LU Xuechun, XIN Jiaying, ZHANG Shuai, et al. Research Progress of Lipase Immobilization and Its Application in Food Field[J]. Science and Technology of Food Industry, 2021, 42(17): 423−431. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080096.
Citation: LU Xuechun, XIN Jiaying, ZHANG Shuai, et al. Research Progress of Lipase Immobilization and Its Application in Food Field[J]. Science and Technology of Food Industry, 2021, 42(17): 423−431. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080096.

Research Progress of Lipase Immobilization and Its Application in Food Field

More Information
  • Received Date: August 12, 2020
  • Available Online: July 03, 2021
  • As a green biocatalyst, lipase is widely used in food and other industrial fields. However, lipase structure is easily to be destroyed and which results in the poor stability. The immobilization of lipase is the key technology to improve the stability and reutilization rate of lipase. The continuous emergence of new materials in recent years has brought opportunities for the immobilization of lipases. Since lipase is a special enzyme that acts on the oil-water interface, the physical and chemical properties of the immobilized material will directly change the catalytic properties of the immobilized enzyme and improve the enzyme activity, selectivity and stability. This article reviews the materials and methods for immobilizing lipase in recent years, and their applications in the field of food processing, and looks forward to the development prospects of immobilized lipase.
  • [1]
    Schoemaker, Mink, Wubbolts. Dispelling the myths-biocatalysis in industrial synthesis[J]. Science,2003,299(5613):1694−1967. doi: 10.1126/science.1079237
    [2]
    Koeller, Wong. Enzymes for chemical synthesis[J]. Nature,2001,409:232−240. doi: 10.1038/35051706
    [3]
    Kasche V. Mechanism and yields in enzyme catalyzed equillbrium and kinetically controlled synthesis of p-lactam antibiotics, peptides and other condensation products[J]. Enzyme & Microbial Technology,1986,8(1):4−16.
    [4]
    隋颖, 张立平. 吸附法固定化脂肪酶研究进展[J]. 山东化工,2013,42(10):46−47. [Sui Y, Zhang L P. The research advance of adsorption-based lipase immobilization[J]. Shandong Chemical Industry,2013,42(10):46−47.
    [5]
    王诗路, 赵国明, 刘辉, 等. 固定化脂肪酶催化合成癸二酸二(2-乙基己基)酯[J]. 化学反应工程与工艺,2012,28(4):330−334. [Wang S L, Zhao G H, Liu H, et al. Synthesis of bis (2-ethylhexyl) sebacate catalyzed by immobilized lipase[J]. Chemical Reaction Engineering and Process,2012,28(4):330−334.
    [6]
    李阳, 韦伟, 曹茜, 等. 脂肪酶固定化新材料[J]. 中国粮油学报,2014,29(7):122−128. [Li Y, Wei W, Cao Q, et al. New material immobilized by lipase[J]. Journal of the Chinese Cereals and Oils Association,2014,29(7):122−128.
    [7]
    Cao S L, Huang Y M, Li X H, et al. Preparation and characterization of immobilized from Pseudomonas cepacia onto magneti cellulose nanocrystals[J]. Scientific Reports,2016,6:1−12. doi: 10.1038/s41598-016-0001-8
    [8]
    Salihu, Alamm. Solvent tolerant lipases: A review[J]. Process Biochemistry,2014,50(1):86−96.
    [9]
    夏高辉. 磁性金属一生物分子框架材料固定化黑曲霉脂肪酶及其应用研究[D]. 广州: 华南理工大学, 2017.

    Xia G H. Study on the immobilization of Aspergillus niger lipase onto magnetic metal-biomolecule-frameworks (BioMOFs) and its application[D]. Guangzhou: Guangzhou South China University of Technology, 2017.
    [10]
    王智, 冯雁,等. 微量水对有机溶剂中酶催化的影响与控制方法[J]. 自然科学进展,2002,12:130−133. [Wang Z, Feng Y. Effect of trace water on enzyme catalysis in organic solvents and its control method[J]. Progress in Natural Science,2002,12:130−133. doi: 10.3321/j.issn:1002-008X.2002.02.003
    [11]
    Manecke, Singer. Uber einige chemische umsetzungen am polyaminostyrol[J]. Makromolekulare Chemie,1960,37:119−142. doi: 10.1002/macp.1960.020370112
    [12]
    侯晨. 磁性酚类仿生粘附复合材料的制备及固定化脂肪酶研究[D]. 兰州: 兰州大学, 2016.

