固定化技术的研究进展[J]. 基层医学论坛,2013,17(23):3105, 3109. [Wang Y. Research progress of enzyme immobilization technology[J]. The Medical Forum,2013,17(23):3105, 3109.
|
[23] |
Mateo C, Palomo J M, Langen L M, et al. A new, mild cross-linking methodology to prepare cross-linked enzyme aggregates[J]. Biotechnology and Bioengineeiing,2004,861(3):273−276.
|
[24] |
林海蛟, 张继福, 张云, 等. 基于大孔吸附树脂先交联后吸附法固定化脂肪酶[J]. 广西师范大学学报,2020,38(4):101−108. [Lin H J, Zhang J F, Zhang Y, et al. Immobilization of lipase by crosslinking and then adsorption method using macroporous adsorbent resin[J]. Journal of Guangxi Normal University(Natural Science Edition),2020,38(4):101−108.
|
[25] |
王慧玲, 赵燕, 李建科. 戊二醛交联法固定扩展青霉脂肪酶的研究[J]. 食品科技,2012(6):27−31. [Wang H L, Zhao Y, Li J K. The activity of Penicilium expansum lipase immobilized by cross-linking with glutaraldehyde[J]. Food Science and Technology,2012(6):27−31.
|
[26] |
Liu X, Chen X, Li X, et al. Preparation of superparamagnetic sodium alginate nanoparticles for covalent immobilization of Candida rugosa lipase[J]. Journal of Nanoparticle Research, 2012, 14(3): 763−769.
|
[27] |
Gloria F L, Betancor I, Carrascosa, et al. Modulation of the selectivity of immobilized lipases by chemical and physical modifications: Releaseofomega-3 fatty acids from fish oil[J]. American Oil Chemistry Society,2012,89:97−102. doi: 10.1007/s11746-011-1885-x
|
[28] |
栗俊田. 脂肪酶固定化载体材料研究进展[J]. 广东化工,2017,44(22):90−93. [Li J T. Research progress of the carrier for immobilization lipase[J]. Guangdong Chemical Industry,2017,44(22):90−93. doi: 10.3969/j.issn.1007-1865.2017.22.040
|
[29] |
Jin W B, Xu Y, Yu X. Improved catalytic performance of lipase under non-aqueous conditions by entrapment into alkyl-functionalized mesoporous silica[J]. New Journal of Chemistry,2018,43(1):364−370.
|
[30] |
曹婕, 董华平. 壳聚糖/膨润土固定化脂肪酶水解橄榄油的研究[J]. 绍兴文理学院学报(自然科学),2016,2:77−81.
|
[31] |
李笑迎, 白文静, 陶凯, 等. 大孔/介孔多级孔SiO2的制备及其在固定化脂肪酶中的应用[J]. 材料导报,2018,32(10):1695−1700, 1715. [Li X Y, Bai W J, Tao K, et al. Preparation of hierarchical macroporous/mesoporous silica and its application in lipase immobilization[J]. Materials Reports,2018,32(10):1695−1700, 1715. doi: 10.11896/j.issn.1005-023X.2018.10.024
|
[32] |
Mohadese, Maryam, H Zohreh, et al. Preparation of highly reusable biocatalysts by immobilization of lipases on epox-functionalized silica for production of biodiesel from canola oil[J]. Biochemical Engineering Journal,2015,101:23−31. doi: 10.1016/j.bej.2015.04.020
|
[33] |
Shi J F, Wang X L, Zhang L, et al. Facile one-pot preparation of chitosan/calcium pyrophosphate hybrid microflowers[J]. ACS Applied Materials & Interfaces, 2014, 6(16): 14522−14532.
