LIU Di, CONG Yanjun. Application of Non-thermal Processing Technology in Hypo- or Non-allergenic Infant Formula[J]. Science and Technology of Food Industry, 2021, 42(19): 395−402. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080026.
Citation: LIU Di, CONG Yanjun. Application of Non-thermal Processing Technology in Hypo- or Non-allergenic Infant Formula[J]. Science and Technology of Food Industry, 2021, 42(19): 395−402. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080026.

Application of Non-thermal Processing Technology in Hypo- or Non-allergenic Infant Formula

More Information
  • Received Date: August 04, 2020
  • Available Online: July 22, 2021
  • Cow milk is the best alternative to breast milk for infants and young children with rich nutrient. Most infant formula isproduced based on cow milk. In order to reduce milk protein allergens and minimize nutritional loss, non-thermal processing techniques is used. This paper introduce the structure and epitopes of major allergens in cow milk and summarizedthe research progress of hypo- or non-allergenic infant formula on the market. The effect of non-thermal processing techniques including high pressure, microwave, fermentation and its combination with enzymolysis on the allergenicity of milk protein is mainly discussed, moreover, its application in hypo- or non-allergenic infant formula is concluded, and its future development is prospected. This paper aim to provide theoretical support for the development and preparation of milk based infant formula with nutrition, palatability and low allergenicity.
  • [1]
    Mazo Tome P L, Suarez Rodriguez M. Prevalence of exclusive breastfeeding in the healthy newborn[J]. Boletin Medico Del Hospital Infantil De Mxico,2018,75(1):49−56.
    [2]
    Guest J F, Fuller G W. Effectiveness of using an extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG compared with an extensively hydrolysed whey formula in managing cow's milk protein allergic infants[J]. Journal of Comparative Effectiveness Research,2019,8(15):1317−1326. doi: 10.2217/cer-2019-0088
    [3]
    Devdas J M, Mckie C, Fox AT, et al. Food allergy in children: An overview[J]. Indian Journal of Pediatrics,2018,85(5):369−374. doi: 10.1007/s12098-017-2535-6
    [4]
    Bogahawaththa D, Chandrapala J, Vasiljevic T. Modylation of milk immunogenicity by thermal processing[J]. International Dairy Journal,2017,69:23−32. doi: 10.1016/j.idairyj.2017.01.010
    [5]
    Dreborg S. Cow's milk protein allergy and common gastrointestinal symptoms in infants[J]. Acta Paediatrica,2016,105(3):253−254. doi: 10.1111/apa.13311
    [6]
    Matthai J, Sathiasekharan M, Poddar U, et al. Guidelines on diagnosis and management of cow's milk protein allergy[J]. Indian Pediatrics,2020,5(78):723−729.
    [7]
    Rahaman T, Vasiljevic T, Ramchandran L. Effect of processing on conformational changes of food proteins related to allergenicity[J]. Trends in Food Science & Technology,2016,49:24−34.
    [8]
    Tammineedi C V, Choudhary R. Recent advances in processing for reducing dairy and food allergenicity[J]. International Journal of Food Science and Nutrition Engeering,2014,4:36−42.
    [9]
    Xu Q, Shi J, Yao M J, et al. Effects of heat treatment on the antigenicity of four milk proteins in milk protein concentrates[J]. Food and Agricultural Immunology,2016,27(3):401−413. doi: 10.1080/09540105.2015.1117059
    [10]
    Jiménez-Saiz R, Benedé S, Molina E, et al. Effect of processing technologies on the allergenicity of food products[J]. Critical Reviews in Food Science and Nutrition,2015,55(13):1902−1917. doi: 10.1080/10408398.2012.736435
    [11]
    van Esch B C A M, van Bilsen J H M, Gros-van Hest M, et al. A multi-center assessment to compare residual allergenicity of partial hydrolyzed whey proteins in a murine model for cow's milk allergy-comparison to the single parameter guinea pig model[J]. Toxicology Letters,2020,333:312−321. doi: 10.1016/j.toxlet.2020.05.020
    [12]
    Dupont C, Kalach, N, Soulaines P, et al. Safety of a new amino acid formula in infants allergic to cow's milk and intolerant to hydrolysates[J]. Journal of Pediatric Gastroenterology and Nutrition,2015,61(4):456−463. doi: 10.1097/MPG.0000000000000803
    [13]
    Agyemang A, Feuille E, Tang J, et al. Outcomes of 84 consecutive open food challenges to extensively heated (baked) milk in the allergy office[J]. Journal of Allergy and Clinical Immunology-in Practice,2018,6(2):653−655. doi: 10.1016/j.jaip.2017.05.016
    [14]
    Fei S W, Bai H, Li X, et al. Effects of thermal processing on the potential allergenicity of major allergens in whey[J]. Journal of Food Safety and Quality,2017,8(4):1160−1166.
