Citation: | LIU Dongmei, ZHOU Ruoya, WANG Yong, et al. Research Progress on Formation Mechanism and Control Technology of Hazards in Fried and Roasted Foods[J]. Science and Technology of Food Industry, 2021, 42(17): 405−412. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080046. |
[1] |
Chen J, He Z, Qin F, Chen J, Zeng M. Formation of free and protein-bound heterocyclic amines in roast beef patties assessed by UPLC-MS/MS[J]. J Agric Food Chem, 2017, 65(22): 4493−4499.
|
[2] |
薛超轶. 非前提氨基酸对肉制品中杂环胺的抑制途径研究[D]. 无锡: 江南大学, 2020.
XueC Y. Study on the inhibitory pathway of non-precurs or amino acids on heterocyclic amines in mest products[D]. Wuxi: Jiangnan University, 2020.
|
[3] |
Mottram D S, Low M Y, Elmore J S. The maillard reaction and its role in the formation of acrylamide and other potentially hazardous compounds in foods[J]. Acrylamide and Other Hazardous Compounds in Heat-Treated Foods,2006,4:3−22.
|
[4] |
张梦茹. 辛辣味香辛料及其特征成分对烤牛肉饼中杂环胺生成规律的影响研究[D]. 无锡: 江南大学, 2017.
Zhang M R. Effect of pungent spices and their characteristic ingredients on the formation of heterocyclic amines in roast beef patties[D]. Wuxi: Jiangnan University, 2017.
|
[5] |
Murkovic M. Formation of heterocyclic aromatic amines in model systems[J]. Journal of Chromatography B Analytical Technologies in the Biomedical & Life Sciences,2017,802(1):3−10.
|
[6] |
Shioya M, Wakabayashi K, Sato S, et al. Formation of a mutagen, 2-amino-1-methyl-6-phenylimidazo [4, 5-b]-pyridine (PhIP) in cooked beef, by heating a mixture containing creatinine, phenylalanine and glucose[J]. Mutation Research Letters,1987,191(3-4):133−138. doi: 10.1016/0165-7992(87)90143-6
|
[7] |
董学文. 酱牛肉中杂环胺的控制及其品质影响因素研究[D]. 长春: 吉林大学, 2020.
Dong X W. Reaearch on control and quality factors of heterocyclic amines in braised sauce beef[D]. Changchun: Jilin University, 2020.
|
[8] |
Bordas M, Moyano E, Puignou L, et al. Formation and stability of heterocyclic amines in a meat flavour model system: Effect of temperature, time and precursors[J]. Journal of Chromatography B,2004,802(1):11−17. doi: 10.1016/j.jchromb.2003.09.024
|
[9] |
Wakabayashi K, Totsuka Y, Fukutome K, et al. Human exposure to mutagenic/carcinogenic heterocyclic amines and comutagenic β-carbolines[J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis,1997,376(1−2):253−259. doi: 10.1016/S0027-5107(97)00050-X
|
[10] |
Zimmerli B, Rhyn P, Zoller O, et al. Occurrence of heterocyclic aromatic amines in the Swiss diet: Analytical method, exposure estimation and risk assessment[J]. Food Additives & Contaminants,2001,18(6):533−551.
|
[11] |
Mehr A, Hosseini S, Ardebili S. Effects of nutmeg and ginger essential oils and their nanoemulsions on the formation of heterocyclic aromatic amines and polycyclic aromatic hydrocarbons in beef patties during 90 days freezing storage[J]. Journal of Food Measurement and Characterization,2019,13(3):2041−2050. doi: 10.1007/s11694-019-00125-4
|
[12] |
Zhang N, Zhao Y, Fan D, et al. Inhibitory effects of some hydrocolloids on the formation of heterocyclic amines in roast beef[J]. Food Hydrocolloids,2020,108(2):106−114.
|
[13] |
Liao G, Xu X, Zhou G. Effects of cooked temperatures and addition of antioxidants on formation of heterocyclic aromatic amines in pork floss[J]. Journal of Food Processing and Preservation,2009,33(2):159−175. doi: 10.1111/j.1745-4549.2008.00239.x
|
[14] |
Lee H, Lin M-Y. Formation and identification of carcinogenic heterocyclic aromatic amines in boiled pork juice[J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis,1994,308(1):77−88. doi: 10.1016/0027-5107(94)90200-3
|
[15] |
王园, 吴酉芝, 彭增起, 等. 油炸条件对鱼肉中杂环胺与反式脂肪酸形成的影响[J]. 食品工业,2018,39(7):18−22. [Wang Y, Youzhi W U, Peng Z, et al. Effects of frying on formation of heterocyclic amines and trans fatty acids in grass carp[J]. The food industry,2018,39(7):18−22.
