Citation: | SHAO Yangyang, DONG Yanjie, FAN Lixia, et al. Review on Nanomaterial-based Electrochemical Aptasensors for Heavy Metal Detection in Food[J]. Science and Technology of Food Industry, 2021, 42(19): 418−428. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080068. |
[1] |
Li F Q, Yu Z G, Han X D, et al. Electrochemical aptamer-based sensors for food and water analysis: A review[J]. Analytica Chimica Acta,2019,1051:1−23. doi: 10.1016/j.aca.2018.10.058
|
[2] |
隋佳辰, 于寒松, 代佳宇, 等. 核酸适配体生物传感技术在食品中重金属铅检测中的应用[J]. 中国食品学报,2017,17(8):203−209. [Sui Jiachen, Yu Hansong, Dai Jiayu, et al. Application of aptamer biosensor technology to detect heavy metal lead in food[J]. Journal of Chinese Institute of Food Science and Technology,2017,17(8):203−209.
|
[3] |
N K S, C B M. Novel biofiltration methods for the treatment of heavy metals from industrial wastewater[J]. Journal of Hazardous Materials,2008,151(1):1−8. doi: 10.1016/j.jhazmat.2007.09.101
|
[4] |
于寒松, 隋佳辰, 代佳宇, 等. 核酸适配体技术在食品重金属检测中的应用研究进展[J]. 食品科学,2015,36(15):229−233. [Yu Hansong, Sui Jiachen, Dai Jiayu, et al. Advances in the application of aptamers to detect heavy metals in foods[J]. Food Science,2015,36(15):229−233.
|
[5] |
Chen H, Shao R B, Yu Y Q, et al. A dual-responsive biosensor for blood lead detection[J]. Analytica Chimica Acta,2020,1093:131−141. doi: 10.1016/j.aca.2019.09.062
|
[6] |
Jiang J, Li Z J, Wang Y Y, et al. Rapid determination of cadmium in rice by portable dielectric barrier discharge-atomic emission spectrometer[J]. Food Chemistry,2020,310:125824. doi: 10.1016/j.foodchem.2019.125824
|
[7] |
Jia M, Lun Y F, Wang R N, et al. Extended GR-5 DNAzyme-based autonomous isothermal cascade machine: An efficient and sensitive one-tube colorimetric platform for Pb2+ detection[J]. Sensors and Actuators B: Chemical,2020,304:127366. doi: 10.1016/j.snb.2019.127366
|
[8] |
Liu X X, Yao Y, Ying Y B, et al. Recent advances in nanomaterial-enabled screen-printed electrochemical sensors for heavy metal detection[J]. TrAC Trends in Analytical Chemistry,2019,115:187−202. doi: 10.1016/j.trac.2019.03.021
|
[9] |
Orkun A, Tosun G. A rapid on-line non-chromatographic hydride generation atomic fluorescence spectrometry technique for speciation of inorganic arsenic in drinking water[J]. Food Chemistry,2019,290:10−15. doi: 10.1016/j.foodchem.2019.03.119
|
[10] |
Luciane B P, Geovani C B, Rennan G A, et al. Assessment of cadmium and lead in commercial coconut water and industrialized coconut milk employing HR-CS GF AAS[J]. Food Chemistry,2019,284:259−263. doi: 10.1016/j.foodchem.2018.12.116
|
[11] |
Renata P, Jerzy W, Pawel C, et al. Concentrations of toxic heavy metals and trace elements in raw milk of Simmental and Holstein-Friesian cows from organic farm[J]. Environmental Monitoring and Assessment,2013,185(10):8383−8392. doi: 10.1007/s10661-013-3180-9
|
[12] |
Gianluigi M L D, Fabio G, Giacomo D, et al. Toxic metal levels in cocoa powder and chocolate by ICP-MS method after microwave-assisted digestion[J]. Food Chemistry,2018,245:1163−1168. doi: 10.1016/j.foodchem.2017.11.052
|
[13] |
Gan Y, Liang T, Hu Q W, et al. In-situ detection of cadmium with aptamer functionalized gold nanoparticles based on smartphone-based colorimetric system[J]. Talanta,2020,208:120231. doi: 10.1016/j.talanta.2019.120231
|
[14] |
Andrew D E, Jack W S. In vitro selection of RNA molecules that bind specific ligands[J]. Nature,1990,346(6287):818−822. doi: 10.1038/346818a0
|
[15] |
C T, L G. Systematic evolution of ligands by exponential en-richment: RNA ligands to bacteriophage T4 DNA polymerase[J]. Science,1990,249(4968):505−510. doi: 10.1126/science.2200121
|
[16] |
Shi X H, Zhang J L, He F J. A new aptamer/polyadenylated DNA interdigitated gold electrode piezoelectric sensor for rapid detection of Pseudomonas aeruginosa[J]. Biosensors & Bioelectronics,2019,132:224−229.