    Hou C. Preparation of magnetic phenolic biomimetic adhesive composite materials for lipase immobilization[D]. Lanzhou: Lanzhou University, 2016.
    [13]
    Liu J, Ma R T, Shi Y P. Recent advances on support materials for lipase immobilization and applicability as biocatalysts in inhibitors screening methods-A review[J]. Analytica Chimica Acta,2020,1101:9−22. doi: 10.1016/j.aca.2019.11.073
    [14]
    Sagiroglu, Ozcan, H M. Production of ricinoleic acid from castor oil by immobilised lipases[J]. Preparative Biochemistry and Biotechnology,2009,39(2):170−182. doi: 10.1080/10826060902800841
    [15]
    刘媛媛, 郑永杰, 田景芝. 改性硅藻土对脂肪酶固定化研究[J]. 化学工程师,2014,28(3):14−17. [Liu Y Y, Zheng Y J, Tian J Z. Study on modified diatomite for lipase immobilization[J]. Chemical Engineer,2014,28(3):14−17.
    [16]
    Zhao M, Zhang X M, Hui D C. Rational synthesis of novel recyclable Fe3O4@MOF nanocomposites for enzymatic digestion[J]. Chemical Communications,2015,51(38):8116−8119. doi: 10.1039/C5CC01908G
    [17]
    黄静, 梁密. 改性蛭石吸附-包埋法固定化脂肪酶的研究[J]. 食品与发酵工业,2020,46(14):103−107. [Huang J, Liang M. Lipase immobilization by modified vermiculite adsorption-embedding method[J]. Food and Fermentation Industries,2020,46(14):103−107.
    [18]
    Shuler L M, Kargi F. Bioprocess engineering basic concepts[M]. NJ, Prentice Hall, 2002: 57−104.
    [19]
    Shi J, Zhang S H, Wang X L, et al. Preparation and enzymatic application of flower-like hybrid microcapsules through a biomimetic mineralization approach[J]. Journal of Materials Chemistry B,2014,2(27):4289−4296. doi: 10.1039/c4tb00507d
    [20]
    Okada T, Mprrissey M T. Production of n-3 polyunsaturated fatty acid concentrate from sardine oilby immobilized Candida rugosalipase[J]. Food Science,2008,73(3):146−150. doi: 10.1111/j.1750-3841.2008.00661.x
    [21]
    Zou B, Chu Y H, Xia J J, et al. Immobilization of lipase by ionic liquid-modified mesoporous SiO2 adsorption and calcium alginate-embedding method[J]. Applied Biochemistry and Biotechnology,2017.
    [22]
    王宇. 酶固定化技术的研究进展[J]. 基层医学论坛,2013,17(23):3105, 3109. [Wang Y. Research progress of enzyme immobilization technology[J]. The Medical Forum,2013,17(23):3105, 3109.
    [23]
    Mateo C, Palomo J M, Langen L M, et al. A new, mild cross-linking methodology to prepare cross-linked enzyme aggregates[J]. Biotechnology and Bioengineeiing,2004,861(3):273−276.
    [24]
    林海蛟, 张继福, 张云, 等. 基于大孔吸附树脂先交联后吸附法固定化脂肪酶[J]. 广西师范大学学报,2020,38(4):101−108. [Lin H J, Zhang J F, Zhang Y, et al. Immobilization of lipase by crosslinking and then adsorption method using macroporous adsorbent resin[J]. Journal of Guangxi Normal University(Natural Science Edition),2020,38(4):101−108.
    [25]
    王慧玲, 赵燕, 李建科. 戊二醛交联法固定扩展青霉脂肪酶的研究[J]. 食品科技,2012(6):27−31. [Wang H L, Zhao Y, Li J K. The activity of Penicilium expansum lipase immobilized by cross-linking with glutaraldehyde[J]. Food Science and Technology,2012(6):27−31.
    [26]
    Liu X, Chen X, Li X, et al. Preparation of superparamagnetic sodium alginate nanoparticles for covalent immobilization of Candida rugosa lipase[J]. Journal of Nanoparticle Research, 2012, 14(3): 763−769.
