Citation: | LIU Di, CONG Yanjun. Application of Non-thermal Processing Technology in Hypo- or Non-allergenic Infant Formula[J]. Science and Technology of Food Industry, 2021, 42(19): 395−402. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080026. |
[1] |
Mazo Tome P L, Suarez Rodriguez M. Prevalence of exclusive breastfeeding in the healthy newborn[J]. Boletin Medico Del Hospital Infantil De Mxico,2018,75(1):49−56.
|
[2] |
Guest J F, Fuller G W. Effectiveness of using an extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG compared with an extensively hydrolysed whey formula in managing cow's milk protein allergic infants[J]. Journal of Comparative Effectiveness Research,2019,8(15):1317−1326. doi: 10.2217/cer-2019-0088
|
[3] |
Devdas J M, Mckie C, Fox AT, et al. Food allergy in children: An overview[J]. Indian Journal of Pediatrics,2018,85(5):369−374. doi: 10.1007/s12098-017-2535-6
|
[4] |
Bogahawaththa D, Chandrapala J, Vasiljevic T. Modylation of milk immunogenicity by thermal processing[J]. International Dairy Journal,2017,69:23−32. doi: 10.1016/j.idairyj.2017.01.010
|
[5] |
Dreborg S. Cow's milk protein allergy and common gastrointestinal symptoms in infants[J]. Acta Paediatrica,2016,105(3):253−254. doi: 10.1111/apa.13311
|
[6] |
Matthai J, Sathiasekharan M, Poddar U, et al. Guidelines on diagnosis and management of cow's milk protein allergy[J]. Indian Pediatrics,2020,5(78):723−729.
|
[7] |
Rahaman T, Vasiljevic T, Ramchandran L. Effect of processing on conformational changes of food proteins related to allergenicity[J]. Trends in Food Science & Technology,2016,49:24−34.
|
[8] |
Tammineedi C V, Choudhary R. Recent advances in processing for reducing dairy and food allergenicity[J]. International Journal of Food Science and Nutrition Engeering,2014,4:36−42.
|
[9] |
Xu Q, Shi J, Yao M J, et al. Effects of heat treatment on the antigenicity of four milk proteins in milk protein concentrates[J]. Food and Agricultural Immunology,2016,27(3):401−413. doi: 10.1080/09540105.2015.1117059
|
[10] |
Jiménez-Saiz R, Benedé S, Molina E, et al. Effect of processing technologies on the allergenicity of food products[J]. Critical Reviews in Food Science and Nutrition,2015,55(13):1902−1917. doi: 10.1080/10408398.2012.736435
|
[11] |
van Esch B C A M, van Bilsen J H M, Gros-van Hest M, et al. A multi-center assessment to compare residual allergenicity of partial hydrolyzed whey proteins in a murine model for cow's milk allergy-comparison to the single parameter guinea pig model[J]. Toxicology Letters,2020,333:312−321. doi: 10.1016/j.toxlet.2020.05.020
|
[12] |
Dupont C, Kalach, N, Soulaines P, et al. Safety of a new amino acid formula in infants allergic to cow's milk and intolerant to hydrolysates[J]. Journal of Pediatric Gastroenterology and Nutrition,2015,61(4):456−463. doi: 10.1097/MPG.0000000000000803
|
[13] |
Agyemang A, Feuille E, Tang J, et al. Outcomes of 84 consecutive open food challenges to extensively heated (baked) milk in the allergy office[J]. Journal of Allergy and Clinical Immunology-in Practice,2018,6(2):653−655. doi: 10.1016/j.jaip.2017.05.016
|
[14] |
Fei S W, Bai H, Li X, et al. Effects of thermal processing on the potential allergenicity of major allergens in whey[J]. Journal of Food Safety and Quality,2017,8(4):1160−1166.
|
[15] |
Meltretter J, Wust J, Pischetsrieder M. Modified peptides as indicators for thermal and nonthermal reactions in processed milk[J]. Journal of Agricultural and Food Chemistry,2014,62(45):10903−10915. doi: 10.1021/jf503664y
|
[16] |
Saxena R, Vanga S K, Raghavan V. Effect of thermal and microwave processing on secondary structure of bovine beta-lactoglobulin: A molecular modeling study[J]. Journal of Food Biochemistry,2019,34(7):e12898.
|
[17] |
Kaddouri H, El Mecherfi K, Kheroua O, et al. Microwave treatment modify antigenicity properties of bovine milk proteins[J]. African Journal of Biotechnology,2009,5(13):1267−1270.