|
[17] |
Sun D P, Lu J, Zhang L Y, et al. Aptamer-based electrochemical cytosensors for tumor cell detection in cancer diagnosis: A review[J]. Analytica Chimica Acta,2019,1082:1−17. doi: 10.1016/j.aca.2019.07.054
|
[18] |
Li W M, Wang S, Zhou L L, et al. An ssDNA aptamer selected by Cell-SELEX for the targeted imaging of poorly differentiated gastric cancer tissue[J]. Talanta,2019,199:634−642. doi: 10.1016/j.talanta.2019.03.016
|
[19] |
Gao C, Wang Q X, Gao F, et al. A high-performance aptasensor for mercury(II) based on the formation of a unique ternary structure of aptamer–Hg2+–neutral red[J]. Chemical Communications,2014,50(66):9397−9400. doi: 10.1039/C4CC03275F
|
[20] |
Li J P, Sun M, Wei X P, et al. An electrochemical aptamer biosensor based on “gate-controlled” effect using β-cyclodextrin for ultra-sensitive detection of trace mercury[J]. Biosensors & Bioelectronics 2015, 74: 423−426.
|
[21] |
王辉. 农田土壤和灌溉水中重金属检测关键技术研究[D]. 北京: 中国农业大学, 2018.
Wang Hui. Research on the key techniques for heavy metals detection in farmland soil and irrigation water[D]. Beijing: China Agricultural University, 2018.
|
[22] |
王志强. 农产品及其产地环境中重金属快速检测关键技术研究[D]. 北京: 中国农业大学, 2014.
Wang Zhiqiang. Key technologies for rapid detection of heavy metals in farmland environment and agricultural products[D]. Beijing: China Agricultural University, 2014.
|
[23] |
Mojtaba S, Leila F, Mahmound A, et al. CdTe amplification nanoplatforms capped with thioglycolic acid for electrochemical aptasensing of ultra-traces of ATP[J]. Materials Science and Engineering: C,2016,69(1):1354−1360.
|
[24] |
Bahareh B, Abdollah S, Rahman H. Switchable electrochemiluminescence aptasensor coupled with resonance energy transfer for selective attomolar detection of Hg2+ via CdTe@CdS/dendrimer probe and Au nanoparticle quencher[J]. Biosensors & Bioelectronics,2018,102:328−335.
