Citation: | LUO Fengfeng, FU Yue, JIANG Shuxian, et al. Research Progress on Microbial Antagonist Control of Biological Preservation of Fruits and Vegetables[J]. Science and Technology of Food Industry, 2021, 42(19): 383−394. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070392. |
[1] |
万丹丹, 王雪宁. 水果采后生物保鲜研究进展[J]. 食品安全导刊,2020,4(14):35. [Wang D D, Wang X N. Research progress on biological preservation of postharvest fruits[J]. China Food Safety Magazine,2020,4(14):35.
|
[2] |
尹义蕾. 果蔬成分测量新武器[J]. 农业工程技术,2020,40(10):70−71. [Yin Y L. New weapon for measuring fruit and vegetable composition[J]. Applied Engineering Technology,2020,40(10):70−71.
|
[3] |
Gang-Xia W, Dong-Hua X I, Zhong-Hong W U, et al. Development of biological technology on fruit and vegetables preservation[J]. Current Biotechnology,2014(1):12−16.
|
[4] |
Weselowski B, Nathoo N, Eastman A W, et al. Isolation, identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production[J]. BMC Microbiology,2016,16(1):244. doi: 10.1186/s12866-016-0860-y
|
[5] |
Settanni L, Corsetti A. Application of bacteriocins in vegetable food biopreservation[J]. International Journal of Food Microbiology,2008,121(2):123−138. doi: 10.1016/j.ijfoodmicro.2007.09.001
|
[6] |
Dukare A S, Paul S, Nambi V E, et al. Exploitation of microbial antagonists for the control of postharvest diseases of fruits: A review[J]. Critical Reviews in Food Science and Nutrition,2019,59(9):1498−1513. doi: 10.1080/10408398.2017.1417235
|
[7] |
Aiello D, Restuccia C, Stefani E, et al. Postharvest biocontrol ability of Pseudomonas synxantha against Monilinia fructicola and Monilinia fructigena on stone fruit[J]. Postharvest Biology & Technology,2019,149:83−89.
|
[8] |
Li Q, Li C, Li P, et al. The biocontrol effect of Sporidiobolus pararoseus Y16 against postharvest diseases in table grapes caused by Aspergillus niger and the possible mechanisms involved[J]. Biological Control,2017,113:18−25. doi: 10.1016/j.biocontrol.2017.06.009
|
[9] |
Hernandez-Montiel L G, Gutierrez-Perez E D, Murillo-Amador B, et al. Mechanisms employed by Debaryomyces hansenii in biological control of anthracnose disease on papaya fruit[J]. Postharvest Biology & T echnology,2018,139:31−37.
|
[10] |
Yu S M, Lee H Y. Genes involved in nutrient competition by Pseudomonas putida JBC17 to suppress green mold in postharvest satsuma mandarin[J]. Journal of Basic Microbiology,2015,55(7):898−906. doi: 10.1002/jobm.201400792
|
[11] |
Spadaro D, Droby S. Development of biocontrol products for postharvest diseases of fruit: The importance of elucidating the mechanisms of action of yeast antagonists[J]. Trends in Food Science & Technology,2016,47:39−49.
|
[12] |
Singh P, Singh J, Rajput R S, et al. Exploration of multitrait antagonistic microbes against Fusarium oxysporum f. sp. lycopersici[J]. Journal of Applied & Natural Science,2019,11(2):503−510.
|
[13] |
Sarwar A, Latif Z, Zhang S, et al. A potential biocontrol agent Streptomyces violaceusniger AC12AB for managing potato common scab[J]. Frontiers in Microbiology,2019,10:1−10. doi: 10.3389/fmicb.2019.00001
|
[14] |
Konsue W, Dethoup T, Limtong S. Biological control of fruit rot and anthracnose of postharvest mango by sntagonistic yeasts from economic crops leaves[J]. Microorganisms,2020,8(3):317−334. doi: 10.3390/microorganisms8030317
|
[15] |
Waewthongrak W, Pisuchpen S, Leelasuphakul W. Effect of Bacillus subtilis and chitosan applications on green mold (Penicilium digitatum Sacc.) decay in citrus fruit[J]. Postharvest Biology & Technology,2015,99:44−49.