|
[18] |
Zellal D, Kaddouri H, Grar H, et al. Allergenic changes in β-lactoglobulin induced by microwave irradiation under different pH conditions[J]. Food and Agricultural Immunology,2011,22(4):355−363. doi: 10.1080/09540105.2011.582094
|
[19] |
Xu L, Gong Y S, Gern J E, et al. Influence of whey protein hydrolysis in combination with dextran glycation on immunoglobulin E binding capacity with blood sera obtained from patients with a cow milk protein allergy[J]. Journal of Dairy Science,2020,103(2):1141−1150.
|
[20] |
Wróblewska B, Karamać M, Amarowicz R, et al. Immunoreactive properties of peptide fractions of cow whey milk proteins after enzymatic hydrolysis[J]. International Journal of Food Science and Technology,2004,39(8):839−850. doi: 10.1111/j.1365-2621.2004.00857.x
|
[21] |
Liu X Y, Luo Y K, Li Z. Effects of pH, temperature, enzyme-to-substrate ratio and reaction time on the antigenicity of casein hydrolysates prepared by papain[J]. Food and Agricultural Immunology,2012,23(1):69−82. doi: 10.1080/09540105.2011.604770
|
[22] |
Abd El-Salam M H, El-Shibiny S. Reduction of milk protein antigenicity by enzymatic hydrolysis and fermentation: A review[J]. Food Reviews International, 2019, 37(3):1-20 .
|
[23] |
Bu G H, Luo Y K, Zhang Y, et al. Effects of fermentation by lactic acid bacteria on the antigenicity of bovine whey proteins[J]. Journal of the Science of Food and Agriculture,2010, 90(12):2015−2020.
|
[24] |
Pescuma M, Hébert E M, Rabesona H, et al. Proteolytic action of Lactobacillus delbrueckii subsp. bulgaricus CRL 656 reduces antigenic response to bovine β-lactoglobulin[J]. Food Chemistry,2011,127(2):487−492. doi: 10.1016/j.foodchem.2011.01.029
|
[25] |
Kurpiewska K, Biela A, Loch J I, et al. Towards understanding the effect of high pressure on food protein allergenicity: Beta-lactoglobulin structural studies[J]. Food Chemistry,2019,270:315−321. doi: 10.1016/j.foodchem.2018.07.104
|
[26] |
Ambrosi V, Polenta G, Gonzalez C, et al. High hydrostatic pressure assisted enzymatic hydrolysis of whey proteins[J]. Innovative Food Science & Emerging Technologies,2016,38:294−301.
|
[27] |
Kleber N, Maier S, Hinrichs J. Antigenic response of bovine β-lactoglobulin influenced by ultra-high pressure treatment and temperature[J]. Innovative Food Science and Emering Technology,2007,8(1):39−45. doi: 10.1016/j.ifset.2006.05.001
|
[28] |
Chicón R, Belloque J, Alonso E, et al. Immuno reactivity and digestibility of high-pressure-treated whey proteins[J]. International Dairy Journal,2008,18(4):367−376. doi: 10.1016/j.idairyj.2007.11.010
|
[29] |
Izquierdo F J, Alli I, Gómez R, et al. Effects of high pressure and microwave on pronase and α-chymotrypsin hydrolysis of β-lactoglobulin[J]. Food Chemistry,2005,92(4):713−719. doi: 10.1016/j.foodchem.2004.09.006
|
[30] |
Izquierdo F J, Alli I, Yaylayan V, et al. Microwave-assisted digestion of β-lactoglobulin by pronase, α-chymotrypsin and pepsin[J]. International Dairy Journal,2007,17(5):465−470. doi: 10.1016/j.idairyj.2006.05.007
|
[31] |
Lozano-Ojalvo D, Perez-Rodriguez L, Pablos-Tanarro A, et al. Pepsin treatment of whey proteins under high pressure produces hypoallergenic hydrolysates[J]. Innovitive Food Science & Emerging Technologies,2017,43:154−162.
|
[32] |
El-Mecherfi K E, Saidi D, Kheroua O, et al. Combined microwave and enzymatic treatments for β-lactoglobulin and bovine whey proteins and their effect on the IgE immunoreactivity[J]. European Food Research and Technology,2011,233(5):859−867. doi: 10.1007/s00217-011-1581-y
|
[33] |
Mahler V, Goodman R E. Definition and design of hypoallergenic foods[C]// In: Kleine-Tebbe J, Jakob T(eds). Molecular Allergy Diagnostics: Innovation for a Better Patient Management. Springer International Publishing: Cham, 2017: 487−511.