|
[25] |
Kong R M, Zhang X B, Zhang L L, et al. An ultrasensitive electrochemical "turn-on" label-free biosensor for Hg2+ with AuNP-functionalized reporter DNA as a signal amplifier[J]. Chemical Communications,2009(37):5633−5635. doi: 10.1039/b911163h
|
[26] |
Lu X C, Dong X, Zhang K Y, et al. An ultrasensitive electrochemical mercury(II) ion biosensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and gold nanoparticles[J]. Analytical Methods,2012,4(10):3326−3331. doi: 10.1039/c2ay25634g
|
[27] |
Feng D F, Li P H, Tan X C, et al. Electrochemiluminescence aptasensor for multiple determination of Hg2+ and Pb2+ ions by using the MIL-53(Al)@CdTe-PEI modified electrode[J]. Analytica Chimica Acta,2020,1100:232−239. doi: 10.1016/j.aca.2019.11.069
|
[28] |
Wang H, Yin Y, Zhao G, et al. Graphene oxide/multi-walled carbon nanotubes/gold nanoparticle hybridfunctionalized disposable screen-printed carbon electrode to determine Cd(II) and Pb(II) in soil[J]. International Journal of Agricultural and Biological Engineering,2019,12(3):194−200. doi: 10.25165/j.ijabe.20191203.4300
|
[29] |
Muhammad A S, Habib A B. Gold nanoparticle based microbial detection and identification[J]. Journal of Biomedical Nanotechnology,2011,7(2):229−237. doi: 10.1166/jbn.2011.1281
|
[30] |
刘丰源, 辛嘉英, 孙立瑞, 等. 纳米金的合成及其在重金属离子检测中的应用进展[J]. 食品科学,2020,41(7):218−227. [Liu Fengyuan, Xin Jiaying, Sun Lirui, et al. Recent progress in synthesis of gold nanoparticles and its application in detection of heavy metal ions[J]. Food Science,2020,41(7):218−227. doi: 10.7506/spkx1002-6630-20190225-174
|
[31] |
Susom D, Guinevere S, Pradeep K. Gold nanostar electrodes for heavy metal detection[J]. Sensors and Actuators B: Chemical,2019,281:383−391. doi: 10.1016/j.snb.2018.10.111
|
[32] |
Maâtouk F, Maâtouk M, Bekir K, et al. An electrochemical DNA biosensor for trace amounts of mercury ion quantification[J]. Journal of Water and Health,2016,14(5):808−815. doi: 10.2166/wh.2016.293
|
[33] |
Cai W, Xie S, Zhang J, et al. An electrochemical impedance biosensor for Hg2+ detection based on DNA hydrogel by coupling with DNAzyme-assisted target recycling and hybridization chain reaction[J]. Biosensors and Bioelectronics,2017,98:466−472. doi: 10.1016/j.bios.2017.07.025
|
[34] |
Murthy S C, Maria P N. Metal oxide nanoparticles and their applications in nanotechnology[J]. SN Applied Sciences,2019,1(6):607. doi: 10.1007/s42452-019-0592-3
|
[35] |
甘小荣. 基于ExoIII和功能化MoS2、HxTiS2纳米片信号放大的重金属离子电化学传感检测法[D]. 大连: 大连理工大学, 2017.
Gan Xiaorong. Electrochemical sensing for heavy metal ions based on the signal amplification of exoiii and functionalized MoS2, HxTiS2 Nanosheets[D]. Dalian: Dalian University of Technology, 2017.
|
[36] |
Xu Z W, Fan X K, Ma Q Y, et al. A sensitive electrochemical sensor for simultaneous voltammetric sensing of cadmium and lead based on Fe3O4/multiwalled carbon nanotube/laser scribed graphene composites functionalized with chitosan modified electrode[J]. Materials Chemistry and Physics,2019,238(1):121877.
|
[37] |
Wu D, Wang Y G, Zhang Y, et al. Facile fabrication of an electrochemical aptasensor based on magnetic electrode by using streptavidin modified magnetic beads for sensitive and specific detection of Hg2+[J]. Biosensors & Bioelectronics,2016,82:9−13.
|
[38] |
Luo J Y, Jiang D F, Liu T, et al. High-performance electrochemical mercury aptasensor based on synergistic amplification of Pt nanotube arrays and Fe3O4/rGO nanoprobes[J]. Biosensors & Bioelectronics,2018,104:1−7.
|
[39] |
Huang H, Chen T, Liu X Y, et al. Ultrasensitive and simultaneous detection of heavy metal ions based on three-dimensional graphene-carbon nanotubes hybrid electrode materials[J]. Analytica Chimica Acta,2014,852(10):45−54.