    [27]
    Gloria F L, Betancor I, Carrascosa, et al. Modulation of the selectivity of immobilized lipases by chemical and physical modifications: Releaseofomega-3 fatty acids from fish oil[J]. American Oil Chemistry Society,2012,89:97−102. doi: 10.1007/s11746-011-1885-x
    [28]
    栗俊田. 脂肪酶固定化载体材料研究进展[J]. 广东化工,2017,44(22):90−93. [Li J T. Research progress of the carrier for immobilization lipase[J]. Guangdong Chemical Industry,2017,44(22):90−93. doi: 10.3969/j.issn.1007-1865.2017.22.040
    [29]
    Jin W B, Xu Y, Yu X. Improved catalytic performance of lipase under non-aqueous conditions by entrapment into alkyl-functionalized mesoporous silica[J]. New Journal of Chemistry,2018,43(1):364−370.
    [30]
    曹婕, 董华平. 壳聚糖/膨润土固定化脂肪酶水解橄榄油的研究[J]. 绍兴文理学院学报(自然科学),2016,2:77−81.
    [31]
    李笑迎, 白文静, 陶凯, 等. 大孔/介孔多级孔SiO2的制备及其在固定化脂肪酶中的应用[J]. 材料导报,2018,32(10):1695−1700, 1715. [Li X Y, Bai W J, Tao K, et al. Preparation of hierarchical macroporous/mesoporous silica and its application in lipase immobilization[J]. Materials Reports,2018,32(10):1695−1700, 1715. doi: 10.11896/j.issn.1005-023X.2018.10.024
    [32]
    Mohadese, Maryam, H Zohreh, et al. Preparation of highly reusable biocatalysts by immobilization of lipases on epox-functionalized silica for production of biodiesel from canola oil[J]. Biochemical Engineering Journal,2015,101:23−31. doi: 10.1016/j.bej.2015.04.020
    [33]
    Shi J F, Wang X L, Zhang L, et al. Facile one-pot preparation of chitosan/calcium pyrophosphate hybrid microflowers[J]. ACS Applied Materials & Interfaces, 2014, 6(16): 14522−14532.
    [34]
    Hyun J K, Saerom P, Sung H K, et al. Biocompatible cellulose nanocrystals as supports to immobilize lipase[J]. Journal of Molecular Catalysis B: Enzymatic,2015,122:170−178. doi: 10.1016/j.molcatb.2015.09.007
    [35]
    Nadia L, Ilizandra A F, Cindy V, et al. In situ immobilization of Candida antarctica B lipase in polyurethane foam support[J]. Journal of Molecular Catalysis B: Enzymatic,2016,124:52−61. doi: 10.1016/j.molcatb.2015.12.003
    [36]
    徐珊, 李任强, 张继福, 等. 乙二醇缩水甘油醚交联海藻酸钠-羧甲基纤维素钠固定化脂肪酶[J]. 中国生物工程杂志,2017,33(12):77−83. [Xu S, Li R Q, Zhang J F, et al. Ethylene glycol diglycidyl ether cross-linked with sodium alginate-carboxymethyl cellulose to immobilize lipase[J]. China Biotechnology,2017,33(12):77−83.
    [37]
    卢家伟, 李由然, 石贵阳. 聚乙烯亚胺改性聚丙烯腈中空膜固定脂肪酶[J]. 分子催化,2018,32(1):79−89. [Lu J W, Li Y R, Shi G Y. The modification of polyacrylonitrile hollow membrane by polyethyleneimine to immobilize lipase[J]. Journal of Molecular Catalysis(China),2018,32(1):79−89.
    [38]
    虞凤慧, 马韵升, 刘圣鹏, 等. 海藻酸钠与羧甲基纤维素钠固定化高温碱性脂肪酶[J]. 中国酿造,2015,5:78−81. [Yu F H, Ma Y S, Liu S P, et al. Immobilization of high-temperature alkaline lipase by sodium alginate and carboxymethyl cellulose sodium[J]. China Brewing,2015,5:78−81. doi: 10.11882/j.issn.0254-5071.2015.12.017
    [39]
    Cheng W J, Li Y, Li X Y, et al. Preparation and characterization of PDA/SiO2 nanofilm constructed macroporous monolith and its application in lipase immobilization[J]. Journal of the Taiwan Institute of Chemical Engineers,2019:104.
    [40]
    白文静, 李云曹, 大丽, 等. PDA/SiO2大孔复合材料固定化荧光假单胞菌脂肪酶[J]. 无机化学学报,2016,11:1973−1980. [Bai W J, Li Y C, Da L, et al. Immobilization of Pseudomonas fluorescens lipase on PDA/SiO2 macroporous composite[J]. Chinese Journal of Inorganic Chemistry,2016,11:1973−1980.