|
[16] |
Zhang H, Chen L, Sun Y, et al. Investigating proteome and transcriptome defense response of apples induced by Yarrowia lipolytica[J]. Molecular Plant-Microbe Interactions,2017,30(4):301−311. doi: 10.1094/MPMI-09-16-0189-R
|
[17] |
Silvana V, Gabriela G, González M Belén, et al. Evaluation of yeasts obtained from Antarctic soil samples as biocontrol agents for the management of postharvest diseases of apple (Malus × domestica)[J]. Fems Yeast Research,2013,13(2):189−199. doi: 10.1111/1567-1364.12021
|
[18] |
Liu P, Fang J, Chen K, et al. Phenylethanol promotes adhesion and biofilm formation of the antagonistic yeast Kloeckera apiculata for the control of blue mold on citrus[J]. Fems Yeast Research,2014,14(4):536−546. doi: 10.1111/1567-1364.12139
|
[19] |
冯金龙, 杨成德, 陈秀蓉, 等. 解淀粉芽孢杆菌S27的鉴定、生物学功能测定及其对马铃薯病原真菌的拮抗作用研究[J]. 甘肃农业大学学报,2013,48(4):56−61. [Feng J L, Yang C D, Chen X R, et al. Identification and biology function determination of Bacillus amyloliquefaciens S27 and its antagonism for several pathogenic fungus of potato[J]. Journal of Gansu Agricultural University,2013,48(4):56−61. doi: 10.3969/j.issn.1003-4315.2013.04.012
|
[20] |
Yang Y, Wu Z M, Li K T. The peculiar physiological responses of Rhizoctonia solani, under the antagonistic interaction coupled by a novel antifungalmycin N2 from Streptomyces sp. N2[J]. Archives of Microbiology,2019:1−8.
|
[21] |
刘青, 李升, 梁才康, 等. 贵州地区木霉菌分离鉴定及对辣椒疫霉的拮抗作用[J]. 微生物学通报,2019,46(4):741−751. [Liu Q, Li S, Liang C K, et al. Isolation and identification of Trichoderma spp. against Phytophthora capsici [J]. Microbiology,2019,46(4):741−751.
|
[22] |
Huang R, Li G Q, Zhang J, et al. Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia[J]. Phytopathology,2011,101(7):859−869. doi: 10.1094/PHYTO-09-10-0255
|
[23] |
Lahkar J, Goswami D, Deka S, et al. Novel approaches for application of biosurfactant produced by Pseudomonas aeruginosa for biocontrol of Colletotrichum capsici responsible for anthracnose disease in chilli[J]. European Journal of Plant Pathology,2018,150:57−71. doi: 10.1007/s10658-017-1252-3
|
[24] |
Lee K H, Song H G. Production of antifungal materials by Bacillus sp. which inhibit growth of Phytophthora infestans and Fusarium oxysporum[J]. Korean Journal of Microbiology,2008,44(3):258−263.
|
[25] |
Kim Y S, Balaraju K, Jeon Y. Effects of rhizobacteria Paenibacillus polymyxa APEC136 and Bacillus subtilis APEC170 on biocontrol of postharvest pathogens of apple fruits[J]. Journal of Zhejiang University(Science B),2016,17(12):931−940.
|
[26] |
Kilani-Feki O, Khedher S B, Dammak M, et al. Improvement of antifungal metabolites production by Bacillus subtilis V26 for biocontrol of tomato postharvest disease[J]. Biological Control,2016,95(5):73−82.
|
[27] |
Liu C, Yin X, Wang Q, et al. Antagonistic activities of volatiles produced by two Bacillus strains against Monilinia fructicola in peach fruit[J]. Journal of the Science of Food and Agriculture,2018,98:5756−5763. doi: 10.1002/jsfa.9125
|
[28] |
Zhang X Y, Wu F, Gu N, et al. Postharvest biological control ofRhizopus rot and the mechanisms involved in induced disease resistance of peaches by Pichia membranefaciens[J]. Postharvest Biology and Technology,2020,163:111−146.
|
[29] |
Muccilli V, Vitale A, Sheng L, et al. Substantial equivalence of transgenic lemon fruit showing postharvest fungal pathogens resistance[J]. Journal of Agricultural and Food Chemistry,2020,68(12):3806−3816. doi: 10.1021/acs.jafc.9b07925
|
[30] |
颜霞. 淡紫灰链霉菌gCLA4坏死诱导蛋白基因的克隆表达及功能[J]. 微生物学通报,2020,47(5):1452−1459. [Yan X. Expression and characterization of necrosis-inducing protein from Streptomyces lavendulae gCLA4[J]. Microbiology,2020,47(5):1452−1459.
|
[31] |
Limera C, Sabbadini S, Sweet J B, et al. New biotechnological tools for the genetic improvement of major woody fruit species[J]. Front Plant Science,2017,15(8):14−18.
|
[32] |
Liu W C, Wu X L, Bai X L, et al. Fusaricidins in Paenibacillus polymyxa A21 and their antagonistic activity against Botrytis cinerea on tomato[J]. Frontiers of Agricultural Science and Engineering,2018(2):262−270.