|
[40] |
Wang M H; Zhang S.; Ye Z H, et al. A gold electrode modified with amino-modified reduced graphene oxide, ion specific DNA and DNAzyme for dual electrochemical determination of Pb(II) and Hg(II)[J]. Microchimica Acta,2015,182(13-14):2251−2258. doi: 10.1007/s00604-015-1569-6
|
[41] |
Sumio I. Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348):56−58. doi: 10.1038/354056a0
|
[42] |
Sumio I, Toshinari I. Single-shell carbon nanotubes of 1-nm diameter[J]. Nature,1993,363(6430):603−605. doi: 10.1038/363603a0
|
[43] |
Andrea B, Daniel M. Arsenic(III) detection in water by flow-through carbon nanotube membrane decorated by gold nanoparticles[J]. Electrochimica Acta,2019,318:496−503. doi: 10.1016/j.electacta.2019.06.114
|
[44] |
Amir M A, Sandra C, Sanja M, et al. Antimony nanoparticle-multiwalled carbon nanotubes composite immobilized at carbon paste electrode for determination of trace heavy metals[J]. Sensors and Actuators B: Chemical,2014,191:320−325. doi: 10.1016/j.snb.2013.08.087
|
[45] |
Ajayan P M. Nanotubes from carbon[J]. Chemical reviews,1999,99(7):1787−1800. doi: 10.1021/cr970102g
|
[46] |
Xia Y N, Yang P D, Sun Y G, et al. One-dimensional nanostructures: Synthesis, characterization, and applications[J]. Advanced materials,2010,15(5):353−389.
|
[47] |
Shiva K A, Gayathri C, Sivalingam G, et al. Current advances in the detection of neurotransmitters by nanomaterials: An update[J]. TrAC Trends in Analytical Chemistry,2020,123:115766. doi: 10.1016/j.trac.2019.115766
|
[48] |
Xie F, Yang M, Jiang M, et al. Carbon-based nanomaterials – a promising electrochemical sensor toward persistent toxic substance[J]. TrAC Trends in Analytical Chemistry,2019,119:115624. doi: 10.1016/j.trac.2019.115624
|
[49] |
Wang H, Liu Y, Liu G. Reusable resistive aptasensor for Pb(II) based onthe Pb(II)-induced despiralization of a DNA duplex and formation of a G-quadruplex[J]. Microchimica Acta,2018,185(2):1−8.
|
[50] |
Wang Y H, Wang P, Wang Y Q, et al. Single strand DNA functionalized single wall carbon nanotubes as sensitive electrochemical labels for arsenite detection[J]. Talanta,2015,141:122−127. doi: 10.1016/j.talanta.2015.03.040
|
[51] |
Abdulazeez T L. Progress in utilisation of graphene for electrochemical biosensors[J]. Biosensors& Bioelectronics,2018,106(30):149−178.
|
[52] |
Shao Y Y, Wang J, Wu H, et al. Graphene based electrochemical sensors and biosensors: A review[J]. Electroanalysis,2010,22(10):1027−1036. doi: 10.1002/elan.200900571
|
[53] |
代洪秀. 功能化聚吡咯纳米复合材料在电化学传感中的应用[D]. 济南: 山东大学, 2018.
Dai Hongxiu. Study on functionalized polypyrrole nanocomposites-based electrochemical sensors[D]. Jinan: Shandong University, 2018.
