SHAO Yangyang, DONG Yanjie, FAN Lixia, et al. Review on Nanomaterial-based Electrochemical Aptasensors for Heavy Metal Detection in Food[J]. Science and Technology of Food Industry, 2021, 42(19): 418−428. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080068.
Citation: SHAO Yangyang, DONG Yanjie, FAN Lixia, et al. Review on Nanomaterial-based Electrochemical Aptasensors for Heavy Metal Detection in Food[J]. Science and Technology of Food Industry, 2021, 42(19): 418−428. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080068.

Review on Nanomaterial-based Electrochemical Aptasensors for Heavy Metal Detection in Food

More Information
  • Received Date: August 09, 2020
  • Available Online: August 05, 2021
  • Heavy metal ions are highly toxic contaminants in food and environment, which can easily cause foodborne diseases and irreversible damage to human being. There are several limitations in traditional detection methods for heavy metal ions such as time consuming and expensive, so it’s urgent to develop a rapid technology for heavy metal detection in food. Due to their rapid, high sensitivity and specificity, nanomaterial-based electrochemical aptasensors are perspective in real-time detection of heavy metal ions. This paper summarize the characters of metallic nanomaterials (such as gold nanoparticles), metal oxide nanomaterials (such as Fe3O4 nanoparticles), and carbon nanomaterials (such as carbon nanotubes and graphene) and then review the application of electrochemical aptasensors based on nanomaterials in heavy metal detection (mainly lead (II), mercury (II), arsenic (III) and cadmium (II)), in order to provide inspiration for the development of heavy metal detection methods.
  • [1]
    Li F Q, Yu Z G, Han X D, et al. Electrochemical aptamer-based sensors for food and water analysis: A review[J]. Analytica Chimica Acta,2019,1051:1−23. doi: 10.1016/j.aca.2018.10.058
    [2]
    隋佳辰, 于寒松, 代佳宇, 等. 核酸适配体生物传感技术在食品中重金属铅检测中的应用[J]. 中国食品学报,2017,17(8):203−209. [Sui Jiachen, Yu Hansong, Dai Jiayu, et al. Application of aptamer biosensor technology to detect heavy metal lead in food[J]. Journal of Chinese Institute of Food Science and Technology,2017,17(8):203−209.
    [3]
    N K S, C B M. Novel biofiltration methods for the treatment of heavy metals from industrial wastewater[J]. Journal of Hazardous Materials,2008,151(1):1−8. doi: 10.1016/j.jhazmat.2007.09.101
    [4]
    于寒松, 隋佳辰, 代佳宇, 等. 核酸适配体技术在食品重金属检测中的应用研究进展[J]. 食品科学,2015,36(15):229−233. [Yu Hansong, Sui Jiachen, Dai Jiayu, et al. Advances in the application of aptamers to detect heavy metals in foods[J]. Food Science,2015,36(15):229−233.