|
[33] |
郭海, 杨成德, 姚玉玲, 等. 高寒草地牧草内生细菌262AG6拮抗功能测定及鉴定[J]. 西北农业学报,2017,26(10):1529−1536. [Guo H, Yang C D, Yao Y L, et al. Identification and determination of antagonistic function of endophytic bacteria 262AG6 from Kobresia humilis in Alpine Grassland[J]. Acta Agriculturae Boreali-occidentalis Sinica,2017,26(10):1529−1536. doi: 10.7606/j.issn.1004-1389.2017.10.016
|
[34] |
Kefi A, Ben Slimene I, Karkouch I, et al. Characterization of endophytic Bacillus strains from tomato plants (Lycopersicon esculentum) displaying antifungal activity against Botrytis cinerea Pers[J]. World Journal of Microbiology and Biotechnology,2015,31(12):1967−1976. doi: 10.1007/s11274-015-1943-x
|
[35] |
Chen O, Yi L, Deng L, et al. Screening antagonistic yeasts against citrus green mold and the possible biocontrol mechanisms of Pichia galeiformis (BAF03)[J]. Journal of the Science of Food and Agriculture,2020,100(10):3812−3821. doi: 10.1002/jsfa.10407
|
[36] |
Mehedi, Md. Postharvest management of anthracnose on quality of mango using antagonistic bacteria[M]. 2019, 10.13140/RG. 2.2. 27004.28805.
|
[37] |
Urbina C T, Prieto V G, Lopez C G, et al. Purification and characterization of β-1, 3-glucanase from Candida oleophila for the biocontrol of Penicillium expansum[J]. Research & Reviews: Journal of Botanical Sciences,2016,5(1):38−45.
|
[38] |
Kasfi K, Taheri P, Jafarpour B, et al. Characterization of antagonistic microorganisms against Aspergillus spp. from grapevine leaf and berry surfaces[J]. Journal of Plant Pathology,2018,100(2):179−190. doi: 10.1007/s42161-018-0042-x
|
[39] |
Zhang D P, Lu C G, Zhang T T, et al. Candida prunisp. nov. is a new yeast species with antagonistic potential against brown rot of peaches[J]. Archives of Microbiology,2014,196(7):525−530. doi: 10.1007/s00203-014-0999-6
|
[40] |
Shen H, Wei Y, Wang X, et al. The marine yeast Sporidiobolus pararoseus ZMY-1 has antagonistic properties against Botrytis cinerea in vitro and in strawberry fruit[J]. Postharvest Biology & Technology,2019,150:1−8.
|
[41] |
Wang Y, Wang P, Xia J, et al. Effect of water activity on stress tolerance and biocontrol activity in antagonistic yeast Rhodosporidium paludigenum[J]. International Journal of Food Microbiology,2010,143(3):103−108. doi: 10.1016/j.ijfoodmicro.2010.07.035
|
[42] |
Kim H M, Lee K J, Chae J C. Postharvest biological control of Colletotrichum acutatum on apple by Bacillus subtilis HM1 and the structural identification of antagonists[J]. Journal of Microbiology & Biotechnology,2015,25(11):1954−1959.
|
[43] |
Fang X, Li Y L, Guo W C, et al. Lactobacillus delbrueckii subsp. bulgaricus F17 and Leuconostoc lactis H52 supernatants delay the decay of strawberry fruits: A microbiome perspective[J]. Food & Function,2019,12:7767−7781.
|
[44] |
孙梦莹, 焦煕栋, 李新玲, 等. 海洋源乳杆菌抑菌物质的研究[J]. 食品研究与开发,2019,40(8):23−29. [Sun M Y, Jiao X D, Li X L, et al. Study on antibacterial substances of marine-derived Lactobacillus[J]. Food Research and Development,2019,40(8):23−29.
|
[45] |
Chávez J L R, Campusano Y S J, Delgado G, et al. Identification of lipopeptides from Bacillus strain Q11 with ability to inhibit the germination of Penicillium expansum, the etiological agent of postharvest blue mold disease[J]. Postharvest Biology and Technology,2019,155:72−79. doi: 10.1016/j.postharvbio.2019.05.011
|
[46] |
Sivakumar D, Zeeman K, Korsten L. Effect of a biocontrol agent (Bacillus subtilis) and modified atmosphere packaging on postharvest decay control and quality retention of litchi during storage[J]. Phytoparasitica,2007,35(5):507−518. doi: 10.1007/BF03020609
|
[47] |
Jung W J, Mabood F, Souleimanov A, et al. Antibacterial activity of antagonistic bacterium Bacillus subtilis DJM-51 against phytopathogenic Clavibacter michiganense subsp. michiganense ATCC 7429 in vitro[J]. Microbial Pathogenesis,2014,77:13−16. doi: 10.1016/j.micpath.2014.10.008
|
[48] |
田建, 周红丽, 易有金, 等. 辣椒炭疽病菌拮抗内生菌筛选及其对辣椒采后保鲜效果的研究[J]. 现代食品科技,2016,32(5):151−160. [Tian J, Zhou H L, Yi Y J, et al. Screening of an antagonistic endophytic bacterium against Colletotrichum capsici and its fresh-keeping effects on postharvest capsicum[J]. Modern Food Science & Technology,2016,32(5):151−160.