    [41]
    黄孟云. 磁性纳米复合材料固定化脂肪酶的制备及其催化大豆油酯交换[D]. 郑州: 河南工业大学, 2018.

    Huang M Y. Preparation of immobilized lipase on the magnetic nanocomposites and its catalytic performance of transesterification of soybean oil[D]. Zhengzhou: Henan University of Technology, 2018.
    [42]
    刘磊磊. 磁性Fe3O4/PS基纳米材料的制备及其固定脂肪酶研究[D]. 芜湖: 安徽工程大学, 2017.

    Liu L L. Study on preparation of magnetic Fe3O4/PS based nanoparticles and their application in lipase immobilizatioN[D]. Wuhu: Anhui University of Technology, 2017.
    [43]
    韩秀丽, 谷鹏举, 方书起, 等. Fe3O4磁性壳聚糖微球固定化脂肪酶研究[J]. 郑州大学学报,2018,39(4):30−34. [Han X L, Gu P J, Fang S Q, et al. Study on immobilization of lipase with Fe3O4 magnetic chitosan microspheres[J]. Journal of Zhengzhou University(Engineering Science),2018,39(4):30−34.
    [44]
    Liang K, Riccò R, Doherty C, et al. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules[J]. Nature Communications,2015,6:7240. doi: 10.1038/ncomms8240
    [45]
    Jungbae Kim, Jay W Grate, Ping Wang. Nanostructures for enzyme stabilization[J]. Chemical Engineering Science,2005,61(3):1017−1026.
    [46]
    Taek Hwang, Man Bock. Enzyme stabilization by nano/microsized hybrid materials[J]. Engineering in Life Sciences,2013,13(1):49−61. doi: 10.1002/elsc.201100225
    [47]
    Kim J B, Grate J W, Wang P. Nanobiocatalysis and its potential applications[J]. Trends Biotechnol,2008,26:639−646. doi: 10.1016/j.tibtech.2008.07.009
    [48]
    Liu X H, Fang Y C, Yang X. Electrospun epoxy-based nanofibrous membrane containing biocompatible feather polypeptide for highly stable and active covalent immobilization of lipase[J]. Colloids and Surfaces B: Biointerfaces,2018,166:277−285. doi: 10.1016/j.colsurfb.2018.03.037
    [49]
    Li K, Wang J, Yao J H, et al. Carbon nanotube-lipase hybrid nanoflowers with enhanced enzyme activity and enantioselectivity[J]. Journal of Biotechnology,2018:281.
    [50]
    Zheng M, Wang S, Xiang X, et al. Facile preparation of magnetic carbon nanotubes-immobilized lipase for highly efficient synthesis of 1, 3-dioleoyl-2-palmitoylglycerol-rich human milk fat substitutes[J]. Food Chemistry,2017,228(1):476−483.
    [51]
    Işik Ceyhun, Gökmen Arabaci, Yasemin Ispirli Doğaç, et al. Synthesis and characterization of electrospun PVA/Zn2+ metal composite nanofibers for lipase immobilization with effective thermal, pH stabilities and reusability[J]. Materials Science & Engineering C,2019:99.
    [52]
    Jovana Trbojević, Dušan Veličković, Aleksandra Dimitrijević, et al. Design of biocompatible immobilized Candida rugosa lipase with potential application in food industry[J]. Journal of the Science of Food and Agriculture,2016,96(12):4281−4287. doi: 10.1002/jsfa.7641
    [53]
    Yushkova Ekaterina, Nazarova Elena, Matyuhina Anna, et al. Application of immobilized enzymes in food industry[J]. Journal of Agricultural and Food Chemistry,2019,67(42):11553−11567. doi: 10.1021/acs.jafc.9b04385
    [54]
    Garlapati Vijay, Banerjee Rintu. Solvent-free synthesis of flavour esters through immobilized lipase mediated transesterification[J]. Enzyme Research,2013,2013:367410.
    [55]
    Ghamgui Hanen, Maha Karra-Chaâbouni. Production of isoamyl acetate with immobilized Staphylococcus simulans lipase in a solvent-free system[J]. Enzyme and Microbial Technology,2005,38(6):788−794.
    [56]
    Matte C R, Bussamara R, Dupont J, et al. Immobilization of thermo-myces lanuginosus lipase by different techniques on immobead 150 support: Characterization and applications[J]. Applied Biochemistry & Biotechnology,2014,172(5):2507−2520.