|
[34] |
Hyun J K, Saerom P, Sung H K, et al. Biocompatible cellulose nanocrystals as supports to immobilize lipase[J]. Journal of Molecular Catalysis B: Enzymatic,2015,122:170−178. doi: 10.1016/j.molcatb.2015.09.007
|
[35] |
Nadia L, Ilizandra A F, Cindy V, et al. In situ immobilization of Candida antarctica B lipase in polyurethane foam support[J]. Journal of Molecular Catalysis B: Enzymatic,2016,124:52−61. doi: 10.1016/j.molcatb.2015.12.003
|
[36] |
徐珊, 李任强, 张继福, 等. 乙二醇缩水甘油醚交联海藻酸钠-羧甲基纤维素钠固定化脂肪酶[J]. 中国生物工程杂志,2017,33(12):77−83. [Xu S, Li R Q, Zhang J F, et al. Ethylene glycol diglycidyl ether cross-linked with sodium alginate-carboxymethyl cellulose to immobilize lipase[J]. China Biotechnology,2017,33(12):77−83.
|
[37] |
卢家伟, 李由然, 石贵阳. 聚乙烯亚胺改性聚丙烯腈中空膜固定脂肪酶[J]. 分子催化,2018,32(1):79−89. [Lu J W, Li Y R, Shi G Y. The modification of polyacrylonitrile hollow membrane by polyethyleneimine to immobilize lipase[J]. Journal of Molecular Catalysis(China),2018,32(1):79−89.
|
[38] |
虞凤慧, 马韵升, 刘圣鹏, 等. 海藻酸钠与羧甲基纤维素钠固定化高温碱性脂肪酶[J]. 中国酿造,2015,5:78−81. [Yu F H, Ma Y S, Liu S P, et al. Immobilization of high-temperature alkaline lipase by sodium alginate and carboxymethyl cellulose sodium[J]. China Brewing,2015,5:78−81. doi: 10.11882/j.issn.0254-5071.2015.12.017
|
[39] |
Cheng W J, Li Y, Li X Y, et al. Preparation and characterization of PDA/SiO2 nanofilm constructed macroporous monolith and its application in lipase immobilization[J]. Journal of the Taiwan Institute of Chemical Engineers,2019:104.
|
[40] |
白文静, 李云曹, 大丽, 等. PDA/SiO2大孔复合材料固定化荧光假单胞菌脂肪酶[J]. 无机化学学报,2016,11:1973−1980. [Bai W J, Li Y C, Da L, et al. Immobilization of Pseudomonas fluorescens lipase on PDA/SiO2 macroporous composite[J]. Chinese Journal of Inorganic Chemistry,2016,11:1973−1980.
|
[41] |
黄孟云. 磁性纳米复合材料固定化脂肪酶的制备及其催化大豆油酯交换[D]. 郑州: 河南工业大学, 2018.
Huang M Y. Preparation of immobilized lipase on the magnetic nanocomposites and its catalytic performance of transesterification of soybean oil[D]. Zhengzhou: Henan University of Technology, 2018.
|
[42] |
刘磊磊. 磁性Fe3O4/PS基纳米材料的制备及其固定脂肪酶研究[D]. 芜湖: 安徽工程大学, 2017.
Liu L L. Study on preparation of magnetic Fe3O4/PS based nanoparticles and their application in lipase immobilizatioN[D]. Wuhu: Anhui University of Technology, 2017.
|
[43] |
韩秀丽, 谷鹏举, 方书起, 等. Fe3O4磁性壳聚糖微球固定化脂肪酶研究[J]. 郑州大学学报,2018,39(4):30−34. [Han X L, Gu P J, Fang S Q, et al. Study on immobilization of lipase with Fe3O4 magnetic chitosan microspheres[J]. Journal of Zhengzhou University(Engineering Science),2018,39(4):30−34.
|
[44] |
Liang K, Riccò R, Doherty C, et al. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules[J]. Nature Communications,2015,6:7240. doi: 10.1038/ncomms8240
|
[45] |
Jungbae Kim, Jay W Grate, Ping Wang. Nanostructures for enzyme stabilization[J]. Chemical Engineering Science,2005,61(3):1017−1026.
