CHEN Shuang, LI Dan, YU Haiyan, et al. Research Progress on Surface-Enhanced Raman Spectroscopy Substrates for Detection of Impurities in Milk[J]. Science and Technology of Food Industry, 2021, 42(19): 403−410. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080035.
Citation: CHEN Shuang, LI Dan, YU Haiyan, et al. Research Progress on Surface-Enhanced Raman Spectroscopy Substrates for Detection of Impurities in Milk[J]. Science and Technology of Food Industry, 2021, 42(19): 403−410. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080035.

Research Progress on Surface-Enhanced Raman Spectroscopy Substrates for Detection of Impurities in Milk

More Information
  • Received Date: August 05, 2020
  • Available Online: August 01, 2021
  • Milk safety problems occur frequently, in order to assure the food safety and avoid health risks to consumers, rapid and non-invasive analytical procedures need to be proposed for detection of dairy industry. Surface-enhanced Raman Spectroscopy (SERS) is a fast and sensitive molecular fingerprint technology. Because of its easy operation, non-invasive, fast and unaffected by water, it is widely used in the detection of dairy products. The stability and reproducibility of SERS signals mainly depend on the preparation of SERS substrates. This article reviews the preparation methods of SERS substrates in milk testing in recent years, the most study of SERS substrate materials are high-cost precious metal materials, which leads to some limitations in the application of precious metal substrates. Therefore, SERS substrates of new materials are one of the prospects of surface-enhanced Raman spectroscopy research. In addition, the currently reported SERS substrates used in milk detection are only part of the many pollutants in milk, adulterants such as formaldehyde, hydrogen peroxide, dichromic acid and salicylic acid have not been reported.
  • [1]
    刘晓晴. 乳业安全现状及发展对策[D]. 洛阳: 河南科技大学, 2011.

    Liu X Q. The safety status and development countermeasures of dairy industry[D]. Luoyang: Henan University of Science and Technology, 2011.
    [2]
    Garcia J S, Sanvido G B, Saraiva S A, et al. Bovine milk powder adulteration with vegetable oils or fats revealed by MALDI-QTOF MS[J]. Food Chemistry,2012,131(2):722−726. doi: 10.1016/j.foodchem.2011.09.062
    [3]
    王威, 杨敏杰. “信任品”的信任危机与加强乳制品质量安全的政策建[J]. 农业现代化研究,2009,30(3):302−305. [Wang W, Yang M J. The trust crisis of "trusted products" and policy recommendations to strengthen the quality and safety of dairy products[J]. Research of Agricultural Modernization,2009,30(3):302−305. doi: 10.3969/j.issn.1000-0275.2009.03.011
    [4]
    Akrami-Mohajeri F, Derakhshan Z, Ferrantee M, et al. The prevalence and antimicrobial resistance ofListeria spp in raw milk and traditional dairy products delivered in Yazd, central Iran[J]. Food and Chemical Toxicology,2016,114:141−144.
    [5]
    Kirchhelle C. Pharming animals: A global history of antibiotics in food production (1935-2017)[J]. Palgrave Communications,2018,4:96−109. doi: 10.1057/s41599-018-0152-2
    [6]
    Marques A, Veigas B, Araújo A, et al. Based SERS platform for one-step screening of tetracycline in milk[J]. Scientific Reports,2019,9(1):1−8.
    [7]
    Bacanli M, N Başaran. Importance of antibiotic residues in animal food[J]. Food and Chemical Toxicology,2019,125:462−466. doi: 10.1016/j.fct.2019.01.033
    [8]
    Abernethy G, Higgs K. Rapid detection of economic adulterants in fresh milk by liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A,2013,1288:10−20. doi: 10.1016/j.chroma.2013.02.022
    [9]
    秦虹. 牛奶掺假及检测方法研究现状[J]. 甘肃畜牧兽医,2018,48(11):25−28. [Qin H. Research status of milk fake and detection methods[J]. Gansu Animal Husbandry and Veterinary Medicine,2018,48(11):25−28.
    [10]
    Jeanmaire D L, Van Duyne R P. Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1977,84(1):1−20. doi: 10.1016/S0022-0728(77)80224-6
    [11]
    Creighton J A, Blatchford C G, Albrecht M G. Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength[J]. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics,1979,75:790−798. doi: 10.1039/f29797500790
    [12]
    Campion, Kambhampati P. Surface-enhanced Raman scattering[J]. Chemical Society Reviews,1998,27(4):241−250. doi: 10.1039/a827241z
    [13]
    平建峰. 基于纳米功能材料的乳品安全和品质快速检测方法与仪器研究[D]. 杭州: 浙江大学, 2012.

