MA Wenjun, GUO Xiaoyan, TENG Lin, et al. Soluble Prokaryotic Expression, Fermentation Optimization and Purification of Recombinant Human DCD-1L[J]. Science and Technology of Food Industry, 2021, 42(9): 114−121. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080008.
Citation: MA Wenjun, GUO Xiaoyan, TENG Lin, et al. Soluble Prokaryotic Expression, Fermentation Optimization and Purification of Recombinant Human DCD-1L[J]. Science and Technology of Food Industry, 2021, 42(9): 114−121. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080008.

Soluble Prokaryotic Expression, Fermentation Optimization and Purification of Recombinant Human DCD-1L

More Information
  • Received Date: August 02, 2020
  • Available Online: February 24, 2021
  • Objective: The study aimed to realize the prokaryotic soluble expression of human sweat gland antibiotic DCD-1L, optimize its fermentation and purification conditions, and analyze its antibacterial properties. Methods: Firstly, the sequence of human DCD-1L was identified by searching NCBI, and the vector pET28a-DCD-1L was constructed. After transformed into E. coli ER2566, it was induced by IPTG and identified by SDS-PAGE. Secondly, through single factor experiment, the fermentation conditions of different temperature, rotation and feeding speed were studied and optimized to determine the optimal fermentation conditions for DCD-1L. Thirdly, according to the properties of the protein, a complete purification process was established, including ultrafiltration, Q-column elution and molecular sieve. Results: The optimal fermentation conditions of DCD-1L were obtained: 37 ℃, 400 r/min, and the peristaltic pump was 50 mL/30 min. The purity of DCD-1L was more than 96%, and the total recovery rate was 18.4%. The purified recombinant human DCD-1L had more significant antibacterial activity against Gram-positive bacteria such as Staphylococcus epidermidis than Escherichia coli. Conclusion: The recombinant human DCD-1L protein is expressed in prokaryotic cells, and the fermentation and purification processes is stable and reliable, which lays a foundation for the industrial production of recombinant human DCD-1L protein.
  • [1]
    Alakomi H L, Maukonen J, Honkap Ä Ä K, et al. Effect of plant antimicrobial agents containing marinades on storage stability and microbiological quality of broiler chicken cuts packed with modified atmosphere packaging[J]. Journal of Food Protection,2017,80(10):1689−1696. doi: 10.4315/0362-028X.JFP-17-076
    [2]
    Thibaut T, Kieran M L, Elke K A, et al. Natural antifungal peptides/proteins as model for novel food preservatives[J]. Comprehensive Reviews in Food Science and Food Safety,2019,18(5):1327−1360. doi: 10.1111/1541-4337.12480
    [3]
    Mahendra R, Raksha P, Swapnil G, et al. Antimicrobial peptides as natural bio-preservative to enhance the shelf-life of food[J]. Journal of Food Science and Technology-mysore,2016,53(9):3381−3394. doi: 10.1007/s13197-016-2318-5
    [4]
    Hintz T, Matthews K K, Di R. The use of plant antimicrobial compounds for food preservation[J]. BioMed Research International,2015,2015:246264.
    [5]
    Meza J, Zarzosa A, Corona J, et al. AMPs: Current and potential applications in biomedical therapies[J]. BioMed Research International,2015,2015:367243.
    [6]
    Mohanty D, Jena R, ChoudhurY P K, et al. Milk derived antimicrobial bioactive peptides: A review[J]. International Journal of Food Properties,2016,19:837−846. doi: 10.1080/10942912.2015.1048356
    [7]
    Schittek B, Hipfel R, Sauer B, et al. Dermcidin: A novel human antibiotic peptide secreted by sweatglands[J]. Nature Immunol,2001,2:1133−1137. doi: 10.1038/ni732
    [8]
    Lai Y, Peng Y, Zuo Y, et al. Functional and structural characterization of recombinant dermcidin-1L, a human antimicrobial peptide[J]. Biochem Biophys Research Commun,2005,328:243−250. doi: 10.1016/j.bbrc.2004.12.143