|
[49] |
李梦霖, 阮羽萱, 杜可心, 等. 2株油菜菌核病拮抗内生细菌的筛选鉴定及其拮抗活性初步分析[J]. 江苏农业科学,2019,47(13):121−125. [Li M L, Ruan Y X, Du K X, et al. Screening and identification of two antagonistic endophytic bacteria against Sclerotinia sclerotiorum and preliminary analysis of their antagonistic activities[J]. Jiangsu Agricultural Sciences,2019,47(13):121−125.
|
[50] |
Nikolić I, Berić T, Dimkić I, et al. Biological control of Pseudomonas syringae pv. aptata on sugar beet with Bacillus pumilus SS-10.7 and Bacillus amyloliquefaciens (SS-12.6 and SS-38.4) strains[J]. Journal of Applied Microbiology, 2019, 126(1): 165-176.
|
[51] |
Gotor-Vila A, Usall J, Torres R, et al. Biocontrol products based on Bacillus amyloliquefaciens CPA-8 using fluid-bed spray-drying process to control postharvest brown rot in stone fruit[J]. LWT- Food Science & Technology,2017,82:274−282.
|
[52] |
Gotor-Vila A, Teixidó, N, Casals C, et al. Biological control of brown rot in stone fruit using Bacillus amyloliquefaciens CPA-8 under field conditions[J]. Crop Protection,2017,102:72−80. doi: 10.1016/j.cropro.2017.08.010
|
[53] |
Alvindia, Dionisio G, Acda, et al. The antagonistic effect and mechanisms of Bacillus amyloliquefaciens DGA14 against anthracnose in mango cv. ‘Carabao’[J]. Biocontrol Science and Technology,2015,25(5):560−572. doi: 10.1080/09583157.2014.996738
|
[54] |
Arrebola E, Jacobs R, Korsten L. Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens[J]. Journal of Applied Microbiology,2010,108(2):386−395. doi: 10.1111/j.1365-2672.2009.04438.x
|
[55] |
Qu H, Zhao L Y, Zhao F C, et al. Biocontrol of gray mold decay in pear by Bacillus amyloliquefaciens strain BA3 and its effect on postharvest quality parameters[J]. Polish Journal of Microbiology,2016,65(2):171−176. doi: 10.5604/17331331.1204476
|
[56] |
祝久香, 黎继烈, 申爱荣, 等. 油菜菌核病病菌拮抗菌的筛选及其生防效果[J]. 中国植保导刊,2019,39(9):11−20. [Zhu J X, Li J L, Shen A R, et al. Screening of antagonistic bacteria against Sclerotinia sclerotiorum and its bio-control effects[J]. China Plant Protection,2019,39(9):11−20. doi: 10.3969/j.issn.1672-6820.2019.09.002
|
[57] |
Chen J M, Guo H H, Liu B, et al. Identification of volatile compounds produced Bacillus spp. and their antimicrobial effects on the anthracnose pathogen from postharvest loquat[J]. Fujian Journal of Agricultural Sciences,2014,29(5):469−474.
|
[58] |
Lucon C M M, Guzzo S D, Jesus C O D, et al. Postharvest harpin or Bacillus thuringiensis treatments suppress citrus black spot in 'Valencia' oranges[J]. Crop Protection,2010,29(7):766−772. doi: 10.1016/j.cropro.2010.02.018
|
[59] |
Zheng M, Shi J, Shi J, et al. Antimicrobial effects of volatiles produced by two antagonistic Bacillus strains on the anthracnose pathogen in postharvest mangos[J]. Biological Control,2013,65(2):200−206. doi: 10.1016/j.biocontrol.2013.02.004
|
[60] |
Reyes-Perez J J, Hernandez-Montiel L G, Vero S, et al. Postharvest biocontrol of Colletotrichum gloeosporioides on mango using the marine bacterium Stenotrophomonas rhizophila and its possible mechanisms of action[J]. Journal of Food Science and Technology,2019,56(11):4992−4999. doi: 10.1007/s13197-019-03971-8
|
[61] |
Wang Z, Mei X, Du M, et al. Potential modes of action of Pseudomonas fluorescens ZX during biocontrol of blue mold decay on postharvest citrus[J]. Journal of the Science of Food and Agriculture,2019,100(2):744−754.