|
[34] |
Roberts G, Grimshaw K, Beyer K, et al. Can dietary strategies in early life prevent childhood food allergy? A report from two iFAAM workshops[J]. Clinical and Experimental Allergy,2019. doi: 10.1111/cea.13515
|
[35] |
Abdolkhalegh G, Jafar M M, Todor V. Altering allergenicity of cow's milk by food processing for applications in infant formula[J]. Critical Reviews in Food Science and Nutrition, 2019, 59(1): 159−172.
|
[36] |
Villa C, Costa J, Oliveira M B P P, et al. Bovine milk allergens: A comprehensive review[J]. Comprehensive Reviews in Food Science and Food Safety,2018,17(1):137−164. doi: 10.1111/1541-4337.12318
|
[37] |
Hochwallner H, Schulmeister U, Swoboda I, et al. Cow’s milk allergy: From allergens to new forms of diagnosis, therapy and prevention[J]. Methods,2014,66(1):22−33. doi: 10.1016/j.ymeth.2013.08.005
|
[38] |
Dang H J, Liu Z M, Zheng Y R. Research progress of cow milk allergens and their detection techniques[J]. Journal of Food Safety and Quality,2020,11(3):765−770.
|
[39] |
Restani P, Ballabio C, Cattaneo A, et al. Characterization of bovine serum albumin epitopes and their role in allergic reactions[J]. Allergy,2004,59(78):21−24.
|
[40] |
Kurpiewska K, Biela A, Loch J I, et al. Towards understanding the effect of high pressure on food protein allergenicity: Beta-lactoglobulin structural studies[J]. Food Chemistry,2018,270:315−321.
|
[41] |
Jarvinen K M, Chatchatee P, Bardina L, et al. IgE and IgG binding epitopes on α-lactalbumin and β-lactoglobulin in cow’s milk allergy[J]. International Archives of Allergy and Immunology,2001,126(2):111−118. doi: 10.1159/000049501
|
[42] |
Cong Y J, Li L F. Identification of the critical amino acid residues of immunoglobuline E and immunoglobuline G epitopes in β-lactoglobulin by alanine scanning analysis[J]. Journal of Dairy Science,2012,95(11):6307−6312. doi: 10.3168/jds.2012-5543
|
[43] |
Luo Y K, Bu G H. Cow’s milk allergens and technologies to control allergenicity[C]// In Multidisciplinary Approaches to Allergies. Hangzhou, China: Springer, Zhejiang University Press, 2012: 409−421.
|
[44] |
Cong Y J, Zhou S Y, Li L F. Identification of the critical amino acid residues of immunoglobuline E and immunoglobuline G epitopes in α-lactalbumin by alanine scanning analysis[J]. Journal of Food Science,2016,81(10):2597−2603. doi: 10.1111/1750-3841.13425
|
[45] |
Cong Y J, Yi H, Qing Y T, et al. Identification of the critical amino acid residues of immunoglobuline E and immunoglobuline G epitopes on αs1-casein by alanine scanning analysis[J]. Journal of Dairy Science,2013,96(11):6870−6876. doi: 10.3168/jds.2013-6880
|
[46] |
Spuergin P, Walter M, Schiltz E, et al. Allergenicity of α-caseins from cow, sheep, and goat[J]. Allergy,1997,52(3):293−298. doi: 10.1111/j.1398-9995.1997.tb00993.x
|
[47] |
Cerecedo I, Zamora J, Shreffler W G, et al. Mapping of the IgE and IgG sequential epitopes of milk allergens with a peptide microarray-based immunoassay[J]. Journal of Allergy and Clinical Immunology,2008,122(3):589−594. doi: 10.1016/j.jaci.2008.06.040
|
[48] |
Chatchatee P, Jarvinen K M, Bardina L, et al. Identification of IgE- and IgG-binding epitopes on αs1-casein: Differences in patients with persistent and transient cow’s milk allergy[J]. Journal of Allergy and Clinical Immunology,2001, 107(2):379−383.
|
[49] |
Chatchatee P, Jarvinen K M, Bardina L, et al. Identification of IgE and IgG binding epitopes on β- andκ-casein in cow’s milk allergy[J]. Clinical & Experimental Allergy,2001,31(8):1256−1262.
|
[50] |
Ekezie F G C, Cheng J Hu, Sun D W. Effects of nonthermal food processing technologies on food allergens: A review of recent research advances[J]. Trends in Food Science & Technology,2018,74:12−25.
|
[51] |
Meng X Y, Bai Y X, Gao J Y, et al. Effects of high hydrostatic pressure on the structure and potential allergenicity of the major allergen bovine beta-lactoglobulin[J]. Food Chemistry,2017,291:290−296.