    Ping J F. Research on methods and instruments for rapid detection of safety and quality of dairy products based on nano-functional materials[D]. Hangzhou: Zhejiang University, 2012.
    [14]
    闫磊, 李卓, 张燕. 牛奶中黄曲霉毒素的放射免疫法检测[J]. 食品研究与开发,2010,31(1):135−137. [Yan L, Li Z, Zhang Y. Detection of aflatoxin in milk by radioimmunoassay[J]. Food Research and Development,2010,31(1):135−137. doi: 10.3969/j.issn.1005-6521.2010.01.043
    [15]
    Chen Y L, Li X L, Yang M, et al. High sensitive detection of penicillin G residues in milk by surface-enhanced Raman scattering[J]. Talanta,2017,167:236−241. doi: 10.1016/j.talanta.2017.02.022
    [16]
    李海闽, 梁琪, 陈卫平, 等. 牛奶中阿莫西林含量表面增强拉曼光谱检测方法的建立[J]. 食品与机械,2019,35(2):87−91. [Li H M, Liang Q, Chen W P, et al. Establishment of surface-enhanced Raman spectroscopy detection method for amoxicillin content in milk[J]. Food and Machinery,2019,35(2):87−91.
    [17]
    Moreno V, Adnane A, Salghi R, et al. Nanostructured hybrid surface enhancement Raman scattering substrate for the rapid determination of sulfapyridine in milk samples[J]. Talanta,2019,194:357−362. doi: 10.1016/j.talanta.2018.10.047
    [18]
    Li H, Chen Q, Mehedi Hassan M, et al. A magnetite/PMAA nanospheres-targeting SERS aptasensor for tetracycline sensing using mercapto molecules embedded core/shell nanoparticles for signal amplification[J]. Biosensors & Bioelectronics,2017,92:192−199.
    [19]
    Marques A, Veigas B, Araújo A, et al. Paper-based SERS platform for one-step screening of tetracycline in milk[J]. Scientific Reports,2019,9:17922. doi: 10.1038/s41598-019-54380-y
    [20]
    Zhai Y, Zheng Y S, Ma Z Y, et al. Synergistic enhancement effect for boosting Raman detection sensitivity of antibiotics[J]. Acs Sensors,2019,4(11):2958−2965. doi: 10.1021/acssensors.9b01436
    [21]
    冯彦婷, 林沛纯, 谢慧风, 等. 基于纳米银颗粒团聚反应的表面增强拉曼光谱法测定牛奶中三聚氰胺的含量[J]. 食品与发酵工业,2019,45(15):256−261. [Feng Y T, Lin P C, Xie H F, et al. Surface-enhanced Raman spectroscopy based on the agglomeration of silver nanoparticles to determine the content of melamine in milk[J]. Food and Fermentation Industries,2019,45(15):256−261.
    [22]
    Kaleem A, Azmat M, Sharma A, et al. Melamine detection in liquid milk based on selective porous polymer monolith mediated with gold nanospheres by using surface enhanced Raman scattering[J]. Food Chemistry,2019,277:624−631. doi: 10.1016/j.foodchem.2018.11.027
    [23]
    Xu D, Kang W, Zhang S, et al. Quantitative determination of melamine in milk by surface-enhanced Raman scattering technique based on high surface roughness silver nanosheets assembled by nanowires[J]. Microchemical Journal,2019,148:190−196. doi: 10.1016/j.microc.2019.04.077
    [24]
    肖海波, 张芹, 郭伟等. 气/液界面自组装金纳米粒子薄膜作为SERS基底检测三聚氰胺[J]. 光谱学与光谱分析,2012,32(8):2147−2151. [Xiao H B, Zhang Q, Guo W, et al. Self-assembled gold nanoparticle film at the gas/liquid interface as a SERS substrate for the detection of melamine[J]. Spectroscopy and Spectral Analysis,2012,32(8):2147−2151. doi: 10.3964/j.issn.1000-0593(2012)08-2147-05
    [25]
    Li C H, Yu J, Xu S C, et al. Constructing 3D and flexible plasmonic structure for high-performance SERS application[J]. Advanced Materials Technologies,2017,3:3483.
    [26]
    Zhao X F, Yu J, Zhang Z J, et al. Heterogeneous and cross-distributed metal structure hybridized with MoS2 as high-performance flexible SERS substrate.[J]. Optics Express,2018,26(18):23831−23843. doi: 10.1364/OE.26.023831
    [27]
    李俊梅, 徐晓轩, 王玉芳, 等. 以PAA为模板制备SERS基底及对三聚氰胺的检测[J]. 光谱学与光谱分析,2010,30(10):2663−2666. [Li J M, Xu X X, Wang Y F, et al. Preparation of SERS substrate using PAA as template and detection of melamine[J]. Spectroscopy and Spectral Analysis,2010,30(10):2663−2666. doi: 10.3964/j.issn.1000-0593(2010)10-2663-04
    [28]
    Bian J C, Shu S W, Huang C, et al. Correction to reproducible and recyclable SERS substrates: Flower-like Ag structures with concave surfaces formed by electrodeposition[J]. Applied Surface Science,2016,333:126−133.
    [29]
    孔焕君. 基于拉曼光谱法和手性硅基复合材料的对映体识别研究[D]. 上海: 上海师范大学, 2021.