|
[16] |
Sabally K, Sleno L, Jauffrit J A, et al. Inhibitory effects of apple peel polyphenol extract on the formation of heterocyclic amines in pan fried beef patties[J]. Meat Science,2016,117:57−62.
|
[17] |
Wenzl T, De La Calle M B, Anklam E. Analytical methods for the determination of acrylamide in food products: A review[J]. Food Additives and Contaminants,2017,20(10):885−902.
|
[18] |
张鹏澜. 薯条中丙烯酰胺的释放规律及机制探究[D]. 杭州: 浙江工商大学, 2019.
Zhang P L. Study on the relesae regulation and mechanism of acrylamide in french fries[D]. Hangzhou: Zhejiang Gongshang University, 2019.
|
[19] |
Yaylayan V A, Wnorowski A, Perez Locas C. Why asparagine needs carbohydrates to generate acrylamide[J]. Journal of agricultural and food chemistry,2016,51(6):1753−1757.
|
[20] |
Zyzak D V, Sanders R A, Stojanovic M, et al. Acrylamide formation mechanism in heated foods[J]. Journal of Agricultural & Food Chemistry,2003,51(16):4782−4787.
|
[21] |
管玉格. 食品原料及加工方式对丙烯酰胺形成的影响[D]. 大连: 大连工业大学, 2016.
Guan Y G. Effect of food materials and processing methods on the formation of acrylamide[D]. Dalian: Dalian Polytechnic University, 2016.
|
[22] |
Tareke E, Rydberg P, Karlsson P, et al. Analysis of acrylamide, a carcinogen formed in heated foodstuffs[J]. Journal of Agricultural and Food Chemistry,2002,50(17):4998−5006. doi: 10.1021/jf020302f
|
[23] |
王思维. 油炸食品中丙烯酰胺生成及其感官评价方法研究[D]. 大连: 大连工业大学, 2017.
Wang S W. Study on the formation of acrylamide in fried food and its sensory evalution[D]. Dalian: Dalian Polytechnic University, 2017.
|
[24] |
杨雪欣, 陈可靖. 食品中抑制丙烯酰胺的研究进展[J]. 食品研究与开发,2020,41(10):220−224. [Yang X X, Chen K J. Research prograss on inhabition of acrylamide in food[J]. Food research and development,2020,41(10):220−224. doi: 10.12161/j.issn.1005-6521.2020.10.036
|
[25] |
朱易. 肉制品无甲醛无 3, 4-苯并芘液熏技术研究[D]. 南京: 南京农业大学, 2013.
Zhu Y. Study on the liquid smoking technology of smoked meats without formaldehyde and benzo(a)pyrene[D]. Nanjing: Nanjing Agriculture University, 2013.
|
[26] |
Sahin S, Ulusoy H I, Alemdar S, et al. The presence of polycyclic aromatic hydrocarbons (PAHs) in grilled beef, chicken and fish by considering dietary exposure and risk assessment[J]. Food Science of Animal Resources,2020,40(5):675−684. doi: 10.5851/kosfa.2020.e43
|
[27] |
聂文, 屠泽慧, 占剑峰, 等. 食品加工过程中多环芳烃生成机理的研究进展[J]. 食品科学,2018,39(15):269−274. [Nie W, Tu Z H, Zhan J F, et al. Mechanism of polycyclic aromatic hydrocarbon formation in food processing: A review[J]. Food Science,2018,39(15):269−274. doi: 10.7506/spkx1002-6630-201815039
|
[28] |
Saito E, Tanaka N, Miyazaki A, et al. Concentration and particle size distribution of polycyclic aromatic hydrocarbons formed by thermal cooking[J]. Food Chemistry,2014,153:285−291. doi: 10.1016/j.foodchem.2013.12.055
|
[29] |
Larsson B K, Sahlberg G P, Eriksson A T, et al. Polycyclic aromatic hydrocarbons in grilled food[J]. Journal of Agricultural and Food Chemistry,1983,31(4):867−873. doi: 10.1021/jf00118a049
|
[30] |
刘玉兰, 安柯静, 马宇翔, 等. 煎炸油中极性组分与多环芳烃相关性研究[J]. 中国油脂,2017,42(6):81−85. [Liu Y L, An K J, Ma Y X, et al. Correlation between polar component and polyclic aromatic hydrocarbons in frying oil[J]. China Oils and Fats,2017,42(6):81−85. doi: 10.3969/j.issn.1003-7969.2017.06.017
|
[31] |
Isleroglu H, Kemerli T, Ozdestan O, et al. Effect of oven cooking method on formation of heterocyclic amines and quality characteristics of chicken patties: Steam-assisted hybrid oven versus convection ovens[J]. Poultry Science,2014,93(9):2296−2303. doi: 10.3382/ps.2013-03552
|
[32] |
Ruihong Feng Y B, Dongmei Liu, Shuang Zhang, et al. Steam-assisted roasting inhibits formation of heterocyclic aromatic amines and alters volatile flavour profile of beef steak[J]. International Journal of Food ence & Technology,2020,55(9):3061−3072.