    [5]
    Chen H, Shao R B, Yu Y Q, et al. A dual-responsive biosensor for blood lead detection[J]. Analytica Chimica Acta,2020,1093:131−141. doi: 10.1016/j.aca.2019.09.062
    [6]
    Jiang J, Li Z J, Wang Y Y, et al. Rapid determination of cadmium in rice by portable dielectric barrier discharge-atomic emission spectrometer[J]. Food Chemistry,2020,310:125824. doi: 10.1016/j.foodchem.2019.125824
    [7]
    Jia M, Lun Y F, Wang R N, et al. Extended GR-5 DNAzyme-based autonomous isothermal cascade machine: An efficient and sensitive one-tube colorimetric platform for Pb2+ detection[J]. Sensors and Actuators B: Chemical,2020,304:127366. doi: 10.1016/j.snb.2019.127366
    [8]
    Liu X X, Yao Y, Ying Y B, et al. Recent advances in nanomaterial-enabled screen-printed electrochemical sensors for heavy metal detection[J]. TrAC Trends in Analytical Chemistry,2019,115:187−202. doi: 10.1016/j.trac.2019.03.021
    [9]
    Orkun A, Tosun G. A rapid on-line non-chromatographic hydride generation atomic fluorescence spectrometry technique for speciation of inorganic arsenic in drinking water[J]. Food Chemistry,2019,290:10−15. doi: 10.1016/j.foodchem.2019.03.119
    [10]
    Luciane B P, Geovani C B, Rennan G A, et al. Assessment of cadmium and lead in commercial coconut water and industrialized coconut milk employing HR-CS GF AAS[J]. Food Chemistry,2019,284:259−263. doi: 10.1016/j.foodchem.2018.12.116
    [11]
    Renata P, Jerzy W, Pawel C, et al. Concentrations of toxic heavy metals and trace elements in raw milk of Simmental and Holstein-Friesian cows from organic farm[J]. Environmental Monitoring and Assessment,2013,185(10):8383−8392. doi: 10.1007/s10661-013-3180-9
    [12]
    Gianluigi M L D, Fabio G, Giacomo D, et al. Toxic metal levels in cocoa powder and chocolate by ICP-MS method after microwave-assisted digestion[J]. Food Chemistry,2018,245:1163−1168. doi: 10.1016/j.foodchem.2017.11.052
    [13]
    Gan Y, Liang T, Hu Q W, et al. In-situ detection of cadmium with aptamer functionalized gold nanoparticles based on smartphone-based colorimetric system[J]. Talanta,2020,208:120231. doi: 10.1016/j.talanta.2019.120231
    [14]
    Andrew D E, Jack W S. In vitro selection of RNA molecules that bind specific ligands[J]. Nature,1990,346(6287):818−822. doi: 10.1038/346818a0
    [15]
    C T, L G. Systematic evolution of ligands by exponential en-richment: RNA ligands to bacteriophage T4 DNA polymerase[J]. Science,1990,249(4968):505−510. doi: 10.1126/science.2200121
    [16]
    Shi X H, Zhang J L, He F J. A new aptamer/polyadenylated DNA interdigitated gold electrode piezoelectric sensor for rapid detection of Pseudomonas aeruginosa[J]. Biosensors & Bioelectronics,2019,132:224−229.
    [17]
    Sun D P, Lu J, Zhang L Y, et al. Aptamer-based electrochemical cytosensors for tumor cell detection in cancer diagnosis: A review[J]. Analytica Chimica Acta,2019,1082:1−17. doi: 10.1016/j.aca.2019.07.054
    [18]
    Li W M, Wang S, Zhou L L, et al. An ssDNA aptamer selected by Cell-SELEX for the targeted imaging of poorly differentiated gastric cancer tissue[J]. Talanta,2019,199:634−642. doi: 10.1016/j.talanta.2019.03.016
    [19]
    Gao C, Wang Q X, Gao F, et al. A high-performance aptasensor for mercury(II) based on the formation of a unique ternary structure of aptamer–Hg2+–neutral red[J]. Chemical Communications,2014,50(66):9397−9400. doi: 10.1039/C4CC03275F
    [20]
    Li J P, Sun M, Wei X P, et al. An electrochemical aptamer biosensor based on “gate-controlled” effect using β-cyclodextrin for ultra-sensitive detection of trace mercury[J]. Biosensors & Bioelectronics 2015, 74: 423−426.
    [21]
    王辉. 农田土壤和灌溉水中重金属检测关键技术研究[D]. 北京: 中国农业大学, 2018.

    Wang Hui. Research on the key techniques for heavy metals detection in farmland soil and irrigation water[D]. Beijing: China Agricultural University, 2018.
    [22]
    王志强. 农产品及其产地环境中重金属快速检测关键技术研究[D]. 北京: 中国农业大学, 2014.

    Wang Zhiqiang. Key technologies for rapid detection of heavy metals in farmland environment and agricultural products[D]. Beijing: China Agricultural University, 2014.
    [23]
    Mojtaba S, Leila F, Mahmound A, et al. CdTe amplification nanoplatforms capped with thioglycolic acid for electrochemical aptasensing of ultra-traces of ATP[J]. Materials Science and Engineering: C,2016,69(1):1354−1360.