|
[54] |
K S N, A K G, S V M, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666−669. doi: 10.1126/science.1102896
|
[55] |
Craig E B, Trevor J D, Gregory G W, et al. Electrocatalysis at graphite and carbon nanotube modified electrodes: Edge-plane sites and tube ends are the reactive sites[J]. Chemical Communications,2005(7):829−841. doi: 10.1039/b413177k
|
[56] |
Martin P, Adriano A, Alessandra B, et al. Graphene for electrochemical sensing and biosensing[J]. TrAC Trends in Analytical Chemistry,2010,29(9):954−965. doi: 10.1016/j.trac.2010.05.011
|
[57] |
Varun P, Taekwon K, Majid B, et al. Three-dimensional graphene nanosheet encrusted carbon micropillar arrays for electrochemical sensing[J]. Nanoscale,2012,4(12):3673−3678. doi: 10.1039/c2nr30161j
|
[58] |
Gao F, Gao C, He S Y, et al. Label-free electrochemical lead (II) aptasensor using thionine as the signaling molecule and graphene as signal-enhancing platform[J]. Biosensors & Bioelectronics,2016,81(15):15−22.
|
[59] |
Zhang Y, Zeng G M, Tang L, et al. Electrochemical sensor based on electrodeposited graphene-Au modified electrode and nanoAu carrier amplified signal strategy for attomolar mercury detection[J]. Analytical Chemistry,2015,87(2):989−96. doi: 10.1021/ac503472p
|
[60] |
Gan X R, Zhao H M, Quan X, et al. An electrochemical sensor based on p-aminothiophenol/Au nanoparticle-decorated HxTiS2 nanosheets for specific detection of picomolar Cu(II)[J]. Electrochimica Acta,2016,190:480−489. doi: 10.1016/j.electacta.2015.12.145
|
[61] |
Gan X R, Zhao H M, Chen S, et al. Three-dimensional porous HxTiS2 nanosheet–polyaniline nanocomposite electrodes for directly detecting trace Cu(II) ions[J]. Analytical Chemistry,2015,87(11):5605−5613. doi: 10.1021/acs.analchem.5b00500
|
[62] |
鲁志伟. 构建特殊结构的碳基纳米复合材料: 高灵敏重金属离子电化学传感器的研究[D]. 广州: 华南理工大学, 2019.
Lu Zhiwei. Fabrication of carbon-based nanocomposites with special structure: highly sensitive heavy metal ion electrochemical sensors[D]. Gunagzhou: South China University of Technology, 2019.
|
[63] |
崔琳. 重金属离子电化学传感器的构建及其应用[D]. 南京: 南京大学, 2015.
Cui Lin. Construction of electrochemical sensors for heavy metal ions and their application[D]. Nanjing: Nanjing University, 2015.
|
[64] |
A K J, V K G, L P S, et al. A comparative study of Pb2+ selective sensors based on derivatized tetrapyrazole and calix[4]arene receptors[J]. Electrochimica Acta,2006,51(12):2547−2553. doi: 10.1016/j.electacta.2005.07.040
|
[65] |
Seyed M T, Noor M D, Parirokh L, et al. An electrochemical aptasensor based on gold nanoparticles, thionine and hairpin structure of complementary strand of aptamer for ultrasensitive detection of lead[J]. Sensors and Actuators B: Chemical,2016,234(29):462−469.
|
[66] |
Zhu Y, Zeng G M, Zhang Y, et al. Highly sensitive electrochemical sensor using a MWCNTs/GNPs-modified electrode for lead (II) detection based on Pb2+-induced G-rich DNA conformation[J]. Analyst,2014,139(19):5014−5020. doi: 10.1039/C4AN00874J
|
[67] |
Peng Y J, Li Y, Li L, et al. A label-free aptasensor for ultrasensitive Pb2+ detection based on electrochemiluminescence resonance energy transfer between carbon nitride nanofibers and Ru(phen)32+[J]. Journal of Hazardous Materials,2018,359:121−128. doi: 10.1016/j.jhazmat.2018.07.033
|
[68] |
Li F, Feng Y, Zhao C, et al. Crystal violet as a G-quadruplex-selective probe for sensitive amperometric sensing of lead[J]. Chemical Communications,2011,47(43):11909−11911. doi: 10.1039/c1cc15023e
|
[69] |
V K G, A K S, M A K, et al. Neutral carriers based polymeric membrane electrodes for selective determination of mercury (II)[J]. Analytica Chimica Acta,2007,590(1):81−90. doi: 10.1016/j.aca.2007.03.014
|
[70] |
He L L, Chen L, Lin Y, et al. A sensitive biosensor for mercury ions detection based on hairpin hindrance by thymine-Hg(II)-thymine structure[J]. Journal of Electroanalytical Chemistry,2018,814:161−167. doi: 10.1016/j.jelechem.2018.02.050
|
[71] |
Yu Y J, Yu C, Gao R F, et al. Dandelion-like CuO microspheres decorated with Au nanoparticle modified biosensor for Hg(2+) detection using a T-Hg2+-T triggered hybridization chain reaction amplification strategy[J]. Biosensors & Bioelectronics,2019,131:207−213.