|
[33] |
刘洁, 刘晓杰, 刘亚伟. 焙烤食品中生成丙烯酰胺的影响因素[J]. 粮油加工,2014(7):66−71. [Liu J, Liu X J, Liu Y W. Effect factors about acrylamide formation in bakery products[J]. Cereals and Oils Processing,2014(7):66−71.
|
[34] |
周泓伶, 包玉龙, 刘冬梅, 等. 间歇性添加蒸汽对餐包品质的影响[J]. 食品工业科技,2020,41(15):90−98. [Zhou H L, Bao Y L, Liu D M, et al. Effect of steam addition frequency on the quality of bread rolls[J]. Science and Technology of Food Industry,2020,41(15):90−98.
|
[35] |
Felton J, Fultz E, Dolbeare F, et al. Effect of microwave pretreatment on heterocyclic aromatic amine mutagens/carcinogens in fried beef patties[J]. Food and Chemical Toxicology,1994,32(10):897−903.
|
[36] |
Jinap S, Mohd-Mokhtar M, Farhadian A, et al. Effects of varying degrees of doneness on the formation of heterocyclic aromatic amines in chicken and beef satay[J]. Meat Science,2013,94(2):202−207. doi: 10.1016/j.meatsci.2013.01.013
|
[37] |
Sun L, Zhang F, Yong W, et al. Potential sources of carcinogenic heterocyclic amines in Chinese mutton shashlik[J]. Food Chemistry,2010,123(3):647−652. doi: 10.1016/j.foodchem.2010.05.019
|
[38] |
张晨霞. 油炸鸡肉中杂环胺的形成及控制[D]. 郑州: 河南工业大学, 2020.
Zhang C X. Formation and inhabition of heterocyclic aromatic amines in deep-fat fried chicken[D]. Zhengzhou: Henan University of Technology, 2020.
|
[39] |
温荣欣, 陈倩, 秦泽宇, 等. 煎炸肉制品中杂环胺的控制技术及体内代谢调控研究进展[J]. 食品工业科技,2019(1):52−60. [Wen R X, Chen Q, Qin Z Y, et al. Research progress of control technology of heterocyclic amines in fried mest products and its metabolic control in human[J]. Science and Technology of Food Industry,2019(1):52−60.
|
[40] |
聂文. 食品组分对烤肠中PAHs生成的影响及其抑制研究[D]. 合肥: 合肥工业大学, 2019.
Nie W. Effects of food components on PAHs formation in grilled sausage and its inhibition[D]. Hefei: Hefei University of Technology, 2019.
|
[41] |
朱小玲. 烹饪过程中多环芳烃的产生及控制[J]. 四川烹饪高等专科学校学报,2012,5:22−25. [Zhu X L. Formation and inhabition of PAHs in cooking[J]. Journal of Sichuan Culinary College,2012,5:22−25.
|
[42] |
孟晓霞, 彭增起, 冯云. 煎炸对肉制品中杂环胺及多环芳香烃化合物含量的影响及其控制措施[J]. 肉类研究,2009,23(6):52−55. [Meng X X, Peng Z Q, Feng Y. Effect factorss of formation of polycyclic aromatic hydrocarbon and heterocyclic amines in fried meat and control measures[J]. Meat Reaserch,2009,23(6):52−55. doi: 10.3969/j.issn.1001-8123.2009.06.014
|
[43] |
程璐. 曲奇中美拉德反应伴生危害物及其控制技术研究[D]. 杭州: 浙江大学, 2014.