|
[62] |
Seethapathy P, Gurudevan T, Subramanian K S, et al. Bacterial antagonists and hexanal-induced systemic resistance of mango fruits against Lasiodiplodia theobromae causing stem-end rot[J]. Journal of Plant Interactions,2016,11(1):158−166. doi: 10.1080/17429145.2016.1252068
|
[63] |
Oniel K, Karly W, Rowida M, et al. Bacillus and Pseudomonas spp. provide antifungal activity against gray mold and Alternaria rot on blueberry fruit[J]. Biological Control,2018,126:136−141. doi: 10.1016/j.biocontrol.2018.08.001
|
[64] |
申顺善, 张莹莹, 张维娜, 等. 绿针假单胞菌HL5-4对番茄灰霉菌的抑制活性及其定殖能力[J]. 园艺学报,2016,43(6):1195−1202. [Shen S S, Zhang Y Y, Zhang W N, et al. Antifungal activity of Pseudomonas choloeaphtis HL5-4 against tomato gray mold and its colonization ability[J]. Acta Horticulturae Sinica,2016,43(6):1195−1202.
|
[65] |
Peng D, Wang X, Baird S M, et al. Complete genome of Pseudomonas chlororaphs strain UFB2, a soil bacterium with antibacterial activity against bacterial canker pathogen of tomato[J]. Standards in Genomic Sciences,2015,10(1):117. doi: 10.1186/s40793-015-0106-x
|
[66] |
Paulin M M, Novinscak A, Lanteigne C, et al. Interaction between 2, 4-Diacetylphloroglucinol- and hydrogen cyanide-producing Pseudomonas brassicacearum LBUM300 and Clavibacter michiganensis subsp. michiganensis in the tomato Rhizosphere[J]. Appl Environ Microbiol, 2017, 83(13): e00073-17.
|
[67] |
Khatun A, Farhana T, Sabir A A, et al. Pseudomonas and Burkholderia inhibit growth and asexual development of Phytophthora capsici[J]. Zeitschrift Fur Naturforschung C-A Journal of Biosciences, 2018, 73(3-4): 123-135.
|
[68] |
Fang X, Duan Q C, Wang Z, et al. Products of Lactobacillus delbrueckii subsp. bulgaricus Strain F17 and Leuconostoc lactis strain H52 are biopreservatives for improving postharvest quality of ‘Red Globe’ Grapes[J]. Microorganisms,2020,8(5):656. doi: 10.3390/microorganisms8050656
|
[69] |
Khodaei D. Influence of bioactive edible coatings loaded withLactobacillus plantarum on physicochemical properties of fresh strawberries[J]. Postharvest Biology and Technology,2019,156:110944. doi: 10.1016/j.postharvbio.2019.110944
|
[70] |
Li J S, Bai J, Li S Y, et al. Effect of lactic acid bacteria on the postharvest properties of fresh lotus root[J]. Postharvest Biology and Technology,2020,160:110983. doi: 10.1016/j.postharvbio.2019.110983
|
[71] |
Killadi B, Garg N. Postharvest quality of guava (Psidium guajava) as effected by Lactobacillus curvatus dip treatment[C]// 2 International Conference on Recent Advances in Agricultural, Environmental & Applied Sciences for Global Development (RAAEASGD-2019). Solan, 2019.
|
[72] |
Zhao Y, Li Y, Yin J. Effects of hot air treatment in combination with Pichia guilliermondii on postharvest preservation of peach fruit.[J]. Journal of the Science of Food and Agriculture,2019,99:647−655. doi: 10.1002/jsfa.9229
|
[73] |
Zhao L N, Zhou Q Y, Yang H H, et al. Inhibitory Effect of Pichia guilliermondii Y35-1 against postharvest anthracnose infection in loquat fruit and its effect on quality preservation[J]. Food Science,2019,40(4):170−177.
|
[74] |
Corato U D, Salimbeni R, Pretis A D, et al. Use of alginate for extending shelf life in a lyophilized yeast-based formulate in controlling green mould disease on citrus fruit under postharvest condition[J]. Food Packaging and Shelf Life,2018,15(in press):76−86.
|
[75] |
Chen K, Yang X, Zheng F, et al. Genome sequencing and analysis of Kloeckera apiculata strain 34-9, a biocontrol agent against postharvest pathogens in citrus[J]. Genes & Genomics,2017,39(1):87−99.