    [24]
    Bahareh B, Abdollah S, Rahman H. Switchable electrochemiluminescence aptasensor coupled with resonance energy transfer for selective attomolar detection of Hg2+ via CdTe@CdS/dendrimer probe and Au nanoparticle quencher[J]. Biosensors & Bioelectronics,2018,102:328−335.
    [25]
    Kong R M, Zhang X B, Zhang L L, et al. An ultrasensitive electrochemical "turn-on" label-free biosensor for Hg2+ with AuNP-functionalized reporter DNA as a signal amplifier[J]. Chemical Communications,2009(37):5633−5635. doi: 10.1039/b911163h
    [26]
    Lu X C, Dong X, Zhang K Y, et al. An ultrasensitive electrochemical mercury(II) ion biosensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and gold nanoparticles[J]. Analytical Methods,2012,4(10):3326−3331. doi: 10.1039/c2ay25634g
    [27]
    Feng D F, Li P H, Tan X C, et al. Electrochemiluminescence aptasensor for multiple determination of Hg2+ and Pb2+ ions by using the MIL-53(Al)@CdTe-PEI modified electrode[J]. Analytica Chimica Acta,2020,1100:232−239. doi: 10.1016/j.aca.2019.11.069
    [28]
    Wang H, Yin Y, Zhao G, et al. Graphene oxide/multi-walled carbon nanotubes/gold nanoparticle hybridfunctionalized disposable screen-printed carbon electrode to determine Cd(II) and Pb(II) in soil[J]. International Journal of Agricultural and Biological Engineering,2019,12(3):194−200. doi: 10.25165/j.ijabe.20191203.4300
    [29]
    Muhammad A S, Habib A B. Gold nanoparticle based microbial detection and identification[J]. Journal of Biomedical Nanotechnology,2011,7(2):229−237. doi: 10.1166/jbn.2011.1281
    [30]
    刘丰源, 辛嘉英, 孙立瑞, 等. 纳米金的合成及其在重金属离子检测中的应用进展[J]. 食品科学,2020,41(7):218−227. [Liu Fengyuan, Xin Jiaying, Sun Lirui, et al. Recent progress in synthesis of gold nanoparticles and its application in detection of heavy metal ions[J]. Food Science,2020,41(7):218−227. doi: 10.7506/spkx1002-6630-20190225-174
    [31]
    Susom D, Guinevere S, Pradeep K. Gold nanostar electrodes for heavy metal detection[J]. Sensors and Actuators B: Chemical,2019,281:383−391. doi: 10.1016/j.snb.2018.10.111
    [32]
    Maâtouk F, Maâtouk M, Bekir K, et al. An electrochemical DNA biosensor for trace amounts of mercury ion quantification[J]. Journal of Water and Health,2016,14(5):808−815. doi: 10.2166/wh.2016.293
    [33]
    Cai W, Xie S, Zhang J, et al. An electrochemical impedance biosensor for Hg2+ detection based on DNA hydrogel by coupling with DNAzyme-assisted target recycling and hybridization chain reaction[J]. Biosensors and Bioelectronics,2017,98:466−472. doi: 10.1016/j.bios.2017.07.025
    [34]
    Murthy S C, Maria P N. Metal oxide nanoparticles and their applications in nanotechnology[J]. SN Applied Sciences,2019,1(6):607. doi: 10.1007/s42452-019-0592-3
    [35]
    甘小荣. 基于ExoIII和功能化MoS2、HxTiS2纳米片信号放大的重金属离子电化学传感检测法[D]. 大连: 大连理工大学, 2017.

    Gan Xiaorong. Electrochemical sensing for heavy metal ions based on the signal amplification of exoiii and functionalized MoS2, HxTiS2 Nanosheets[D]. Dalian: Dalian University of Technology, 2017.
    [36]
    Xu Z W, Fan X K, Ma Q Y, et al. A sensitive electrochemical sensor for simultaneous voltammetric sensing of cadmium and lead based on Fe3O4/multiwalled carbon nanotube/laser scribed graphene composites functionalized with chitosan modified electrode[J]. Materials Chemistry and Physics,2019,238(1):121877.