    [15]
    Meltretter J, Wust J, Pischetsrieder M. Modified peptides as indicators for thermal and nonthermal reactions in processed milk[J]. Journal of Agricultural and Food Chemistry,2014,62(45):10903−10915. doi: 10.1021/jf503664y
    [16]
    Saxena R, Vanga S K, Raghavan V. Effect of thermal and microwave processing on secondary structure of bovine beta-lactoglobulin: A molecular modeling study[J]. Journal of Food Biochemistry,2019,34(7):e12898.
    [17]
    Kaddouri H, El Mecherfi K, Kheroua O, et al. Microwave treatment modify antigenicity properties of bovine milk proteins[J]. African Journal of Biotechnology,2009,5(13):1267−1270.
    [18]
    Zellal D, Kaddouri H, Grar H, et al. Allergenic changes in β-lactoglobulin induced by microwave irradiation under different pH conditions[J]. Food and Agricultural Immunology,2011,22(4):355−363. doi: 10.1080/09540105.2011.582094
    [19]
    Xu L, Gong Y S, Gern J E, et al. Influence of whey protein hydrolysis in combination with dextran glycation on immunoglobulin E binding capacity with blood sera obtained from patients with a cow milk protein allergy[J]. Journal of Dairy Science,2020,103(2‏):1141−1150.
    [20]
    Wróblewska B, Karamać M, Amarowicz R, et al. Immunoreactive properties of peptide fractions of cow whey milk proteins after enzymatic hydrolysis[J]. International Journal of Food Science and Technology,2004,39(8):839−850. doi: 10.1111/j.1365-2621.2004.00857.x
    [21]
    Liu X Y, Luo Y K, Li Z. Effects of pH, temperature, enzyme-to-substrate ratio and reaction time on the antigenicity of casein hydrolysates prepared by papain[J]. Food and Agricultural Immunology,2012,23(1):69−82. doi: 10.1080/09540105.2011.604770
    [22]
    Abd El-Salam M H, El-Shibiny S. Reduction of milk protein antigenicity by enzymatic hydrolysis and fermentation: A review[J]. Food Reviews International, 2019, 37(3):1-20 .
    [23]
    Bu G H, Luo Y K, Zhang Y, et al. Effects of fermentation by lactic acid bacteria on the antigenicity of bovine whey proteins[J]. Journal of the Science of Food and Agriculture,2010, 90(12):2015−2020.
    [24]
    Pescuma M, Hébert E M, Rabesona H, et al. Proteolytic action of Lactobacillus delbrueckii subsp. bulgaricus CRL 656 reduces antigenic response to bovine β-lactoglobulin[J]. Food Chemistry,2011,127(2):487−492. doi: 10.1016/j.foodchem.2011.01.029
    [25]
    Kurpiewska K, Biela A, Loch J I, et al. Towards understanding the effect of high pressure on food protein allergenicity: Beta-lactoglobulin structural studies[J]. Food Chemistry,2019,270:315−321. doi: 10.1016/j.foodchem.2018.07.104
    [26]
    Ambrosi V, Polenta G, Gonzalez C, et al. High hydrostatic pressure assisted enzymatic hydrolysis of whey proteins[J]. Innovative Food Science & Emerging Technologies,2016,38:294−301.