|
[46] |
Taek Hwang, Man Bock. Enzyme stabilization by nano/microsized hybrid materials[J]. Engineering in Life Sciences,2013,13(1):49−61. doi: 10.1002/elsc.201100225
|
[47] |
Kim J B, Grate J W, Wang P. Nanobiocatalysis and its potential applications[J]. Trends Biotechnol,2008,26:639−646. doi: 10.1016/j.tibtech.2008.07.009
|
[48] |
Liu X H, Fang Y C, Yang X. Electrospun epoxy-based nanofibrous membrane containing biocompatible feather polypeptide for highly stable and active covalent immobilization of lipase[J]. Colloids and Surfaces B: Biointerfaces,2018,166:277−285. doi: 10.1016/j.colsurfb.2018.03.037
|
[49] |
Li K, Wang J, Yao J H, et al. Carbon nanotube-lipase hybrid nanoflowers with enhanced enzyme activity and enantioselectivity[J]. Journal of Biotechnology,2018:281.
|
[50] |
Zheng M, Wang S, Xiang X, et al. Facile preparation of magnetic carbon nanotubes-immobilized lipase for highly efficient synthesis of 1, 3-dioleoyl-2-palmitoylglycerol-rich human milk fat substitutes[J]. Food Chemistry,2017,228(1):476−483.
|
[51] |
Işik Ceyhun, Gökmen Arabaci, Yasemin Ispirli Doğaç, et al. Synthesis and characterization of electrospun PVA/Zn2+ metal composite nanofibers for lipase immobilization with effective thermal, pH stabilities and reusability[J]. Materials Science & Engineering C,2019:99.
|
[52] |
Jovana Trbojević, Dušan Veličković, Aleksandra Dimitrijević, et al. Design of biocompatible immobilized Candida rugosa lipase with potential application in food industry[J]. Journal of the Science of Food and Agriculture,2016,96(12):4281−4287. doi: 10.1002/jsfa.7641
|
[53] |
Yushkova Ekaterina, Nazarova Elena, Matyuhina Anna, et al. Application of immobilized enzymes in food industry[J]. Journal of Agricultural and Food Chemistry,2019,67(42):11553−11567. doi: 10.1021/acs.jafc.9b04385
|
[54] |
Garlapati Vijay, Banerjee Rintu. Solvent-free synthesis of flavour esters through immobilized lipase mediated transesterification[J]. Enzyme Research,2013,2013:367410.
|
[55] |
Ghamgui Hanen, Maha Karra-Chaâbouni. Production of isoamyl acetate with immobilized Staphylococcus simulans lipase in a solvent-free system[J]. Enzyme and Microbial Technology,2005,38(6):788−794.
|
[56] |
Matte C R, Bussamara R, Dupont J, et al. Immobilization of thermo-myces lanuginosus lipase by different techniques on immobead 150 support: Characterization and applications[J]. Applied Biochemistry & Biotechnology,2014,172(5):2507−2520.
|
[57] |
魏雪, 孙丽超, 李淑英, 等. 脂肪酶的固定化及其在食品领域的应用[J]. 生物技术通报,2016,32(11):59−64. [Wei X, Sun L C, Li S Y, et al. Immobilization of lipase and its application in food industry[J]. Biotechnology Bulletin,2016,32(11):59−64.
|
[58] |
Paula Ariela V, Gisele F M Nunes, Osrio Natlia, et al. Continuous enzymatic interesterification of milkfat with soybean oil produces a highly spreadable product rich in polyunsaturated fatty acids[J]. European Journal of Lipid Science and Technology,2015,117(5):608−619. doi: 10.1002/ejlt.201400316
|
[59] |
Tecelão Carla, Joana Silva, Eric Dubreucq, et al. Production of human milk fat substitutes enriched in omega-3 polyunsaturated fatty acids using immobilized commercial lipases and Candida parapsilosis lipase/acyltransferase[J]. Journal of Molecular Catalysis B: Enzymatic,2010,65(1):122−127.