    [37]
    Wu D, Wang Y G, Zhang Y, et al. Facile fabrication of an electrochemical aptasensor based on magnetic electrode by using streptavidin modified magnetic beads for sensitive and specific detection of Hg2+[J]. Biosensors & Bioelectronics,2016,82:9−13.
    [38]
    Luo J Y, Jiang D F, Liu T, et al. High-performance electrochemical mercury aptasensor based on synergistic amplification of Pt nanotube arrays and Fe3O4/rGO nanoprobes[J]. Biosensors & Bioelectronics,2018,104:1−7.
    [39]
    Huang H, Chen T, Liu X Y, et al. Ultrasensitive and simultaneous detection of heavy metal ions based on three-dimensional graphene-carbon nanotubes hybrid electrode materials[J]. Analytica Chimica Acta,2014,852(10):45−54.
    [40]
    Wang M H; Zhang S.; Ye Z H, et al. A gold electrode modified with amino-modified reduced graphene oxide, ion specific DNA and DNAzyme for dual electrochemical determination of Pb(II) and Hg(II)[J]. Microchimica Acta,2015,182(13-14):2251−2258. doi: 10.1007/s00604-015-1569-6
    [41]
    Sumio I. Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348):56−58. doi: 10.1038/354056a0
    [42]
    Sumio I, Toshinari I. Single-shell carbon nanotubes of 1-nm diameter[J]. Nature,1993,363(6430):603−605. doi: 10.1038/363603a0
    [43]
    Andrea B, Daniel M. Arsenic(III) detection in water by flow-through carbon nanotube membrane decorated by gold nanoparticles[J]. Electrochimica Acta,2019,318:496−503. doi: 10.1016/j.electacta.2019.06.114
    [44]
    Amir M A, Sandra C, Sanja M, et al. Antimony nanoparticle-multiwalled carbon nanotubes composite immobilized at carbon paste electrode for determination of trace heavy metals[J]. Sensors and Actuators B: Chemical,2014,191:320−325. doi: 10.1016/j.snb.2013.08.087
    [45]
    Ajayan P M. Nanotubes from carbon[J]. Chemical reviews,1999,99(7):1787−1800. doi: 10.1021/cr970102g
    [46]
    Xia Y N, Yang P D, Sun Y G, et al. One-dimensional nanostructures: Synthesis, characterization, and applications[J]. Advanced materials,2010,15(5):353−389.
    [47]
    Shiva K A, Gayathri C, Sivalingam G, et al. Current advances in the detection of neurotransmitters by nanomaterials: An update[J]. TrAC Trends in Analytical Chemistry,2020,123:115766. doi: 10.1016/j.trac.2019.115766
    [48]
    Xie F, Yang M, Jiang M, et al. Carbon-based nanomaterials – a promising electrochemical sensor toward persistent toxic substance[J]. TrAC Trends in Analytical Chemistry,2019,119:115624. doi: 10.1016/j.trac.2019.115624
    [49]
    Wang H, Liu Y, Liu G. Reusable resistive aptasensor for Pb(II) based onthe Pb(II)-induced despiralization of a DNA duplex and formation of a G-quadruplex[J]. Microchimica Acta,2018,185(2):1−8.
    [50]
    Wang Y H, Wang P, Wang Y Q, et al. Single strand DNA functionalized single wall carbon nanotubes as sensitive electrochemical labels for arsenite detection[J]. Talanta,2015,141:122−127. doi: 10.1016/j.talanta.2015.03.040
    [51]
    Abdulazeez T L. Progress in utilisation of graphene for electrochemical biosensors[J]. Biosensors& Bioelectronics,2018,106(30):149−178.
    [52]
    Shao Y Y, Wang J, Wu H, et al. Graphene based electrochemical sensors and biosensors: A review[J]. Electroanalysis,2010,22(10):1027−1036. doi: 10.1002/elan.200900571
    [53]
    代洪秀. 功能化聚吡咯纳米复合材料在电化学传感中的应用[D]. 济南: 山东大学, 2018.