    [27]
    Kleber N, Maier S, Hinrichs J. Antigenic response of bovine β-lactoglobulin influenced by ultra-high pressure treatment and temperature[J]. Innovative Food Science and Emering Technology,2007,8(1):39−45. doi: 10.1016/j.ifset.2006.05.001
    [28]
    Chicón R, Belloque J, Alonso E, et al. Immuno reactivity and digestibility of high-pressure-treated whey proteins[J]. International Dairy Journal,2008,18(4):367−376. doi: 10.1016/j.idairyj.2007.11.010
    [29]
    Izquierdo F J, Alli I, Gómez R, et al. Effects of high pressure and microwave on pronase and α-chymotrypsin hydrolysis of β-lactoglobulin[J]. Food Chemistry,2005,92(4):713−719. doi: 10.1016/j.foodchem.2004.09.006
    [30]
    Izquierdo F J, Alli I, Yaylayan V, et al. Microwave-assisted digestion of β-lactoglobulin by pronase, α-chymotrypsin and pepsin[J]. International Dairy Journal,2007,17(5):465−470. doi: 10.1016/j.idairyj.2006.05.007
    [31]
    Lozano-Ojalvo D, Perez-Rodriguez L, Pablos-Tanarro A, et al. Pepsin treatment of whey proteins under high pressure produces hypoallergenic hydrolysates[J]. Innovitive Food Science & Emerging Technologies,2017,43:154−162.
    [32]
    El-Mecherfi K E, Saidi D, Kheroua O, et al. Combined microwave and enzymatic treatments for β-lactoglobulin and bovine whey proteins and their effect on the IgE immunoreactivity[J]. European Food Research and Technology,2011,233(5):859−867. doi: 10.1007/s00217-011-1581-y
    [33]
    Mahler V, Goodman R E. Definition and design of hypoallergenic foods[C]// In: Kleine-Tebbe J, Jakob T(eds). Molecular Allergy Diagnostics: Innovation for a Better Patient Management. Springer International Publishing: Cham, 2017: 487−511.
    [34]
    Roberts G, Grimshaw K, Beyer K, et al. Can dietary strategies in early life prevent childhood food allergy? A report from two iFAAM workshops[J]. Clinical and Experimental Allergy,2019. doi: 10.1111/cea.13515
    [35]
    Abdolkhalegh G, Jafar M M, Todor V. Altering allergenicity of cow's milk by food processing for applications in infant formula[J]. Critical Reviews in Food Science and Nutrition, 2019, 59(1): 159−172.
    [36]
    Villa C, Costa J, Oliveira M B P P, et al. Bovine milk allergens: A comprehensive review[J]. Comprehensive Reviews in Food Science and Food Safety,2018,17(1):137−164. doi: 10.1111/1541-4337.12318
    [37]
    Hochwallner H, Schulmeister U, Swoboda I, et al. Cow’s milk allergy: From allergens to new forms of diagnosis, therapy and prevention[J]. Methods,2014,66(1):22−33. doi: 10.1016/j.ymeth.2013.08.005
    [38]
    Dang H J, Liu Z M, Zheng Y R. Research progress of cow milk allergens and their detection techniques[J]. Journal of Food Safety and Quality,2020,11(3):765−770.
    [39]
    Restani P, Ballabio C, Cattaneo A, et al. Characterization of bovine serum albumin epitopes and their role in allergic reactions[J]. Allergy,2004,59(78):21−24.
    [40]
    Kurpiewska K, Biela A, Loch J I, et al. Towards understanding the effect of high pressure on food protein allergenicity: Beta-lactoglobulin structural studies[J]. Food Chemistry,2018,270:315−321.
    [41]
    Jarvinen K M, Chatchatee P, Bardina L, et al. IgE and IgG binding epitopes on α-lactalbumin and β-lactoglobulin in cow’s milk allergy[J]. International Archives of Allergy and Immunology,2001,126(2):111−118. doi: 10.1159/000049501
    [42]
    Cong Y J, Li L F. Identification of the critical amino acid residues of immunoglobuline E and immunoglobuline G epitopes in β-lactoglobulin by alanine scanning analysis[J]. Journal of Dairy Science,2012,95(11):6307−6312. doi: 10.3168/jds.2012-5543
    [43]
    Luo Y K, Bu G H. Cow’s milk allergens and technologies to control allergenicity[C]// In Multidisciplinary Approaches to Allergies. Hangzhou, China: Springer, Zhejiang University Press, 2012: 409−421.