|
[60] |
Santibáñez, Luciana, Wilson, et al. Synthesis of ascorbyl palmitate with immobilized lipase from Pseudomonas stutzeri[J]. JAOCS, Journal of the American Oil Chemists' Society,2014,91(3):405−410. doi: 10.1007/s11746-013-2378-x
|
[61] |
Sun Wenjing, Zhao Hongxia, Cui Fengjie, et al. D-isoascorbyl palmitate: Lipase-catalyzed synthesis, structural characterization and process optimization using response surface methodology[J]. Chemistry Central Journal,2013,7(1):114. doi: 10.1186/1752-153X-7-114
|
[62] |
汤鲁宏, 张浩. 催化合成L-抗坏血酸棕榈酸酯的反应媒体和脂肪酶[J]. 无锡轻工大学学报,2000,19(2):157−159. [Tang L H, Zhang H. Selection of suitable reaction media and lipase: Synthesize of L ascorbyl palmitate catalyzed by lipase[J]. Journal of Food Science and Biotechnology,2000,19(2):157−159.
|
[63] |
Zaidan, Mohd Basyaruddin, Abdul Rahman, et al. Biocatalytic production of lactose ester catalysed by mica-based immobilised lipase[J]. Food Chemistry,2012,131(1):199−205. doi: 10.1016/j.foodchem.2011.08.060
|
[64] |
Adnani Atena, Mahiran Basri, Emilia Abdul Malek, et al. Optimization of lipase-catalyzed synthesis of xylitol ester by taguchi robust design method[J]. Industrial Crops & Products,2009,31(2):350−356.
|
[65] |
Kapoor M, Gupta M N. Obtaining monoglycerides by esterification of glycerol with palmitic acid using some high activity preparations of Candida antarctica lipase B[J]. Process Biochemistry,2012,47(3):503−508. doi: 10.1016/j.procbio.2011.12.009
|
[66] |
Dutt K, Gupta P, Rawat I, et al. Production of 1, 3 regiospecific lipase from Bacillus sp. RK-3: Its potential to synthesize cocoa butter substitute[J]. Malaysian Journal of Microbiology,2011:41−48.
|
[67] |
龚欣, 谭志强, 郑建仙. Lipozyme TLIM 脂肪酶催化制备低热量乌桕类可可脂工艺的研究[J]. 食品工业,2014,35(1):48−50. [Gong X, Tan Z Q, Zheng J X. Preparation technology of low-calorie Chinese tallow cocoa butter equivalent catalyzed by lipozyme TLIM lipase[J]. The Food Industry,2014,35(1):48−50.
|
[68] |
胡芳, 韦富香, 王志成, 等. 基于响应面的酶法酯交换制备乌桕脂油类可可脂[J]. 食品研究与开发,2010,31(3):94−97. [Hu F, Wei F X, Wang Z C, et al. Enzymatic preparation of cocoa butter equivalen (tCBE) from Chinese tallow oil using response surface methodology (RSM)[J]. Food Research and Development,2010,31(3):94−97. doi: 10.3969/j.issn.1005-6521.2010.03.028
|
[1] | AN Yu, ZHOU Xinyu, WANG Ying, ZUO Zhaohang, SUN Wei, ZHANG Naidan, PANG Weiqiao. Effects of Ultrasound Treatment on Physicochemical Properties and Antioxidant Function of Adzuki Bean Protein[J]. Science and Technology of Food Industry, 2022, 43(16): 105-110. DOI: 10.13386/j.issn1002-0306.2022010266 |
[2] | WANG Yun-xiang, GU Si-tong, ZUO Jin-hua, GAO Li-pu, WANG Qing, JIANG Ai-li. Effect of Salicylic Acid Treatment on Postharvest Quality and Antioxidant Capacity of Summer Squash[J]. Science and Technology of Food Industry, 2018, 39(19): 286-290,308. DOI: 10.13386/j.issn1002-0306.2018.19.050 |