    [9]
    Ushanandini M, Oona K, Meryem E K, et al. SUMO-based expression and purification of dermcidin-derived DCD-1L, a human antimicrobial peptide, in Escherichia coli[J]. BioRxiv,2018:343418.
    [10]
    Nakano T, Yoshino T, Fujimura T, et al. Reduced expression of dermcidin, a peptide active against Propionibacterium acnes, in sweat of patients with acne vulgaris[J]. Acta dermato-venereologica,2015,95(7):783−786.
    [11]
    Marc B, Birgit S. The secrets of dermcidin action[J]. International Journal of Medical Microbiology,2015,305(2):283−286. doi: 10.1016/j.ijmm.2014.12.012
    [12]
    梁鑫, 张仁怀, 吕自力,等. 重组人Ⅲ型胶原蛋白的分离纯化[J]. 食品与发酵工业,2020,46(16):159−163.
    [13]
    王蒙. 抗菌肽天蚕素A表达体系的构建、突变体设计以及功能研究[D]. 广州: 华南理工大学, 2018.
    [14]
    李冲, 罗玉萍, 李思光. 人源性多肽Dermcidin的特性与功能[J]. 细胞生物学杂志,2008(2):177−181.
    [15]
    蔡鹏, 姜宁, 张爱忠, 等. 毕赤酵母表达系统应用于抗菌肽表达的研究进展[J]. 黑龙江畜牧兽医,2015,11(6):56−60.
    [16]
    赖玉平. Dermcidin的表达、纯化、功能结构和表皮葡萄球菌抗Dermcidin的机理[D]. 上海: 华东师范大学, 2006: 61−64.
    [17]
    顾春华, 廖世奇. 抗菌肽DCD-1L的随机突变及在毕赤酵母中的表达[J]. 食品与药品,2010,12(1):24−28. doi: 10.3969/j.issn.1672-979X.2010.01.007
    [18]
    周思彤. 抗菌肽DCD-1L基因在毕赤酵母中的表达及其突变文库表达质粒载体的构建[M]. 兰州: 西北师范大学, 2010.
    [19]
    徐晓红. 抗菌肽DCD-1L基因的随机突变体在毕赤酵母中的表达[D]. 兰州: 兰州大学, 2007.
    [20]
    1Čipáková I, Gašperík J, Hostinová E. Expression and purification of human antimicrobial peptide, dermcidin, inEscherichia coli[J]. Protein Expression and Purification,2006,45(2):269−274. doi: 10.1016/j.pep.2005.07.002
    [21]
    Hong I, Kim Y S, Choi S G. Simple purification of the human antimicrobial peptide dermcidin (MDCD-1L) by intein-mediated expression in E. coli[J]. Journal of Microbiology & Biotechnology,2010,20(2):350−355.
    [22]
    Mitchell F, Lorsch R. Protein affinity purification using intein/chitin binding protein tags[J]. Methods in Enzymology,2015,559:111−125.
    [23]
    杜坤, 周丽, 堵国成, 等. 内含肽介导谷氨酰胺转胺酶酶原的活化[J]. 食品科学,2013,34(9):90−94. doi: 10.7506/spkx1002-6630-201309020
    [24]
    王炯蓉, 李志忠, 王芳, 等. 抗菌肽DCD-1L在大肠杆菌中的表达及活性鉴定[J]. 生物技术,2013,23(6):37−41.
    [25]
    Heidi A W, Sarah C M, Leo T L, et al. Liposomal therapy attenuates dermonecrosis induced by community-associated methicillin-resistant Staphylococcus aureus by targeting α-type phenol-soluble modulins and α-hemolysin[J]. EBioMedicine,2018,33:211−217. doi: 10.1016/j.ebiom.2018.06.016
    [26]
    Hossein S, Sahar B B, Zahra K, et al. Expression analysis and ATR-FTIR characterization of the secondary structure of recombinant human TNF-α from Escherichia coli SHuffle® T7 express and BL21 (DE3) cells[J]. International Journal of Biological Macromolecules,2017,99:173−178. doi: 10.1016/j.ijbiomac.2017.02.052
    [27]
    余本琪. 蛋白酶敲除及分子伴侣共表达对成纤维细胞因子(FGF21)在大肠杆菌中异源表达的初步研究[M]. 大连: 大连工业大学, 2017.
    [28]
    Swaminath S, John E C. An eight-residue deletion in Escherichia coli fabg causes temperature-sensitive growth and lipid synthesis plus resistance to the calmodulin inhibitor trifluoperazine[J]. Journal of Bacteriology,2017,199(10):74−77.
    [29]
    Khairul A Z, Norhayati P, Ida idayu M. Monitoring the effect of pH on bacterial cellulose production and Acetobacter xylinum 0416 growth in a rotary discs reactor[J]. Arabian Journal for Science & Engineering,2015,40(5):1881−1885.
    [30]
    Liu P, Dong H, Tan T. Effect of feeding pre-L-methionine on high-cell-density fermentation for S-adenosyl-L-methionine production[J]. Chinese Journal of Biotechnology,2006,22(2):268.
    [31]
    潘铁英. 波谱解析法[M]. 上海: 华东理工大学出版社, 2009.
    [32]
    Van S N, Kang W T, Karthik R, et al. Structural basis for the bacterial membrane insertion of dermcidin peptide, DCD-1L[J]. Scientific Reports,2017,7(1):13 923. doi: 10.1038/s41598-017-13600-z
  • Cited by