    [44]
    Cong Y J, Zhou S Y, Li L F. Identification of the critical amino acid residues of immunoglobuline E and immunoglobuline G epitopes in α-lactalbumin by alanine scanning analysis[J]. Journal of Food Science,2016,81(10):2597−2603. doi: 10.1111/1750-3841.13425
    [45]
    Cong Y J, Yi H, Qing Y T, et al. Identification of the critical amino acid residues of immunoglobuline E and immunoglobuline G epitopes on αs1-casein by alanine scanning analysis[J]. Journal of Dairy Science,2013,96(11):6870−6876. doi: 10.3168/jds.2013-6880
    [46]
    Spuergin P, Walter M, Schiltz E, et al. Allergenicity of α-caseins from cow, sheep, and goat[J]. Allergy,1997,52(3):293−298. doi: 10.1111/j.1398-9995.1997.tb00993.x
    [47]
    Cerecedo I, Zamora J, Shreffler W G, et al. Mapping of the IgE and IgG sequential epitopes of milk allergens with a peptide microarray-based immunoassay[J]. Journal of Allergy and Clinical Immunology,2008,122(3):589−594. doi: 10.1016/j.jaci.2008.06.040
    [48]
    Chatchatee P, Jarvinen K M, Bardina L, et al. Identification of IgE- and IgG-binding epitopes on αs1-casein: Differences in patients with persistent and transient cow’s milk allergy[J]. Journal of Allergy and Clinical Immunology,2001, 107(2):379−383.
    [49]
    Chatchatee P, Jarvinen K M, Bardina L, et al. Identification of IgE and IgG binding epitopes on β- andκ-casein in cow’s milk allergy[J]. Clinical & Experimental Allergy,2001,31(8):1256−1262.
    [50]
    Ekezie F G C, Cheng J Hu, Sun D W. Effects of nonthermal food processing technologies on food allergens: A review of recent research advances[J]. Trends in Food Science & Technology,2018,74:12−25.
    [51]
    Meng X Y, Bai Y X, Gao J Y, et al. Effects of high hydrostatic pressure on the structure and potential allergenicity of the major allergen bovine beta-lactoglobulin[J]. Food Chemistry,2017,291:290−296.
    [52]
    Odueke O B, Farag K W, Baines R N. Irradiation applications in dairy products: A review[J]. Food and Bioprocess Technology,2016,9(5):751−767. doi: 10.1007/s11947-016-1709-y
    [53]
    Izquierdo F J, Peñas E, Baeza M L, et al. Effects of combined microwave and enzymatic treatments on the hydrolysis and immunoreactivity of dairy whey proteins[J]. International Dairy Journal,2008,18(9):918−922. doi: 10.1016/j.idairyj.2008.01.005
    [54]
    dos Santos S C, Konstantyner T, Cocco R R. Effects of probiotics in the treatment of food hypersensitivity in children: A systematic review[J]. Allergologia et Immunopathologia,2020,48(1):95−104. doi: 10.1016/j.aller.2019.04.009
    [55]
    Bertelsen R J, Jensen E T, Ringel-Kulka T. Use of probiotics and prebiotics in infant feeding[J]. Best Practice & Research Clinical Gastroenterology,2016,30(1):39−48.