|
[76] |
Czarnecka M, Zarowska B, Polomska X, et al. Role of biocontrol yeasts Debaryomyces hansenii and Wickerhamomyces anomalus in plants' defence mechanisms against Monilinia fructicola in apple fruits[J]. Food Microbiology,2019,83:1−8. doi: 10.1016/j.fm.2019.04.004
|
[77] |
Grzegorczyk M, Zarowska B, Restuccia C, et al. Postharvest biocontrol ability of killer yeasts against Monilinia fructigena and Monilinia fructicola on stone fruit[J]. Food Microbiology,2017,61:93−101. doi: 10.1016/j.fm.2016.09.005
|
[78] |
Parafati L, Vitale A, Restuccia C, et al. Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape[J]. Food Microbiology,2015,47(may):85−92.
|
[79] |
Platania C, Restuccia C, Muccilli S, et al. Efficacy of killer yeasts in the biological control of Penicillium digitatum on Tarocco orange fruits (Citrus sinensis)[J]. Food Microbiology,2012,30(1): 219−225. doi: 10.1016/j.fm.2011.12.010
|
[80] |
Ruiz-Moyano S, Martín A, Villalobos M C, et al. Yeasts isolated from figs (Ficus carica L.) as biocontrol agents of postharvest fruit diseases[J]. Food Microbiol, 2016,57: 45-53.
|
[81] |
Shao Y Z, Zeng J K, Tang H, et al. The chemical treatments combined with antagonistic yeast control anthracnose and maintain the quality of postharvest mango fruit[J]. Journal of Integrative Agriculture,2019,18(5):1159−1169. doi: 10.1016/S2095-3119(18)62128-8
|
[82] |
Luo Y, Zeng K, Ming J. Control of blue and green mold decay of citrus fruit by Pichia membranefaciens and induction of defense responses[J]. Scientia Horticulturae,2012,135:120−127. doi: 10.1016/j.scienta.2011.11.031
|
[83] |
余巧银, 郭红莲, 邢紫娟, 等. 拮抗酵母对西兰花黑斑病及品质的影响[J]. 现代食品科技,2018,34(2):110−116, 74. [Yu Q Y, Guo H L, Xing Z J, et al. Effects of antagonistic yeast on Alternaria alternata and quality of broccoli[J]. Modern Food Science & Technology,2018,34(2):110−116, 74.
|
[84] |
Klein M N, Kupper, Kátia Cristina. Biofilm production by Aureobasidium pullulans improves biocontrol against sour rot in citrus[J]. Food Microbiology,2018,69(feb.):1−10.
|
[85] |
Liu C H, Wu Y N, Hu W Z, et al. Screening, identification and antagonistic mechanism of antagonistic yeasts against the spoilage mould of apple[J]. Science and Technology of Food Industry,2018(12):. 132−136,163.
|
[86] |
Jatav P, Ahirwar S S, Gupta A, et al. Antagonistic activity of cellulase enzyme produced by Trichoderma viride against Xanthomonas citr[J]. Indian Journal of Agricultural Research,2018(52):497−504.
|
[87] |
王永阳, 杜佳, 高克祥. 苦瓜枯萎病生防木霉的筛选鉴定及其定殖的qPCR检测[J]. 山东农业科学,2018,50(8):110−115. [Wang Y Y, Du J, Gao K X. Screening and identification of biocontrol Trichoderma to wilt of bitter gourd and detection of its colonization by qPCR[J]. Shandong Agricultural Sciences,2018,50(8):110−115.
|
[88] |
Oliveira T A S D, Blum L E B, Elizabeth Amélia Alves Duarte, et al. Control of Phytophthora palmivora on postharvest Papaya with Trichoderma asperellum, T. Virens, T. harzianum and T. longibrachiatum[J]. Bioence Journal,2018,34(6):1513−1521.
|
[89] |
Ali D, Houda B, Enrique M, et al. Distribution and genetic variability of Fusarium oxysporum associated with tomato diseases in algeria and biocontrol strategy with indigenous Trichoderma spp.[J]. Frontiers in Microbiology,2018,9:282. doi: 10.3389/fmicb.2018.00282
|
[90] |
Kuzmanovska B, Rusevski R, Jankulovska M, et al. Antagonistic activity of Trichoderma asperellum and Trichoderma harzianum against genetically diverse Botrytis cinerea isolates[J]. Chilean Journal of Agricultural Research,2018,78(3):391−399. doi: 10.4067/S0718-58392018000300391
|
[91] |
Uddin M N, Rahman U U, Khan W, et al. Effect of Trichoderma harzianum on tomato plant growth and its antagonistic activity against Phythium ultimum and Phytopthora capsici[J]. Egyptian Journal of Biological Pest Control,2018,28(1):32. doi: 10.1186/s41938-018-0032-5
|
[92] |
张文军, 毛维兴, 张树武, 等. 深绿木霉T2菌株对苹果霉心病的防治效果研究[J]. 中国果树,2018(5):11−14. [Zhang W J, Mao W X, Zhang S W, et al. Efficiency of Trichoderma atroviride T2 strain in controlling of apple mould core[J]. China Fruits,2018(5):11−14.