|
[72] |
Ji H A, Seon J P, Oh S K, et al. High-performance flexible graphene aptasensor for mercury detection in mussels[J]. ACS NANO,2013,7(12):10563−10571. doi: 10.1021/nn402702w
|
[73] |
Samira M M, Foad G, Abdollah S, et al. Transport properties of a molybdenum disulfide and carbon dot nanohybrid transistor and its applications as a Hg2+ aptasensor[J]. ACS Applied Electronic Materials,2020,2(3):635−645. doi: 10.1021/acsaelm.9b00632
|
[74] |
Li H B, Xue Y, Wang W. Femtomole level photoelectrochemical aptasensing for mercury ions using quercetin-copper(II) complex as the DNA intercalator[J]. Biosensors & Bioelectronics,2014,54:317−322.
|
[75] |
Xu N N, Hou T, Li F. A label-free photoelectrochemical aptasensor for facile and ultrasensitive mercury ion assay based on a solution-phase photoactive probe and exonuclease III-assisted amplification[J]. Analyst 2019, 144 (12): 3800−3806.
|
[76] |
Cui L, Wu J, Li M Q, et al. Highly sensitive electrochemical detection of mercury (II) via single ion-induced three-way junction of DNA[J]. Electrochemistry Communications,2015,59:77−80. doi: 10.1016/j.elecom.2015.07.012
|
[77] |
隋佳辰, 于寒松, 代佳宇, 等. 生物传感器检测食品中重金属砷的研究进展[J]. 食品科学,2016,37(7):233−238. [Sui Jiachen, Yu Hansong, Dai Jiayu, et al. Advances in the application of biosensor technology for the detection of heavy metal arsenic in foods[J]. Food Science,2016,37(7):233−238. doi: 10.7506/spkx1002-6630-201607042
|
[78] |
Mina K, Hyun U, Sunbaek B, et al. Arsenic removal from vietnamese groundwater using the arsenic-binding DNA aptamer[J]. Environmental Science & Technology,2009,43(24):9335−9340.
|
[79] |
Cui L, Wu J, Ju H X. Electrochemical biosensor based on three-dimensional reduced graphene oxide and polyaniline nanocomposite for selective detection of mercury ions[J]. Sensors and Actuators B: Chemical,2015,214:63−69. doi: 10.1016/j.snb.2015.02.127
|
[80] |
Wen S H, Wang L, Yuan Y H, et al. Electrochemical sensor for arsenite detection using graphene oxide assisted generation of prussian blue nanoparticles as enhanced signal label[J]. Analytical Chimica Acta,2018,1002:82−89. doi: 10.1016/j.aca.2017.11.057
|
[81] |
Sorour S B, Abdollah N. Novel chitosan-Nafion composite for fabrication of highly sensitive impedimetric and colorimetric As (III) aptasensor[J]. Biosensors & Bioelectronics,2019,131:1−8.
|
[82] |
Ali A E, F A, E H, et al. A novel aptasensor based on 3D-reduced graphene oxide modified gold nanoparticles for determination of arsenite[J]. Biosensors & Bioelectronics,2018,122:25−31.