    [56]
    Zheng H, Shen X Q, Bu G H, et al. Effects of pH, temperature and enzyme-to-substrate ratio on the antigenicity of whey protein hydrolysates prepared by Alcalase[J]. International Dairy Journal,2008,18(10-11):1028−1033. doi: 10.1016/j.idairyj.2008.05.002
    [57]
    Zeece M, Huppertz T, Kelly A. Effect of high-pressure treatment on in vitro digestibility of β-lactoglobulin[J]. Innovative Food Sciences and Emergging Technologies,2008,9(1):62−69. doi: 10.1016/j.ifset.2007.05.004
    [58]
    ElMecherfi K E, Rouaud O, Curet S, et al. Peptic hydrolysis of bovine β-lactoglobulin under microwave treatment reduces its allergenicity in an ex vivo murine allergy model[J]. International Journal of Food Science and Technology,2015,50(2):356−364. doi: 10.1111/ijfs.12653
    [59]
    Zheng Z, Liao P, Luo Y K, et al. Effects of fermentation by Lactobacillus delbrueckii subsp. bulgaricus, refrigeration and simulated gastrointestinal digestion on the antigenicity of four milk proteins[J]. Journal of Food Processing and Preservation,2014,38(3):1106−1112. doi: 10.1111/jfpp.12069
    [60]
    Nasirpour A, Scher J, Desobry S. Baby foods: Formulations and interactions (a review)[J]. Critical Review in Food Sciences and Nutrition,2006,46(8):665−681. doi: 10.1080/10408390500511896
    [61]
    Armaforte E, Curran E, Huppertz T, et al. Proteins and proteolysis in pre-term and term human milk and possible implications for infant formulae[J]. International Dairy Journal,2010,20(10):715−723. doi: 10.1016/j.idairyj.2010.03.008
    [62]
    Exl B M. A review of recent developments in the use of moderately hydrolyzed whey formulae in infant nutrition[J]. Nutrition Research,2001,21(1-2):355−379. doi: 10.1016/S0271-5317(00)00259-1
    [63]
    Meulenbroek L A P M, Oliveira S, den Hartog Jager C F, et al. The degree of whey hydrolysis does not uniformly affect in vitro basophil and T cell responses of cow’s milk-allergic patients[J]. Clinical & Experimental Allergy,2014,44:529−539.
    [64]
    Nutten S, Jarvi A, Maynard F. Extensively hydrolyzed formulas for the management of cow's milk protein allergy in infants: Is extensive hydrolysis sufficient to guarantee success?[J]. Allergy,2018,73(105):429−429.
    [65]
    Verduci E, D'Elios S, Cerrato L, et al. Cow's milk substitutes for children: Nutritional aspects of milk from different mammalian species, special formula and plant-based beverages[J]. Nutrients,2019,11(8):1739. doi: 10.3390/nu11081739
    [66]
    Abdolkhalegh G, Jafar M M, Todor V. Altering allergenicity of cow’s milk by food processing for applications in infant formula[J]. Critical Reviews in Food Science and Nutrition,2019,59(1):159−172. doi: 10.1080/10408398.2017.1363156
    [67]
    Parekh H, Bahna S L. Infant formulas for food allergy treatment and prevention[J]. Pediatric Annals,2016,45(1):E150−E156.
    [68]
    Harvey B M, Langford J E. Comparison of growth of healthy term infants fed extensively hydrolyzed protein- and amino acid-based infant formulas[J]. Nutrients,2018,11(1):185.
    [69]
    Sackesen C, Altintas D U, Bingol A. Current trends in tolerance induction in cow's milk allergy: From passive to proactive strategies[J]. Frontreis in Pediatrics,2019,7:372. doi: 10.3389/fped.2019.00372
  • Cited by

    Periodical cited type(24)

    1. 骆春萍,蔡树芸,黄雅瑜,林米妮,郑海龙,杨光乐,张怡评. 岩藻多糖制备工艺及其在护肤品中的应用进展. 香料香精化妆品. 2025(02): 23-28+110 .
    2. 刘松,刘红全,李慧敏,徐程浩,王燕姿,藏颖. 拟微绿球藻胞内多糖提取条件优化及其生物活性研究. 食品科技. 2024(03): 233-242 .
    3. 刘欣雨,胡蔚然,李铮凯,吉玮,倪潇. 藻胶实验室:澎湃荧光海. 大学化学. 2024(05): 396-404 .
    4. 沈康,郭瑞成,徐天旭,王伟华. DEAE-52纤维素柱层析纯化处理对西梅可溶性膳食纤维的影响. 食品与发酵工业. 2024(17): 209-217 .
    5. 张田,黄雨洋,刘琳琳,吕铭守,朱颖,孙冰玉,朱秀清. 多糖对高水分挤压植物蛋白肉结构及品质影响的研究进展. 食品科学. 2024(22): 341-350 .