    Kong H J. Research on enantiomer recognition based on Raman spectroscopy and chiral silicon-based composite materials[D]. Shanghai: Shanghai Normal University, 2021.
    [30]
    杨蓉, 李兰, 王黎晴, 等. 微波法制备还原氧化石墨烯及其在锂硫电池中的应用[J]. 化工学报,2017,68(11):4333−4340. [Yang R, Li L, Wang L Q, et al. Preparation of reduced graphene oxide by microwave method and its application in lithium-sulfur batteries[J]. CIESC Journal,2017,68(11):4333−4340.
    [31]
    Lu Y, Zhang C Y, Zhang D J, et al. Fabrication of flower-like silver nanoparticles for surface-enhanced Raman scattering[J]. 中国化学快报(英文版),2016,27(5):689−692.
    [32]
    Huang C, Lu F, Xu K, et al. Synthesis of magnetic polyphosphazene-Ag composite particles as surface enhanced Raman spectroscopy substrates for the detection of melamine[J]. Chinese Chemical Letters,2019,30(12):2009−2012. doi: 10.1016/j.cclet.2019.02.006
    [33]
    Wang X, Shi W, Jin Z, et al. Remarkable SERS activity observed from amorphous ZnO nanocages[J]. Angewandte Chemie,2017,56:9851−9855. doi: 10.1002/anie.201705187
    [34]
    Zhang B, Yang X, Liu X, et al. Polyethyleneimine-interlayered silica-core quantum dot-shell nanocomposites for sensitive detection of salmonella typhimurium via a lateral flow immunoassay[J]. RSC Advances,2020,10:2483−2489. doi: 10.1039/C9RA09252H
    [35]
    Hua M Z, Feng S, Wang S, et al. Rapid detection and quantification of 2, 4-dichlorophenoxyacetic acid in milk using molecularly imprinted polymers-surface-enhanced Raman spectroscopy[J]. Food Chemistry,2018,258(30):254−259.
    [36]
    Li R, Yang J, Han J, et al. Quantitative determination of melamine in milk using Ag nanoparticle monolayer film as SERS substrate[J]. Physica E Low Dimensional Systems & Nanostructures,2017,88:164−168.
    [37]
    Hu Y, Feng S, Gao F, et al. Detection of melamine in milk using molecularly imprinted polymers-surface enhanced Raman spectroscopy[J]. Food Chemistry,2015,176(1):123−129.
    [38]
    邹婷婷, 徐振林, 杨金易, 等. 表面增强拉曼光谱技术在食品安全检测中的应用研究进展[J]. 分析测试学报,2018,37(10):1174−1181. [Zou T T, Xu Z L, Yang J Y, et al. Research progress in the application of surface-enhanced Raman spectroscopy in food safety inspection[J]. Chinese Journal of Analysis and Testing,2018,37(10):1174−1181. doi: 10.3969/j.issn.1004-4957.2018.10.008
    [39]
    Zhang C, Gao Y, Yang N, et al. Direct determination of the tumor marker AFP via silver nanoparticle enhanced SERS and AFP-modified gold nanoparticles as capturing substrate[J]. Mikrochimica Acta,2018,185:1−6. doi: 10.1007/s00604-017-2562-z
    [40]
    Zheng G, Polavarapu L, Liz-Marzán L M, et al. Gold nanoparticle-loaded filter paper: A recyclable dip-catalyst for real-time reaction monitoring by surface enhanced Raman scattering[J]. Chemical Communications,2015,51(22):4572−4575. doi: 10.1039/C4CC09466B
    [41]
    Lee M, Oh K, Choi H K, et al. Subnanomolar sensitivity of filter paper-based SERS sensor for pesticide detection by hydrophobicity change of paper surface[J]. ACS Sensors,2018,3(1):151−159. doi: 10.1021/acssensors.7b00782
    [42]
    Wang R, Xu Y, Wang R, et al. A microfluidic chip based on an ITO support modified with Ag-Au nanocomposites for SERS based determination of melamine[J]. Microchimica Acta,2016,184(1):279−287.
    [43]
    Li B, Shi Y E, Cui J, et al. Au-coated ZnO nanorods on stainless steel fiber for self-cleaning solid phase microextraction-surface enhanced Raman spectroscopy[J]. Analytica Chimica Acta,2016,923:66−73. doi: 10.1016/j.aca.2016.04.002