Cheng L. Studies on maillard reaction-derived hazards and their control technology in a cookie system[D]. Hangzhog: Zhejiang University, 2014.
|
[44] |
Pedreschi F, Kaack K, Granby K. Reduction of acrylamide formation in potato slices during frying[J]. LWT-Food Science and Technology,2004,37(6):679−685. doi: 10.1016/j.lwt.2004.03.001
|
[45] |
赵红艳. 蒸汽低温烹饪对烤鸡翅食用品质影响的研究[J]. 肉类工业,2018(12):31−33. [Zhao H Y. Study on the effect of steam and low-temperature cooking on the edible quality of roast chicken wing[J]. Meat Reaserch,2018(12):31−33. doi: 10.3969/j.issn.1008-5467.2018.12.007
|
[46] |
李梦琪. 真空低温烹饪工艺对鸡腿肉品质及安全性的影响研究[D]. 烟台: 烟台大学, 2019.
Li M Q. The effect of sous vide cooking on the quality and safety of chicken legs[D]. Yantai: Yantai University, 2019.
|
[47] |
Raheel S. 香辛料添加和过热蒸汽光波烤制对烤羊肉杂环胺的抑制研究[D]. 北京: 中国农业科学院, 2019.
Raheel S. Effect of spices and superheated steam-light wave roasting on inhibition of heterocyclic aromatic amines in roasted lamb meat[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019.
|
[48] |
李进. 香辛料抑制卤肉中β-咔啉类杂环胺形成的物质基础及机理初步研究[D]. 武汉: 华中农业大学, 2019.
Li J. Prelimimary study on the substance and mechanism of the inhibition of spice on the formation of β-carbolines heterocyclic amines in braised meat[D]. Wuhan: Huazhong Agricultural University, 2019.
|
[49] |
秦川. 膳食类黄酮抑制烤牛肉饼中杂环胺PhIP的形成作用研究[D]. 无锡: 江南大学, 2014.
Qin C. Inhibition of PhIP in roast beef patties by dietary flavonoids: Formation mechanism[D]. Wuxi: Jiangnan University, 2014.
|
[50] |
Janoszka B. HPLC-fluorescence analysis of polycyclic aromatic hydrocarbons (PAHs) in pork meat and its gravy fried without additives and in the presence of onion and garlic[J]. Food Chemistry,2011,126(3):1344−1353. doi: 10.1016/j.foodchem.2010.11.097
|
[51] |
Ciesarová Z, Suhaj M, Horváthová J. Correlation between acrylamide contents and antioxidant capacities of spice extracts in a model potato matrix[J]. Journal of Food & Nutrition Research,2008,47(1):1−5.
|
[52] |
包香香. 油炸罗非鱼中杂环胺的形成及抑制[D]. 上海: 上海海洋大学, 2020.
Bao X X. Formation and inhabition of heterocyclic aromatic amines in deep fried tilapia[D]. Shanghai: Shanghai Ocean University, 2020.
|
[53] |
Weisburger J H, Veliath E, Larios E, et al. Tea polyphenols inhibit the formation of mutagens during the cooking of meat[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis,2002,516(1-2):19−22. doi: 10.1016/S1383-5718(01)00351-5
|
[54] |
Jamali M A, Zhang Y, Teng H, et al. Inhibitory effect of Rosa rugosa tea extract on the formation of heterocyclic amines in meat patties at different temperatures[J]. Molecules,2016,21(2):173. doi: 10.3390/molecules21020173
|
[55] |
Keşkekoğlu H, Üren A. Inhibitory effects of pomegranate seed extract on the formation of heterocyclic aromatic amines in beef and chicken meatballs after cooking by four different methods[J]. Meat Science,2014,96(4):1446−1451. doi: 10.1016/j.meatsci.2013.12.004
|
[56] |
齐颖. 油炸肉制品加工过程中多环芳烃的形成及控制研究[D]. 天津: 天津科技大学, 2015.