|
[52] |
Odueke O B, Farag K W, Baines R N. Irradiation applications in dairy products: A review[J]. Food and Bioprocess Technology,2016,9(5):751−767. doi: 10.1007/s11947-016-1709-y
|
[53] |
Izquierdo F J, Peñas E, Baeza M L, et al. Effects of combined microwave and enzymatic treatments on the hydrolysis and immunoreactivity of dairy whey proteins[J]. International Dairy Journal,2008,18(9):918−922. doi: 10.1016/j.idairyj.2008.01.005
|
[54] |
dos Santos S C, Konstantyner T, Cocco R R. Effects of probiotics in the treatment of food hypersensitivity in children: A systematic review[J]. Allergologia et Immunopathologia,2020,48(1):95−104. doi: 10.1016/j.aller.2019.04.009
|
[55] |
Bertelsen R J, Jensen E T, Ringel-Kulka T. Use of probiotics and prebiotics in infant feeding[J]. Best Practice & Research Clinical Gastroenterology,2016,30(1):39−48.
|
[56] |
Zheng H, Shen X Q, Bu G H, et al. Effects of pH, temperature and enzyme-to-substrate ratio on the antigenicity of whey protein hydrolysates prepared by Alcalase[J]. International Dairy Journal,2008,18(10-11):1028−1033. doi: 10.1016/j.idairyj.2008.05.002
|
[57] |
Zeece M, Huppertz T, Kelly A. Effect of high-pressure treatment on in vitro digestibility of β-lactoglobulin[J]. Innovative Food Sciences and Emergging Technologies,2008,9(1):62−69. doi: 10.1016/j.ifset.2007.05.004
|
[58] |
ElMecherfi K E, Rouaud O, Curet S, et al. Peptic hydrolysis of bovine β-lactoglobulin under microwave treatment reduces its allergenicity in an ex vivo murine allergy model[J]. International Journal of Food Science and Technology,2015,50(2):356−364. doi: 10.1111/ijfs.12653
|
[59] |
Zheng Z, Liao P, Luo Y K, et al. Effects of fermentation by Lactobacillus delbrueckii subsp. bulgaricus, refrigeration and simulated gastrointestinal digestion on the antigenicity of four milk proteins[J]. Journal of Food Processing and Preservation,2014,38(3):1106−1112. doi: 10.1111/jfpp.12069
|
[60] |
Nasirpour A, Scher J, Desobry S. Baby foods: Formulations and interactions (a review)[J]. Critical Review in Food Sciences and Nutrition,2006,46(8):665−681. doi: 10.1080/10408390500511896
|
[61] |
Armaforte E, Curran E, Huppertz T, et al. Proteins and proteolysis in pre-term and term human milk and possible implications for infant formulae[J]. International Dairy Journal,2010,20(10):715−723. doi: 10.1016/j.idairyj.2010.03.008
|
[62] |
Exl B M. A review of recent developments in the use of moderately hydrolyzed whey formulae in infant nutrition[J]. Nutrition Research,2001,21(1-2):355−379. doi: 10.1016/S0271-5317(00)00259-1
|
[63] |
Meulenbroek L A P M, Oliveira S, den Hartog Jager C F, et al. The degree of whey hydrolysis does not uniformly affect in vitro basophil and T cell responses of cow’s milk-allergic patients[J]. Clinical & Experimental Allergy,2014,44:529−539.
|
[64] |
Nutten S, Jarvi A, Maynard F. Extensively hydrolyzed formulas for the management of cow's milk protein allergy in infants: Is extensive hydrolysis sufficient to guarantee success?[J]. Allergy,2018,73(105):429−429.
|
[65] |
Verduci E, D'Elios S, Cerrato L, et al. Cow's milk substitutes for children: Nutritional aspects of milk from different mammalian species, special formula and plant-based beverages[J]. Nutrients,2019,11(8):1739. doi: 10.3390/nu11081739
|
[66] |
Abdolkhalegh G, Jafar M M, Todor V. Altering allergenicity of cow’s milk by food processing for applications in infant formula[J]. Critical Reviews in Food Science and Nutrition,2019,59(1):159−172. doi: 10.1080/10408398.2017.1363156
|
[67] |
Parekh H, Bahna S L. Infant formulas for food allergy treatment and prevention[J]. Pediatric Annals,2016,45(1):E150−E156.
|
[68] |
Harvey B M, Langford J E. Comparison of growth of healthy term infants fed extensively hydrolyzed protein- and amino acid-based infant formulas[J]. Nutrients,2018,11(1):185.
|
[69] |
Sackesen C, Altintas D U, Bingol A. Current trends in tolerance induction in cow's milk allergy: From passive to proactive strategies[J]. Frontreis in Pediatrics,2019,7:372. doi: 10.3389/fped.2019.00372
|