    Periodical cited type(12)

    1. 何海华,刘邵凡. 食用菌多糖与运动功能关系研究进展. 江苏调味副食品. 2024(02): 6-9 .
    2. 林雨蝶,李治赫,张付云. 丝状真菌胞外多糖的研究进展. 农产品加工. 2024(12): 104-107 .
    3. 陈秉彦,林晓姿,李维新,杨超,何志刚. 乳酸菌联合酿酒酵母发酵对龙须菜多糖结构特征及抗氧化性的影响. 食品科学技术学报. 2023(03): 107-115+147 .
    4. 桑雨梅,高郁超,武济萍,葛少钦,薛宏坤. 食用真菌多糖提取、纯化及结构表征研究进展. 食品研究与开发. 2023(13): 210-218 .
    5. 刘志洋,孙琪瑶,宫世平,徐建舒,王亚慧,张铭泽,于悦. 鹿皮胶多糖对酒精性肝损伤的保护作用. 食品工业科技. 2021(23): 334-340 . 本站查看
    6. 赵可,李汉清,蒋嘉烨,可燕. 关白附多糖纯化工艺优化及抑制结肠癌肝转移. 世界科学技术-中医药现代化. 2021(09): 3281-3288 .
    7. 张明,王瑶,马超,王崇队,杨立风,范祺,张博华,孟晓峰. 芦笋老茎多糖体外抗氧化及降血糖作用研究. 食品科技. 2020(02): 219-224 .
    8. 贾杰,郑瑞峰,李淑兰,张道敬. 多粘类芽孢杆菌HY96-2胞外多糖的分离纯化. 分析科学学报. 2020(01): 42-46 .
    9. 张喜康,赵宇慧,刘军,李佩佩,马露,王聪,王丽萍,刘敦华. 枸杞不同生长期多糖的理化特性及结构分析. 食品科学. 2020(16): 158-164 .
    10. 野津,张文森,王知斌,杨春娟,匡海学. DEAE-52在中药多糖分离纯化中的应用. 化学工程师. 2019(11): 43-45+22 .
    11. 赵明智,吕延成. 古尼虫草纯化多糖免疫调节活性研究. 食品安全质量检测学报. 2018(10): 2493-2500 .
    12. 孙玉姣,侯淑婷,鱼喆喆,崔湘怡,谭梓杉,戚歆宇,康雨芳. 宁夏红果枸杞多糖提取及其体外抗氧化活性研究. 陕西科技大学学报. 2018(05): 39-45 .

    Other cited types(25)

Catalog

    Article Metrics

    Article views (154) PDF downloads (9) Cited by(37)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return