[3] | FANG Fang. Effect of Steam Explosion Treatment on Amaranth Seeds Antioxidant Capacity[J]. Science and Technology of Food Industry, 2018, 39(15): 21-25,30. DOI: 10.13386/j.issn1002-0306.2018.15.005 |
[4] | GU Wei, XU Yong- jian. Preparation of Hippocampus ACE inhibitory peptide and determination of antioxidant capacity[J]. Science and Technology of Food Industry, 2016, (05): 201-206. DOI: 10.13386/j.issn1002-0306.2016.05.031 |
[5] | XU Gui-hua, LIU Dong-hong, LI Bo, CHEN Jian-chu, YE Xing-qian. Study on composition of flavonoids and antioxidant capacity of citrus peels[J]. Science and Technology of Food Industry, 2015, (16): 114-117. DOI: 10.13386/j.issn1002-0306.2015.16.015 |
[6] | MA Cheng-yuan, HAN Yan-qing, XU Bao-cai, LI Xing-min, DAI Rui-tong. Effect of tomato paste on sensory properties and antioxidant capacity of western brined ham[J]. Science and Technology of Food Industry, 2015, (10): 148-152. DOI: 10.13386/j.issn1002-0306.2015.10.022 |
[7] | XIE Li-yuan, GAN Bing-cheng, PENG Wei-hong, HUANG Zhong-qian, TAN Wei. Analysis of antioxidant substances and antioxidant capacity of submerged fermentation product of Ganoderma Lucidum[J]. Science and Technology of Food Industry, 2015, (02): 105-109. DOI: 10.13386/j.issn1002-0306.2015.02.014 |
[8] | MA Jin-jin, WANG Xiao-yu, ZHANG Juan, SONG Xi-zi, LI Xiao-jiao, SUN Xiang-yu, TIAN Cheng-rui. Analysis and comparison of polyphenols composition and antioxidant capacity in three kinds of vinegar[J]. Science and Technology of Food Industry, 2014, (24): 128-131. DOI: 10.13386/j.issn1002-0306.2014.24.018 |
[9] | HU Tai-chao, TAO Rong-shan, LI Qing-jie, ZHANG Jing, SU Feng-yan, WANG Yan-mei, WANG Quan-kai. Study on the preparation process and the antioxidant capacity of deer blood polypeptide[J]. Science and Technology of Food Industry, 2014, (17): 107-110. DOI: 10.13386/j.issn1002-0306.2014.17.014 |
[10] | NI Rong-rong, ZUO Qian, LI Wan-ping, ZHU Jian-jin. Effect of tea polyphenols on lactation performance and antioxidant capacity in rats[J]. Science and Technology of Food Industry, 2014, (16): 337-341. DOI: 10.13386/j.issn1002-0306.2014.16.065 |
1. |
吴思邈,蒋浩源,安莹,张丽冕,李彭. L-赖氨酸功能化纤维素对模拟苹果汁中铅的吸附特性研究. 食品工业科技. 2024(08): 97-109 .
![]() | |
2. |
张琳,马悦,张悦,陆辉杰,陈子琨,刘宏生. 科教融汇及思政育人新路径——食品包装技术课程创新实验设计. 农业工程. 2024(06): 133-137 .
![]() | |
3. |
唐蓉萍,李秀壮,朱一剑,吴贝贝,李树龙. 玉米秸秆高值化利用研究进展. 南方农业. 2024(21): 143-146 .
![]() | |
4. |
朱颍,李力,孙冰华,马森. 淀粉可食性膜性能的研究进展. 粮食科技与经济. 2024(06): 94-102 .
![]() | |
5. |
曾仪雯,周恩弛,黄高瓴,冯静秋,李丹,张春红. 可食性膜在食品保鲜中的应用现状及研究进展. 保鲜与加工. 2023(04): 62-67 .
![]() | |
6. |
任晚霞,宋亭,张丽媛. 纳米纤维素-淀粉膜对草莓保鲜效果的影响. 中国食品添加剂. 2023(11): 6-11 .
![]() |