    Dai Hongxiu. Study on functionalized polypyrrole nanocomposites-based electrochemical sensors[D]. Jinan: Shandong University, 2018.
    [54]
    K S N, A K G, S V M, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666−669. doi: 10.1126/science.1102896
    [55]
    Craig E B, Trevor J D, Gregory G W, et al. Electrocatalysis at graphite and carbon nanotube modified electrodes: Edge-plane sites and tube ends are the reactive sites[J]. Chemical Communications,2005(7):829−841. doi: 10.1039/b413177k
    [56]
    Martin P, Adriano A, Alessandra B, et al. Graphene for electrochemical sensing and biosensing[J]. TrAC Trends in Analytical Chemistry,2010,29(9):954−965. doi: 10.1016/j.trac.2010.05.011
    [57]
    Varun P, Taekwon K, Majid B, et al. Three-dimensional graphene nanosheet encrusted carbon micropillar arrays for electrochemical sensing[J]. Nanoscale,2012,4(12):3673−3678. doi: 10.1039/c2nr30161j
    [58]
    Gao F, Gao C, He S Y, et al. Label-free electrochemical lead (II) aptasensor using thionine as the signaling molecule and graphene as signal-enhancing platform[J]. Biosensors & Bioelectronics,2016,81(15):15−22.
    [59]
    Zhang Y, Zeng G M, Tang L, et al. Electrochemical sensor based on electrodeposited graphene-Au modified electrode and nanoAu carrier amplified signal strategy for attomolar mercury detection[J]. Analytical Chemistry,2015,87(2):989−96. doi: 10.1021/ac503472p
    [60]
    Gan X R, Zhao H M, Quan X, et al. An electrochemical sensor based on p-aminothiophenol/Au nanoparticle-decorated HxTiS2 nanosheets for specific detection of picomolar Cu(II)[J]. Electrochimica Acta,2016,190:480−489. doi: 10.1016/j.electacta.2015.12.145
    [61]
    Gan X R, Zhao H M, Chen S, et al. Three-dimensional porous HxTiS2 nanosheet–polyaniline nanocomposite electrodes for directly detecting trace Cu(II) ions[J]. Analytical Chemistry,2015,87(11):5605−5613. doi: 10.1021/acs.analchem.5b00500
    [62]
    鲁志伟. 构建特殊结构的碳基纳米复合材料: 高灵敏重金属离子电化学传感器的研究[D]. 广州: 华南理工大学, 2019.

    Lu Zhiwei. Fabrication of carbon-based nanocomposites with special structure: highly sensitive heavy metal ion electrochemical sensors[D]. Gunagzhou: South China University of Technology, 2019.
    [63]
    崔琳. 重金属离子电化学传感器的构建及其应用[D]. 南京: 南京大学, 2015.

    Cui Lin. Construction of electrochemical sensors for heavy metal ions and their application[D]. Nanjing: Nanjing University, 2015.
    [64]
    A K J, V K G, L P S, et al. A comparative study of Pb2+ selective sensors based on derivatized tetrapyrazole and calix[4]arene receptors[J]. Electrochimica Acta,2006,51(12):2547−2553. doi: 10.1016/j.electacta.2005.07.040
    [65]
    Seyed M T, Noor M D, Parirokh L, et al. An electrochemical aptasensor based on gold nanoparticles, thionine and hairpin structure of complementary strand of aptamer for ultrasensitive detection of lead[J]. Sensors and Actuators B: Chemical,2016,234(29):462−469.