Qi Y. Study of formation and inhibition of polycyclic aromatic hydrocarbons during the process of frying meat product[D]. Tianjin: Tianjin University of Science and Technology, 2015.
|
[57] |
Becalski A, Lau B P-Y, Lewis D, et al. Acrylamide in foods: Occurrence, sources, and modeling[J]. Journal of Agricultural and Food Chemistry,2003,51(3):802−808. doi: 10.1021/jf020889y
|
[58] |
Hedegaard R V, Frandsen H, Skibsted L H. Kinetics of formation of acrylamide and Schiff base intermediates from asparagine and glucose[J]. Food Chemistry,2008,108(3):917−925. doi: 10.1016/j.foodchem.2007.11.073
|
[59] |
李金旺. 大蒜粉抑制丙烯酰胺的作用机理研究[D]. 泰安: 山东农业大学, 2016.
Li J W. Inhibition mechanism of garlic powder on acrylamide formation[D]. Taian: Shandong Agricultural University, 2016.
|
[1] | ZHU Cheng-hao, TANG Hui, CHAI Sheng-feng, LIU Zhi-xin, WANG Ting, LI Yu-liang. Analysis and Evaluation of Nutritional Components from Leaves and Flowers of Camellia nitidissima in Grafted and Seedling Trees[J]. Science and Technology of Food Industry, 2019, 40(20): 329-333,347. DOI: 10.13386/j.issn1002-0306.2019.20.053 |
[2] | FANG Ling, MA Hai-xia, LI Lai-hao, YANG Xian-qing, RONG Hui, ZHU Chang-bo. Analysis and evaluation of nutrient composition in Ostrea rivularis from south China sea coast[J]. Science and Technology of Food Industry, 2018, 39(2): 301-307,313. DOI: 10.13386/j.issn1002-0306.2018.02.056 |
[3] | ZHU Yan-chao, LOU Yong-jiang, XIONG Guo-tong, LIU Jian, LIU Ting, LOU Yue. Composition analysis and evaluation of Goosefish liver nutrition[J]. Science and Technology of Food Industry, 2017, (05): 356-360. DOI: 10.13386/j.issn1002-0306.2017.05.059 |
[4] | WANG Ting-ting, GAO Guan-shi, WU Su-rui, YANG Zhen-fu, GUI Ming-ying. Analysis of nutritional compositions and evaluation of nutritional quality for Polyporus ellisii[J]. Science and Technology of Food Industry, 2016, (21): 342-346. DOI: 10.13386/j.issn1002-0306.2016.21.058 |
[5] | MA Yi- dan, LIU Hong, YAN Rui-xin, MA Si-cong, XUE Bing-xiang, WANG Qian. Analysis and evaluation of nutrient content of Synsepalum dulcificum seed[J]. Science and Technology of Food Industry, 2016, (13): 346-351. DOI: 10.13386/j.issn1002-0306.2016.13.063 |
[6] | CHE Yu-hong, YANG Bo, Aisajan·Mamat, GUO Chun-miao, ZHANG Jun, MA Wen-peng, JIANG Ping. Analysis and evaluation of nutritional composition of big quince in Shache county of Xinjiang[J]. Science and Technology of Food Industry, 2015, (24): 345-348. DOI: 10.13386/j.issn1002-0306.2015.24.067 |
[7] | JIANG Fang-yan, SONG Wen-ming, YANG Ning, HUANG Hai. Analysis and evaluation of nutrient content of Caulerpa lentillifera[J]. Science and Technology of Food Industry, 2014, (24): 356-359. DOI: 10.13386/j.issn1002-0306.2014.24.067 |
[8] | CUI Ling-jun, WANG Bao-ping, QIAO Jie, WANG Wei-wei, ZHANG Jian-guo. Analysis and evaluation of nutritive composition of four species of Paulownia flowers[J]. Science and Technology of Food Industry, 2014, (24): 338-341. DOI: 10.13386/j.issn1002-0306.2014.24.063 |
[9] | YU Gang, ZHANG Hong-jie, YANG Shao-ling, YANG Xian-qing, HAO Shu-xian, ZHANG Peng, LIN Wan-ling. Nutritional component analysis and quality evaluation of Ryukyu squid in South China sea[J]. Science and Technology of Food Industry, 2014, (18): 358-361. DOI: 10.13386/j.issn1002-0306.2014.18.072 |
[10] | LIU Shu-chen, LI Ren-wei, LIAO Ming-tao, ZHAO Qiao-ling, LIN Sen-sen, DAI Zhi-yuan. Nutritional components analysis and quality evaluation of different muscle parts of bigeye tuna[J]. Science and Technology of Food Industry, 2013, (23): 340-343. DOI: 10.13386/j.issn1002-0306.2013.23.065 |