|
[83] |
Gu H D, Yang Y Y, Chen F, et al. Electrochemical detection of arsenic contamination based on hybridization chain reaction and RecJf exonuclease-mediated amplification[J]. Chemical Engineering Journal,2018,353:305−310. doi: 10.1016/j.cej.2018.07.137
|
[84] |
赵静, 孙海娟, 冯叙桥. 食品中重金属镉污染状况及其检测技术研究进展[J]. 食品工业科技,2014,35(16):371−376. [Zhao Jing, Sun Haijuan, Feng Xuqiao. Research progress in pollution of heavy metals cadmium and its detection technology in food[J]. Science and Technology of Food Industry,2014,35(16):371−376.
|
[85] |
Wang X F, Gao W Y, Yan W, et al. A novel aptasensor based on graphene/graphite carbon nitride nanocomposites for cadmium detection with high selectivity and sensitivity[J]. ACS Applied Nano Materials,2018,1(5):2341−2346. doi: 10.1021/acsanm.8b00380
|
[86] |
Chang-Seuk L, Su Hwan Y, Su Hwan K. A “turn-on” electrochemical aptasensor for ultrasensitive detection of Cd2+ using duplexed aptamer switch on electrochemically reduced graphene oxide electrode[J]. Microchemical Journal 2020: 159.
|
[87] |
Liu Y, Lai Y X, Yang G J, et al. Cd-aptamer electrochemical biosensor based on AuNPs/CS modified glass carbon electrode[J]. Journal of Biomedical Nanotechnology,2017,13(10):1253−1259. doi: 10.1166/jbn.2017.2424
|
[88] |
Li Y, Ran G J, Lu G, et al. Highly sensitive label-free electrochemical aptasensor based on screen-printed electrode for detection of Cadmium (II) ions[J]. Journal of The Electrochemical Society,2019,166(6):B449−B455. doi: 10.1149/2.0991906jes
|
[89] |
Colani T F, Omotayo A A, Nonhlangabezo M. Electrochemical aptasensing of cadmium (II) on a carbon black-gold nano-platform[J]. Journal of Electroanalytical Chemistry,2020:858.
|
1. |
戴明云,李斌,张朝阳,白富瑾,肖伟. 螺旋藻生长影响因素及功能特性应用研究进展. 现代农业科技. 2025(01): 161-165+179 .
![]() | |
2. |
李雪贤,刘洋,皮杰,桂雨婷,陆娟娟. 螺旋藻的主要成分及生理功能研究进展. 水产养殖. 2025(02): 37-42 .
![]() | |
3. |
韩佩,夏嵩,闫冰,姜钦亮,王一雯. 极大螺旋藻对四氧嘧啶性糖尿病小鼠的降血糖作用. 食品研究与开发. 2025(09): 44-51 .
![]() | |
4. |
吴朋徽,刘耀,张磊,肖芃颖,张玥. 微藻两阶段培养技术研究进展. 微生物学通报. 2024(01): 1-16 .
![]() | |
5. |
姜梦云,刘旭,衣然. 4种前处理方法-原子荧光光谱法测定螺旋藻中总砷含量. 食品安全导刊. 2024(03): 56-58 .
![]() | |
6. |
孙博,武晋海,李金凤,赵佳敏,刘金桃,黄凤丽. 螺旋藻口服液制备的工艺优化. 食品安全导刊. 2024(08): 127-131+135 .
![]() | |
7. |
唐魁延,龚艺松,田冬青,张晓宇,聂远洋,李波. 螺旋藻豆腐的研制开发. 河南科技学院学报(自然科学版). 2024(04): 15-27 .
![]() | |
8. |
薛宪辉,李思雨,郭睿,崔文凯,纪蓓. 螺旋藻风味酱的发酵工艺研究. 中国调味品. 2024(08): 69-73 .
![]() | |
9. |
王丽梅,西妮,穆文静,苏小军,张永明. 基于Cite Space对螺旋藻藻蓝蛋白的研究进展与热点分析. 食品与发酵工业. 2024(16): 313-323 .
![]() | |
10. |
宋盈萱,尹馨一,刘盈萱. 螺旋藻营养成分及生物活性研究进展. 食品安全导刊. 2024(27): 178-182 .