    [66]
    Zhu Y, Zeng G M, Zhang Y, et al. Highly sensitive electrochemical sensor using a MWCNTs/GNPs-modified electrode for lead (II) detection based on Pb2+-induced G-rich DNA conformation[J]. Analyst,2014,139(19):5014−5020. doi: 10.1039/C4AN00874J
    [67]
    Peng Y J, Li Y, Li L, et al. A label-free aptasensor for ultrasensitive Pb2+ detection based on electrochemiluminescence resonance energy transfer between carbon nitride nanofibers and Ru(phen)32+[J]. Journal of Hazardous Materials,2018,359:121−128. doi: 10.1016/j.jhazmat.2018.07.033
    [68]
    Li F, Feng Y, Zhao C, et al. Crystal violet as a G-quadruplex-selective probe for sensitive amperometric sensing of lead[J]. Chemical Communications,2011,47(43):11909−11911. doi: 10.1039/c1cc15023e
    [69]
    V K G, A K S, M A K, et al. Neutral carriers based polymeric membrane electrodes for selective determination of mercury (II)[J]. Analytica Chimica Acta,2007,590(1):81−90. doi: 10.1016/j.aca.2007.03.014
    [70]
    He L L, Chen L, Lin Y, et al. A sensitive biosensor for mercury ions detection based on hairpin hindrance by thymine-Hg(II)-thymine structure[J]. Journal of Electroanalytical Chemistry,2018,814:161−167. doi: 10.1016/j.jelechem.2018.02.050
    [71]
    Yu Y J, Yu C, Gao R F, et al. Dandelion-like CuO microspheres decorated with Au nanoparticle modified biosensor for Hg(2+) detection using a T-Hg2+-T triggered hybridization chain reaction amplification strategy[J]. Biosensors & Bioelectronics,2019,131:207−213.
    [72]
    Ji H A, Seon J P, Oh S K, et al. High-performance flexible graphene aptasensor for mercury detection in mussels[J]. ACS NANO,2013,7(12):10563−10571. doi: 10.1021/nn402702w
    [73]
    Samira M M, Foad G, Abdollah S, et al. Transport properties of a molybdenum disulfide and carbon dot nanohybrid transistor and its applications as a Hg2+ aptasensor[J]. ACS Applied Electronic Materials,2020,2(3):635−645. doi: 10.1021/acsaelm.9b00632
    [74]
    Li H B, Xue Y, Wang W. Femtomole level photoelectrochemical aptasensing for mercury ions using quercetin-copper(II) complex as the DNA intercalator[J]. Biosensors & Bioelectronics,2014,54:317−322.
    [75]
    Xu N N, Hou T, Li F. A label-free photoelectrochemical aptasensor for facile and ultrasensitive mercury ion assay based on a solution-phase photoactive probe and exonuclease III-assisted amplification[J]. Analyst 2019, 144 (12): 3800−3806.
    [76]
    Cui L, Wu J, Li M Q, et al. Highly sensitive electrochemical detection of mercury (II) via single ion-induced three-way junction of DNA[J]. Electrochemistry Communications,2015,59:77−80. doi: 10.1016/j.elecom.2015.07.012
    [77]
    隋佳辰, 于寒松, 代佳宇, 等. 生物传感器检测食品中重金属砷的研究进展[J]. 食品科学,2016,37(7):233−238. [Sui Jiachen, Yu Hansong, Dai Jiayu, et al. Advances in the application of biosensor technology for the detection of heavy metal arsenic in foods[J]. Food Science,2016,37(7):233−238. doi: 10.7506/spkx1002-6630-201607042
    [78]
    Mina K, Hyun U, Sunbaek B, et al. Arsenic removal from vietnamese groundwater using the arsenic-binding DNA aptamer[J]. Environmental Science & Technology,2009,43(24):9335−9340.
    [79]
    Cui L, Wu J, Ju H X. Electrochemical biosensor based on three-dimensional reduced graphene oxide and polyaniline nanocomposite for selective detection of mercury ions[J]. Sensors and Actuators B: Chemical,2015,214:63−69. doi: 10.1016/j.snb.2015.02.127
    [80]
    Wen S H, Wang L, Yuan Y H, et al. Electrochemical sensor for arsenite detection using graphene oxide assisted generation of prussian blue nanoparticles as enhanced signal label[J]. Analytical Chimica Acta,2018,1002:82−89. doi: 10.1016/j.aca.2017.11.057
    [81]
    Sorour S B, Abdollah N. Novel chitosan-Nafion composite for fabrication of highly sensitive impedimetric and colorimetric As (III) aptasensor[J]. Biosensors & Bioelectronics,2019,131:1−8.