|
[93] |
朱萍萍, 凌健, 席亚东, 等. 蔬菜土传病害生防木霉菌株资源的筛选及其防治效果评价[J]. 中国蔬菜,2015(8):28−33. [Zhu P P, Ling J, Xi Y D, et al. Screening and bio-control effect assessment of Trichoderma strains against 3 soil-born vegetable pathogens[J]. China Vegetables,2015(8):28−33. doi: 10.3969/j.issn.1000-6346.2015.08.006
|
[94] |
徐沛东, 朱植银, 黄加诚, 等. 新型生物农药棘孢木霉菌防治辣椒疫病应用研究[J]. 生物灾害科学,2017,40(3):172−175. [Xu P D, Zhu Z Y, Huang J C, et al. Application of Trichoderma asperellum to control pepper blight[J]. Biological Disaster Science,2017,40(3):172−175. doi: 10.3969/j.issn.2095-3704.2017.03.39
|
[95] |
Singh P, Singh J, Ray S, et al. Seed biopriming with antagonistic microbes and ascorbic acid induce resistance in tomato against Fusarium wilt[J]. Microbiological Research,2020,237:126482. doi: 10.1016/j.micres.2020.126482
|
[96] |
Dharmaputra O S, Sudirman L I, Ratnaningsih E A. Mikobiota pada buah pisang kultivar lampung untuk pengendalian hayati Fusarium semitectum[J ]. Jurnal Fitopatologi Indonesia, 2018, 14(1): 30.
|
[97] |
Ghasemi S, Safaie N, Shahbazi S, et al. Enhancement of lytic enzymes activity and antagonistic traits of Trichoderma harzianum using γ-radiation induced mutation[J]. Journal of Agricultural Science and Technology,2019,21(4):1035−1048.
|
[98] |
Xia H, Li Y Y, Liu Z C, et al. Transgenic expression of chit42 gene from Metarhiziumanisopliae in Trichoderma harzianum enhances antagonistic activity against Botrytis cinerea[J]. Molecular Biology,2018,52(5):668−675. doi: 10.1134/S002689331805014X
|
[99] |
王彦, 牛世全, 郑豆豆, 等. 黄瓜枯萎病拮抗放线菌的筛选、鉴定及发酵条件优化[J]. 微生物学通报,2019,46(5):1062−1073. [Wang Y, Niu S Q, Zheng D D, et al. Screening, identification and optimization of fermentation conditions of an antagonistic Actinomycetes to cucumber fusarium wilt[J]. Microbiology,2019,46(5):1062−1073.
|
[100] |
Wu Z M, Lu C J, Zhang S W, et al. Inhibitory activities of metabolite produced by Streptomyces sp. N2 and its efficacy on fruit storage[J]. Southwest China Journal of Agricultural Sciences,2018,31(7):1393−1398.
|
[101] |
Gao X, He Q, Jiang Y, et al. Optimization of nutrient and fermentation parameters for antifungal activity by Streptomyces lavendulae Xjy and its biocontrol efficacies against Fulvia fulva and Botryosphaeria dothidea[J]. Journal of Phytopathology,2016,164(3):155−165. doi: 10.1111/jph.12440
|
[102] |
Li Q, Ning P, Zheng L, et al. Fumigant activity of volatiles of Streptomyces globisporus JK-1 against Penicillium italicum on Citrus microcarpa[J]. Postharvest Biology & Technology,2010,58(2):157−165.
|
[103] |
Thilagam R, Hemalatha N. Plant growth promotion and chilli anthracnose disease suppression ability of rhizosphere soil actinobacteria[J]. Journal of Applied Microbiology,2019,126(6):1835−1849. doi: 10.1111/jam.14259
|
[104] |
Xuan Hoa N, Kyaw Wai N, Yong Hwan K, et al. Antagonism of antifungal metabolites from Streptomyces griseus H7602 against Phytophthora capsici[J]. Journal of Basic Microbiology,2015,55(1):45−53. doi: 10.1002/jobm.201300820
|
[105] |
Choudhary B, Nagpure A, Gupta R K. Biological control of toxigenic citrus and papaya-rotting fungi by Streptomyces violascens MT7 and its extracellular metabolites[J]. Journal of Basic Microbiology,2015,55(12):1343−1356. doi: 10.1002/jobm.201500323
|
[106] |
李威, 肖熙鸥, 李可, 等. 茄子青枯病拮抗放线菌XL-6的筛选、鉴定及发酵条件优化[J]. 微生物学通报,2018,45(2):357−367. [Li W, Xiao X O, Li K, et al. Screening, identification and fermentation optimization of an antagonistic Actinomycete strain XL-6 against Ralstonia solanacearum[J]. Microbiology,2018,45(2):357−367.