![]() | |
11. |
曾巧辉,余杏同,林妙銮. 螺旋藻蛋白-原花青素稳定亚麻籽油品质的研究. 佛山科学技术学院学报(自然科学版). 2024(05): 54-68 .
![]() | |
12. |
杨正磊,冯鑫,尹淑涛. 微藻资源概述及微藻多糖的生物活性研究进展. 中国食物与营养. 2024(09): 58-66 .
![]() | |
13. |
陈慧桢,吕莹果,陈洁,李雪琴. 螺旋藻方便面片制备工艺优化. 粮食与油脂. 2024(11): 135-142+162 .
![]() | |
14. |
柯善文,习向玉,陈翊可,张官鹏,宋富艳,韩栋敏,苏蓉,李晓雪,牛鑫,单华佳,梁倩倩. PDA培养基中添加不同有机氮源物质对黑木耳退化菌种复壮效果的影响. 山东农业科学. 2024(11): 121-126 .
![]() | |
15. |
袁泽文,高旭芳,田益玲. 响应面法优化乙酸锌对螺旋藻护色的研究. 粮食与油脂. 2023(04): 137-140 .
![]() | |
16. |
米顺利,竹烨,张艺,黄晓菊,蒋心怡,易湘茜. 螺旋藻复配代餐粉的研制. 保鲜与加工. 2023(07): 43-49 .
![]() | |
17. |
李平,吕莹果,李雪琴,陈洁. 螺旋藻粉对面团流变性质及面筋结构的影响. 食品科学. 2023(14): 63-71 .
![]() | |
18. |
王志忠,穆洁,巩东辉,郭彩凤,王志国,宝俊刚. 钝顶螺旋藻与五种常见食物营养成分对比分析. 食品与发酵科技. 2023(04): 111-115+121 .
![]() | |
19. |
郭旭,魏登枭,钟彩荣,兰英,何勇锦,陈必链. 正己烷与氯化钙介导法联产提取未破壁螺旋藻的藻蓝蛋白和油脂. 食品与发酵工业. 2023(17): 202-208 .
![]() | |
20. |
魏登,李美善,刘艳霞,金永燮,佟立爽. 精酿绿啤加工工艺优化及其挥发性风味鉴定分析. 中国食品添加剂. 2023(10): 217-225 .
![]() | |
21. |
魏登,刘艳霞,金永燮,佟立爽. 菠菜螺旋藻复合精酿小麦绿啤挥发性香气表征研究. 食品安全导刊. 2023(30): 88-91 .
![]() | |
22. |
吴慧. 螺旋藻曲奇饼干制作工艺的研究. 食品安全导刊. 2022(04): 128-131+135 .
![]() | |
23. |
付雨,姜雨,王进博,张铂瑾,宋宸,孙明霞. 螺旋藻类保健食品批准情况及问题. 食品与机械. 2022(08): 1-6+13 .
![]() | |
24. |
李青卓,张楠,梅兴国,吴基良. 新鲜螺旋藻中β-胡萝卜素提取与测定. 湖北科技学院学报(医学版). 2022(04): 287-291 .
![]() | |
25. |
刘璐璐,陈玟璇,刘小慧,李世乐,许志浩,陈洪彬,郑宗平,王宝贝. 雨生红球藻对戚风蛋糕品质的影响及其虾青素稳定性. 食品工业科技. 2022(19): 76-83 .
![]() | |
26. |
佟立爽,王晏驰,周娜,李美善,魏登. 不同温度条件下精酿绿啤二次发酵的挥发性风味差异分析. 中国食品添加剂. 2022(11): 9-17 .
![]() | |
27. |
张春艳,张震,仇钧仪,初宇轩,彭磊磊,罗鹏,陈成勋. 饲料添加复合氨基酸对锦鲤生长和生理生化指标的影响. 经济动物学报. 2022(04): 261-267 .
![]() |