    [82]
    Ali A E, F A, E H, et al. A novel aptasensor based on 3D-reduced graphene oxide modified gold nanoparticles for determination of arsenite[J]. Biosensors & Bioelectronics,2018,122:25−31.
    [83]
    Gu H D, Yang Y Y, Chen F, et al. Electrochemical detection of arsenic contamination based on hybridization chain reaction and RecJf exonuclease-mediated amplification[J]. Chemical Engineering Journal,2018,353:305−310. doi: 10.1016/j.cej.2018.07.137
    [84]
    赵静, 孙海娟, 冯叙桥. 食品中重金属镉污染状况及其检测技术研究进展[J]. 食品工业科技,2014,35(16):371−376. [Zhao Jing, Sun Haijuan, Feng Xuqiao. Research progress in pollution of heavy metals cadmium and its detection technology in food[J]. Science and Technology of Food Industry,2014,35(16):371−376.
    [85]
    Wang X F, Gao W Y, Yan W, et al. A novel aptasensor based on graphene/graphite carbon nitride nanocomposites for cadmium detection with high selectivity and sensitivity[J]. ACS Applied Nano Materials,2018,1(5):2341−2346. doi: 10.1021/acsanm.8b00380
    [86]
    Chang-Seuk L, Su Hwan Y, Su Hwan K. A “turn-on” electrochemical aptasensor for ultrasensitive detection of Cd2+ using duplexed aptamer switch on electrochemically reduced graphene oxide electrode[J]. Microchemical Journal 2020: 159.
    [87]
    Liu Y, Lai Y X, Yang G J, et al. Cd-aptamer electrochemical biosensor based on AuNPs/CS modified glass carbon electrode[J]. Journal of Biomedical Nanotechnology,2017,13(10):1253−1259. doi: 10.1166/jbn.2017.2424
    [88]
    Li Y, Ran G J, Lu G, et al. Highly sensitive label-free electrochemical aptasensor based on screen-printed electrode for detection of Cadmium (II) ions[J]. Journal of The Electrochemical Society,2019,166(6):B449−B455. doi: 10.1149/2.0991906jes
    [89]
    Colani T F, Omotayo A A, Nonhlangabezo M. Electrochemical aptasensing of cadmium (II) on a carbon black-gold nano-platform[J]. Journal of Electroanalytical Chemistry,2020:858.
  • Cited by

    Periodical cited type(27)

    1. 戴明云,李斌,张朝阳,白富瑾,肖伟. 螺旋藻生长影响因素及功能特性应用研究进展. 现代农业科技. 2025(01): 161-165+179 .
    2. 李雪贤,刘洋,皮杰,桂雨婷,陆娟娟. 螺旋藻的主要成分及生理功能研究进展. 水产养殖. 2025(02): 37-42 .
    3. 韩佩,夏嵩,闫冰,姜钦亮,王一雯. 极大螺旋藻对四氧嘧啶性糖尿病小鼠的降血糖作用. 食品研究与开发. 2025(09): 44-51 .
    4. 吴朋徽,刘耀,张磊,肖芃颖,张玥. 微藻两阶段培养技术研究进展. 微生物学通报. 2024(01): 1-16 .
    5. 姜梦云,刘旭,衣然. 4种前处理方法-原子荧光光谱法测定螺旋藻中总砷含量. 食品安全导刊. 2024(03): 56-58 .
    6. 孙博,武晋海,李金凤,赵佳敏,刘金桃,黄凤丽. 螺旋藻口服液制备的工艺优化. 食品安全导刊. 2024(08): 127-131+135 .
    7. 唐魁延,龚艺松,田冬青,张晓宇,聂远洋,李波. 螺旋藻豆腐的研制开发. 河南科技学院学报(自然科学版). 2024(04): 15-27 .
    8. 薛宪辉,李思雨,郭睿,崔文凯,纪蓓. 螺旋藻风味酱的发酵工艺研究. 中国调味品. 2024(08): 69-73 .