|
[107] |
王瑶, 姜冬梅, 王刘庆, 等. 拮抗酵母控制果蔬采后真菌病害研究进展[J]. 食品工业科技,2018,39(8):309−317. [Wang Y, Jiang D M, Wang L Q, et al. Progress on antagonisticyeast control of biological postharvest disease of fruits and vegetables[J]. Science and Technology of Food Industry,2018,39(8):309−317.
|
[108] |
Zhao Y, Yin J J. Effects of Pichia guilliermondii and hot air treatment on the postharvest preservation of red Fuji apple quality attributes[J]. Journal of Food Protection,2018,81(2):186−194. doi: 10.4315/0362-028X.JFP-17-244
|
[109] |
Li W, Zhang H, Li P, et al. Biocontrol of postharvest green mold of oranges by Hanseniaspora uvarum Y3 in combination with phosphatidylcholine[J]. Biological Control,2016,103:30−38. doi: 10.1016/j.biocontrol.2016.07.014
|
[110] |
Rahman A, Mohamed M, Begum M. Postharvest biological management of anthracnose and quality of papaya[M]. LAP LAMBERT Academic Publishing, 2012.
|
[111] |
Zamani-Zadeh M, Soleimanian-Zad S, Sheikh-Zeinoddin M, et al. Integration of Lactobacillus plantarum A7 with thyme and cumin essential oils as a potential biocontrol tool for gray mold rot on strawberry fruit[J]. Postharvest Biology and Technology,2014,92:149−156. doi: 10.1016/j.postharvbio.2014.01.019
|
[112] |
葛念念, 周易, 田亚琴, 等. 复合菌株对采后芒果品质和抗病性的影响[J]. 食品科学,2019,40(9):201−206. [Ge N N, Zhou Y, Tian Y Q, et al. Effects of combinations of antagonistic strains on quality and disease resistance of postharvest mango[J]. Food Science,2019,40(9):201−206. doi: 10.7506/spkx1002-6630-20180316-214
|
[113] |
Rivas-Garcia T, Murillo-Amador B, Nieto-Garibay A, et al. Enhanced biocontrol of fruit rot on muskmelon by combination treatment with marine Debaryomyces hansenii and Stenotrophomonas rhizophila and their potential modes of action[J]. Postharvest Biology and Technology,2019,151:61−67. doi: 10.1016/j.postharvbio.2019.01.013
|
[114] |
Mou W, Li D, Bu J, et al. Comprehensive analysis of ABA effects on ethylene biosynthesis and signaling during tomato fruit ripening[J]. PLoS One. 2016,11(4): 1−30.
|
[115] |
Ramón Carbonell M, Sánchez Torres P. PdSlt2 Penicillium digitatum mitogen-activated-protein kinase controls sporulation and virulence during citrus fruit infection[J]. Fungal Biology,2017,121(12):1063−1074. doi: 10.1016/j.funbio.2017.09.004
|
[116] |
Alessandra F, Manuela P, George A. M, et al. Editorial: Bioactive compounds biosynthesis and metabolism in fruit and vegetables[J]. Frontiers in Plant Science,2020,11:129. doi: 10.3389/fpls.2020.00129
|
[117] |
Manganaris G A, Vlasios G, Ifigeneia M, et al. Antioxidant phytochemicals in fresh produce: Exploitation of genotype variation and advancements in analytical protocols[J]. Frontiers in Chemistry,2018,5:95. doi: 10.3389/fchem.2017.00095
|
1. |
杨体园,黄名勇,方镇洲,呙亚波,王政,邓洁红. 酶促酰化对刺葡萄锦葵啶花色苷光稳定性的影响. 中国食品添加剂. 2024(03): 96-102 .
![]() | |
2. |
邱小明,林良美,胡元庆. 泥蚶提取物抗氧化及抗运动性疲劳作用研究. 湖北民族大学学报(自然科学版). 2024(01): 45-50 .
![]() | |
3. |
王二雷,黄佳莹,段海章,徐彩娜. 花色苷稳态化技术研究进展及应用前景. 食品工业科技. 2024(18): 394-403 .
![]() | |
4. |
孙晨晨,高庆超,李亚辉,张志勇,王树林,梁颖. 5种多酚类化合物提高紫甘蓝花色苷热稳定性及辅色机理初探. 现代食品科技. 2022(03): 89-96 .
![]() |