    [44]
    Mekonnen M L, Su W N, Chen C H, et al. Ag@SiO2 nanocubes loaded miniaturized filter paper as hybrid flexible plasmonic SERS substrate for trace melamine detection[J]. Analytical Methods,2017,9(48):6823−6829. doi: 10.1039/C7AY02192E
    [45]
    Fu X, Cheng Z, Yu J, et al. A SERS-based lateral flow assay biosensor for highly sensitive detection of HIV-1 DNA[J]. Biosensors & Bioelectronics,2016,78:530−537.
    [46]
    Jiang L, Shestov A A, Swain P, et al. Reductive carboxylation supports redox homeostasis during anchorage-independent growth[J]. Nature,2016,532(7598):255−258. doi: 10.1038/nature17393
    [47]
    Liu M, Wang S, Jiang L. Nature-inspired superwettability systems[J]. Nature Reviews Materials,2017,2(7):17036. doi: 10.1038/natrevmats.2017.36
    [48]
    Wu H, Luo Y, Huang Y, et al. A Simple SERS-based trace sensing platform enabled by AuNPs-Analyte/AuNPs double-decker structure on wax-coated hydrophobic surface[J]. Frontiers in Chemistry,2018,6:482−491. doi: 10.3389/fchem.2018.00482
    [49]
    Han C, Li Y, Jia Q, et al. On-demand fabrication of surface-enhanced Raman scattering arrays by pen writing, and their application to the determination of melamine in milk[J]. Mikrochimica Acta,2017,184(8):2909−2917. doi: 10.1007/s00604-017-2307-z
    [50]
    Zhang C, You T, Yang N, et al. Hydrophobic paper-based SERS platform for direct-droplet quantitative determination of melamine[J]. Food Chemistry,2019,287:363−368. doi: 10.1016/j.foodchem.2019.02.094
    [51]
    Wu W, Liu L, Dai Z, et al. Erratum: Low-cost, disposable, flexible and highly reproducible screen printed SERS substrates for the detection of various chemicals[J]. Scientific Reports,2015,5:12205. doi: 10.1038/srep12205
    [52]
    Creedon N C, Lovera P, Furey A, et al. Transparent polymer-based SERS substrates templated by a soda can[J]. Sensors and Actuators,2018,B259(APR.):64−74.
    [53]
    Jeong H, Chung H, Song S, et al. Validation and determination of the contents of acetaldehyde and formaldehyde in Foods[J]. Toxicological Research,2015,31:273−278. doi: 10.5487/TR.2015.31.3.273
    [54]
    Zhang K, Zhao J J, Xu H Y, et al. Multifunctional paper strip based on self-assembled interfacial plasmonic nanoparticle arrays for sensitive SERS detection[J]. ACS Applied Materials & Interfaces,2015,7(30):67−74.
    [55]
    Hussain A, Sun D W, Pu H. Bimetallic core shelled nanoparticles (Au@AgNPs) for rapid detection of thiram and dicyandiamide contaminants in liquid milk using SERS[J]. Food Chemistry,2020:126429.
    [56]
    宋移欢, 肖雄枫, 曹明艳, 等. 表面增强拉曼光谱法快速测定牛乳中的农药残留[J]. 食品科技,2020,1:351−356. [Song Y H, Xiao X F, Cao M Y, et al. Rapid determination of pesticide residues in milk by surface enhanced Raman spectroscopy[J]. Food Science and Technology,2020,1:351−356.
    [57]
    Ilhan H, Guven B, Dogan U, et al. The coupling of immunomagnetic enrichment of bacteria with paper-based platform[J]. Talanta,2019,201:245−252. doi: 10.1016/j.talanta.2019.04.017
  • Cited by

    Periodical cited type(3)

    1. 杨林雷,沈真辉,罗祥英,李荣平,李荣春. 食用菌麦角硫因的研究进展. 生物工程学报. 2025(02): 574-587 .
    2. 何鑫怡,周子艺,陈媛媛,赵吉春,李富华,明建. 麦角硫因生物活性及其在食品工业中的应用. 食品与发酵工业. 2023(10): 285-292 .
    3. 木开代斯·买合木提,陈建,焦春伟,谢意珍. L-麦角硫因生物合成与应用研究进展. 天然产物研究与开发. 2022(04): 713-721 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return