    9. 王丽梅,西妮,穆文静,苏小军,张永明. 基于Cite Space对螺旋藻藻蓝蛋白的研究进展与热点分析. 食品与发酵工业. 2024(16): 313-323 .
    10. 宋盈萱,尹馨一,刘盈萱. 螺旋藻营养成分及生物活性研究进展. 食品安全导刊. 2024(27): 178-182 .
    11. 曾巧辉,余杏同,林妙銮. 螺旋藻蛋白-原花青素稳定亚麻籽油品质的研究. 佛山科学技术学院学报(自然科学版). 2024(05): 54-68 .
    12. 杨正磊,冯鑫,尹淑涛. 微藻资源概述及微藻多糖的生物活性研究进展. 中国食物与营养. 2024(09): 58-66 .
    13. 陈慧桢,吕莹果,陈洁,李雪琴. 螺旋藻方便面片制备工艺优化. 粮食与油脂. 2024(11): 135-142+162 .
    14. 柯善文,习向玉,陈翊可,张官鹏,宋富艳,韩栋敏,苏蓉,李晓雪,牛鑫,单华佳,梁倩倩. PDA培养基中添加不同有机氮源物质对黑木耳退化菌种复壮效果的影响. 山东农业科学. 2024(11): 121-126 .
    15. 袁泽文,高旭芳,田益玲. 响应面法优化乙酸锌对螺旋藻护色的研究. 粮食与油脂. 2023(04): 137-140 .
    16. 米顺利,竹烨,张艺,黄晓菊,蒋心怡,易湘茜. 螺旋藻复配代餐粉的研制. 保鲜与加工. 2023(07): 43-49 .
    17. 李平,吕莹果,李雪琴,陈洁. 螺旋藻粉对面团流变性质及面筋结构的影响. 食品科学. 2023(14): 63-71 .
    18. 王志忠,穆洁,巩东辉,郭彩凤,王志国,宝俊刚. 钝顶螺旋藻与五种常见食物营养成分对比分析. 食品与发酵科技. 2023(04): 111-115+121 .
    19. 郭旭,魏登枭,钟彩荣,兰英,何勇锦,陈必链. 正己烷与氯化钙介导法联产提取未破壁螺旋藻的藻蓝蛋白和油脂. 食品与发酵工业. 2023(17): 202-208 .
    20. 魏登,李美善,刘艳霞,金永燮,佟立爽. 精酿绿啤加工工艺优化及其挥发性风味鉴定分析. 中国食品添加剂. 2023(10): 217-225 .
    21. 魏登,刘艳霞,金永燮,佟立爽. 菠菜螺旋藻复合精酿小麦绿啤挥发性香气表征研究. 食品安全导刊. 2023(30): 88-91 .
    22. 吴慧. 螺旋藻曲奇饼干制作工艺的研究. 食品安全导刊. 2022(04): 128-131+135 .
    23. 付雨,姜雨,王进博,张铂瑾,宋宸,孙明霞. 螺旋藻类保健食品批准情况及问题. 食品与机械. 2022(08): 1-6+13 .
    24. 李青卓,张楠,梅兴国,吴基良. 新鲜螺旋藻中β-胡萝卜素提取与测定. 湖北科技学院学报(医学版). 2022(04): 287-291 .
    25. 刘璐璐,陈玟璇,刘小慧,李世乐,许志浩,陈洪彬,郑宗平,王宝贝. 雨生红球藻对戚风蛋糕品质的影响及其虾青素稳定性. 食品工业科技. 2022(19): 76-83 . 本站查看
    26. 佟立爽,王晏驰,周娜,李美善,魏登. 不同温度条件下精酿绿啤二次发酵的挥发性风味差异分析. 中国食品添加剂. 2022(11): 9-17 .
    27. 张春艳,张震,仇钧仪,初宇轩,彭磊磊,罗鹏,陈成勋. 饲料添加复合氨基酸对锦鲤生长和生理生化指标的影响. 经济动物学报. 2022(04): 261-267 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (529) PDF downloads (46) Cited by(36)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return