    [57]
    魏雪, 孙丽超, 李淑英, 等. 脂肪酶的固定化及其在食品领域的应用[J]. 生物技术通报,2016,32(11):59−64. [Wei X, Sun L C, Li S Y, et al. Immobilization of lipase and its application in food industry[J]. Biotechnology Bulletin,2016,32(11):59−64.
    [58]
    Paula Ariela V, Gisele F M Nunes, Osrio Natlia, et al. Continuous enzymatic interesterification of milkfat with soybean oil produces a highly spreadable product rich in polyunsaturated fatty acids[J]. European Journal of Lipid Science and Technology,2015,117(5):608−619. doi: 10.1002/ejlt.201400316
    [59]
    Tecelão Carla, Joana Silva, Eric Dubreucq, et al. Production of human milk fat substitutes enriched in omega-3 polyunsaturated fatty acids using immobilized commercial lipases and Candida parapsilosis lipase/acyltransferase[J]. Journal of Molecular Catalysis B: Enzymatic,2010,65(1):122−127.
    [60]
    Santibáñez, Luciana, Wilson, et al. Synthesis of ascorbyl palmitate with immobilized lipase from Pseudomonas stutzeri[J]. JAOCS, Journal of the American Oil Chemists' Society,2014,91(3):405−410. doi: 10.1007/s11746-013-2378-x
    [61]
    Sun Wenjing, Zhao Hongxia, Cui Fengjie, et al. D-isoascorbyl palmitate: Lipase-catalyzed synthesis, structural characterization and process optimization using response surface methodology[J]. Chemistry Central Journal,2013,7(1):114. doi: 10.1186/1752-153X-7-114
    [62]
    汤鲁宏, 张浩. 催化合成L-抗坏血酸棕榈酸酯的反应媒体和脂肪酶[J]. 无锡轻工大学学报,2000,19(2):157−159. [Tang L H, Zhang H. Selection of suitable reaction media and lipase: Synthesize of L ascorbyl palmitate catalyzed by lipase[J]. Journal of Food Science and Biotechnology,2000,19(2):157−159.
    [63]
    Zaidan, Mohd Basyaruddin, Abdul Rahman, et al. Biocatalytic production of lactose ester catalysed by mica-based immobilised lipase[J]. Food Chemistry,2012,131(1):199−205. doi: 10.1016/j.foodchem.2011.08.060
    [64]
    Adnani Atena, Mahiran Basri, Emilia Abdul Malek, et al. Optimization of lipase-catalyzed synthesis of xylitol ester by taguchi robust design method[J]. Industrial Crops & Products,2009,31(2):350−356.
    [65]
    Kapoor M, Gupta M N. Obtaining monoglycerides by esterification of glycerol with palmitic acid using some high activity preparations of Candida antarctica lipase B[J]. Process Biochemistry,2012,47(3):503−508. doi: 10.1016/j.procbio.2011.12.009
    [66]
    Dutt K, Gupta P, Rawat I, et al. Production of 1, 3 regiospecific lipase from Bacillus sp. RK-3: Its potential to synthesize cocoa butter substitute[J]. Malaysian Journal of Microbiology,2011:41−48.
    [67]
    龚欣, 谭志强, 郑建仙. Lipozyme TLIM 脂肪酶催化制备低热量乌桕类可可脂工艺的研究[J]. 食品工业,2014,35(1):48−50. [Gong X, Tan Z Q, Zheng J X. Preparation technology of low-calorie Chinese tallow cocoa butter equivalent catalyzed by lipozyme TLIM lipase[J]. The Food Industry,2014,35(1):48−50.