    6. Changhui YAN,Mingxuan PAN,Lihua GENG,Quanbin ZHANG,Yadong HU,Jing WANG,Sujuan YE. A novel enzyme-assisted one-pot method for the extraction of fucoidan and alginate oligosaccharides from Lessonia trabeculata and their bioactivities. Journal of Oceanology and Limnology. 2024(06): 1998-2012 .
    7. 唐天城,朱本伟,姚忠,孙芸,熊强. 石莼多糖及其寡糖结构、制备及活性的研究进展. 现代食品科技. 2023(05): 340-353 .
    8. 唐翠娥,周培源,刘延照,李艳. 基于原子力显微镜研究黄原胶分子结构的云母片处理方法优化. 食品工业科技. 2023(14): 60-66 . 本站查看
    9. 邱智超,勾宇春,张志鹏,王宗抗,孟品品,周进,姜玥璐. 藻类资源在农业种植业中的应用研究进展. 农业资源与环境学报. 2023(04): 840-851 .
    10. 张琨霖,王贺琪,郭庆彬,刘欢欢,梁宏合,王乐,李贞景. 桑黄子实体多糖的提取工艺优化、结构解析及免疫活性分析. 食品工业科技. 2023(20): 93-100 . 本站查看
    11. 黄卫红,董乐. 紫球藻胞外多糖酶解物的纯化、红外鉴定及其抗氧化活性. 泉州师范学院学报. 2023(05): 19-27 .
    12. 曾凡珂,潘蕾蔓,张祎,赖富饶,吴晖,张猛猛. 荸荠皮多糖的理化性质及抗氧化活性. 现代食品科技. 2022(03): 82-88+81 .
    13. 王朝群,杨燕,唐超,何希瑞. 天麻多糖提取分离方法和药理作用研究进展. 中国药事. 2022(04): 417-428 .
    14. 杨斯惠,向月,曹亚楠,任远航,彭镰心,时小东. 植物多糖的益生作用及其影响因素研究进展. 食品科学. 2022(11): 301-310 .
    15. 刘亚楠,李欢,蒋凡,傅玲琳,王彦波. 基于活性包装视角下的水产品保鲜机制研究进展. 食品科学. 2022(13): 285-291 .
    16. 陈超,谭书明,王画,杨笙,代晓桐. 刺梨及其活性成分对2型糖尿病小鼠糖脂代谢的影响. 食品科学. 2022(13): 146-154 .
    17. 郭建行,贾颂华,李博润,李珊珊,冀晓龙,刘延奇. 红海藻多糖提取、分离纯化及生物活性研究进展. 食品研究与开发. 2022(16): 216-224 .
    18. 孙艳宾,李宁,梁君玲,张慧婧,景大为,张川. 海藻酸钠提取工艺研究进展. 食品科技. 2022(08): 201-206 .
    19. 贾薇,余冬生,余养朝,冯占,胡明,张劲松,汪雯翰. 三相分离法制备金针菇提取物中多糖的理化性质及体外活性. 食用菌学报. 2022(05): 73-80 .
    20. 孔丽,朱月霞,周冰雪,刘志,薛旺迁,石锦峰,郑家勤,李姣姣,吉敬,秦昆明,董自波,沈金阳. 海蒿子多糖提取、纯化及其药理活性研究进展. 大连海洋大学学报. 2022(05): 894-902 .
    21. 高玥,许倩楠,蔡明刚,胡贤陈,田文静,陈海峰. 海洋来源药食同源品开发利用研究进展. 中草药. 2021(17): 5455-5464 .
    22. 陆伊俏,池海波,厉桂宁,陈纤,邱家港,余辉,方旭波,陈小娥. 可口革囊星虫体腔液多糖碱提工艺优化及其抗氧化性研究. 食品工业科技. 2021(19): 204-210 . 本站查看
    23. 刘小杰,倪辉. 海藻多糖在乳品工业中的应用研究进展. 乳业科学与技术. 2021(06): 31-38 .
    24. 林晓娟,苏志琛,陈继承. 海带多糖的结构特征、生物活性及其应用. 现代食品. 2021(24): 49-52 .

    Other cited types(16)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(40)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return