    [68]
    胡芳, 韦富香, 王志成, 等. 基于响应面的酶法酯交换制备乌桕脂油类可可脂[J]. 食品研究与开发,2010,31(3):94−97. [Hu F, Wei F X, Wang Z C, et al. Enzymatic preparation of cocoa butter equivalen (tCBE) from Chinese tallow oil using response surface methodology (RSM)[J]. Food Research and Development,2010,31(3):94−97. doi: 10.3969/j.issn.1005-6521.2010.03.028
  • Related Articles

    [1]AN Yu, ZHOU Xinyu, WANG Ying, ZUO Zhaohang, SUN Wei, ZHANG Naidan, PANG Weiqiao. Effects of Ultrasound Treatment on Physicochemical Properties and Antioxidant Function of Adzuki Bean Protein[J]. Science and Technology of Food Industry, 2022, 43(16): 105-110. DOI: 10.13386/j.issn1002-0306.2022010266
    [2]WANG Yun-xiang, GU Si-tong, ZUO Jin-hua, GAO Li-pu, WANG Qing, JIANG Ai-li. Effect of Salicylic Acid Treatment on Postharvest Quality and Antioxidant Capacity of Summer Squash[J]. Science and Technology of Food Industry, 2018, 39(19): 286-290,308. DOI: 10.13386/j.issn1002-0306.2018.19.050
    [3]FANG Fang. Effect of Steam Explosion Treatment on Amaranth Seeds Antioxidant Capacity[J]. Science and Technology of Food Industry, 2018, 39(15): 21-25,30. DOI: 10.13386/j.issn1002-0306.2018.15.005
    [4]GU Wei, XU Yong- jian. Preparation of Hippocampus ACE inhibitory peptide and determination of antioxidant capacity[J]. Science and Technology of Food Industry, 2016, (05): 201-206. DOI: 10.13386/j.issn1002-0306.2016.05.031
    [5]XU Gui-hua, LIU Dong-hong, LI Bo, CHEN Jian-chu, YE Xing-qian. Study on composition of flavonoids and antioxidant capacity of citrus peels[J]. Science and Technology of Food Industry, 2015, (16): 114-117. DOI: 10.13386/j.issn1002-0306.2015.16.015
    [6]MA Cheng-yuan, HAN Yan-qing, XU Bao-cai, LI Xing-min, DAI Rui-tong. Effect of tomato paste on sensory properties and antioxidant capacity of western brined ham[J]. Science and Technology of Food Industry, 2015, (10): 148-152. DOI: 10.13386/j.issn1002-0306.2015.10.022
    [7]XIE Li-yuan, GAN Bing-cheng, PENG Wei-hong, HUANG Zhong-qian, TAN Wei. Analysis of antioxidant substances and antioxidant capacity of submerged fermentation product of Ganoderma Lucidum[J]. Science and Technology of Food Industry, 2015, (02): 105-109. DOI: 10.13386/j.issn1002-0306.2015.02.014
    [8]MA Jin-jin, WANG Xiao-yu, ZHANG Juan, SONG Xi-zi, LI Xiao-jiao, SUN Xiang-yu, TIAN Cheng-rui. Analysis and comparison of polyphenols composition and antioxidant capacity in three kinds of vinegar[J]. Science and Technology of Food Industry, 2014, (24): 128-131. DOI: 10.13386/j.issn1002-0306.2014.24.018
    [9]HU Tai-chao, TAO Rong-shan, LI Qing-jie, ZHANG Jing, SU Feng-yan, WANG Yan-mei, WANG Quan-kai. Study on the preparation process and the antioxidant capacity of deer blood polypeptide[J]. Science and Technology of Food Industry, 2014, (17): 107-110. DOI: 10.13386/j.issn1002-0306.2014.17.014
    [10]NI Rong-rong, ZUO Qian, LI Wan-ping, ZHU Jian-jin. Effect of tea polyphenols on lactation performance and antioxidant capacity in rats[J]. Science and Technology of Food Industry, 2014, (16): 337-341. DOI: 10.13386/j.issn1002-0306.2014.16.065
  • Cited by

    Periodical cited type(6)

    1. 吴思邈,蒋浩源,安莹,张丽冕,李彭. L-赖氨酸功能化纤维素对模拟苹果汁中铅的吸附特性研究. 食品工业科技. 2024(08): 97-109 . 本站查看
    2. 张琳,马悦,张悦,陆辉杰,陈子琨,刘宏生. 科教融汇及思政育人新路径——食品包装技术课程创新实验设计. 农业工程. 2024(06): 133-137 .
    3. 唐蓉萍,李秀壮,朱一剑,吴贝贝,李树龙. 玉米秸秆高值化利用研究进展. 南方农业. 2024(21): 143-146 .
    4. 朱颍,李力,孙冰华,马森. 淀粉可食性膜性能的研究进展. 粮食科技与经济. 2024(06): 94-102 .
    5. 曾仪雯,周恩弛,黄高瓴,冯静秋,李丹,张春红. 可食性膜在食品保鲜中的应用现状及研究进展. 保鲜与加工. 2023(04): 62-67 .
    6. 任晚霞,宋亭,张丽媛. 纳米纤维素-淀粉膜对草莓保鲜效果的影响. 中国食品添加剂. 2023(11): 6-11 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (1108) PDF downloads (138) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return