XIANG Fei, LI Chong, XIA Yuting, et al. Effect of Nano Titanium Dioxide on the Structure and Properties of KGM/Zein Blend Films[J]. Science and Technology of Food Industry, 2021, 42(9): 221−227. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2020070377.
Citation: XIANG Fei, LI Chong, XIA Yuting, et al. Effect of Nano Titanium Dioxide on the Structure and Properties of KGM/Zein Blend Films[J]. Science and Technology of Food Industry, 2021, 42(9): 221−227. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2020070377.

Effect of Nano Titanium Dioxide on the Structure and Properties of KGM/Zein Blend Films

More Information
  • Received Date: July 28, 2020
  • Available Online: March 15, 2021
  • In this paper, konjac glucomannan and zein were used as film-forming substrates, and nano-TiO2 under different contents (1%, 2%, 3%) were added to prepare nano-TiO2/konjac glucomannan/zein blend films by casting method.The microstructure, thermal, mechanical properties, hydrophobicity, water vapor permeability and antibacterial properties of the film were tested. The result showed that there were interactions and compatibilities between nano-TiO2 and konjac glucomannan/zein matrix. The roughness of surface was increased, the thermal stability and hydrophobicity were improved, but the mechanical properties were decreased. The amount of nano-TiO2 about 1% wt, water vapor permeability (5.7×10−13 g·cm/(cm2·s·Pa)) and swelling (16.4%) got the minimum values, and the water contact angle (99.6 °) had the max values. Nano-TiO2/konjac glucomannan/zein blend films obvious had inhibitory effect on Staphylococcus aureus and Escherichia coli., but not obvious on Bacillus subtilis. This study provided a reference basis for the development and application of konjac glucomannan/zein/nano-TiO2 as packaging materials.
  • [1]
    Yu Y, Shen M, Song Q, et al. Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review[J]. Carbohydrate Polymers,2018,183:91−101. doi: 10.1016/j.carbpol.2017.12.009
    [2]
    Shen M, Song B, Zeng G, et al. Are biodegradable plastics a promising solution to solve the global plastic pollution?[J]. Environmental Pollution,2020,263:114469. doi: 10.1016/j.envpol.2020.114469
    [3]
    Li C, Wu K, Su Y, et al. Effect of drying temperature on structural and thermomechanical properties of konjac glucomannan-zein blend films[J]. International Journal of Biological Macromolecules,2019,138:135−143. doi: 10.1016/j.ijbiomac.2019.07.007
    [4]
    Wang K, Wu K, Xiao M, et al. Structural characterization and properties of konjac glucomannan and zein blend films[J]. International Journal of Biological Macromolecules,2017,105:1096−1104. doi: 10.1016/j.ijbiomac.2017.07.127
    [5]
    Roy K, Thory R, Sinhmar A, et al. Development and characterization of nano starch-based composite films from mung bean (vignaradiata)[J]. International Journal of Biological Macromolecules,2020,144:242−251. doi: 10.1016/j.ijbiomac.2019.12.113
    [6]
    Wu C H, Li Y Z, Yu D, et al. Preparation and characterization of konjac glucomannan-based bionanocomposite film for active food packaging[J]. Food Hydrocolloids,2019,89:682−690. doi: 10.1016/j.foodhyd.2018.11.001
    [7]
    Rhim J W, Ng P K W. Natural biopolymer-based nanocomposite for packaging application[J]. Critical Reviews in Food Science and Nutrition,2007,47(4):411−433. doi: 10.1080/10408390600846366
    [8]
    Liu Z, Lin D, Lopez-Sanchez P, et al. Characterizations of bacterial cellulose nanofibers reinforced edible films based on konjac glucomannan[J]. International Journal of Biological Macromolecules,2020,145:634−645. doi: 10.1016/j.ijbiomac.2019.12.109
    [9]
    Oleyaei S A, Zahedi Y, Ghanbarzadeh A, et al. Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles[J]. International Journal of Biological Macromolecules,2016,89:256−264. doi: 10.1016/j.ijbiomac.2016.04.078
    [10]
    Qu L, Chen G, Dong S, et al. Improved mechanical and antimicrobial properties of zein/chitosan films by adding highly dispersed nano-TiO2[J]. Industrial Crops & Products,2019,130:450−458.
    [11]
    Liu Y, Liu Y, Han K, et al. Effect of nano-TiO2 on the physical, mechanical and optical properties of pullulan film[J]. Carbohydrate Polymers,2019,218:95−102. doi: 10.1016/j.carbpol.2019.04.073
    [12]
    Lin D, Huang Y, Liu Y, et al. Physico-mechanical and structural characteristics of starch/polyvinyl alcohol/nano-titania photocatalytic antimicrobial composite films[J]. Food Science and Technology,2018,96:704−712.
    [13]
    Zhang C, Yang F Q. Konjac glucomannan, a promising polysaccharide for OCDDS[J]. Carbohydrate Polymers,2014,104(1):175−181.
    [14]
    Katsuraya K, Okuyama K, Hatanaka K, et al. Constitution of konjac glucomannan: Chemical analysis and 13C NMR spectroscopy[J]. Carbohydrate Polymers,2003,53(2):183−189. doi: 10.1016/S0144-8617(03)00039-0
    [15]
    Lin W, Li Q, Zhu T. New chitosan/konjac glucomannan blending membrane for application in pervaporation dehydration of caprolactam solution[J]. Journal of Industrial and Engineering Chemistry,2012,18(3):934−940. doi: 10.1016/j.jiec.2011.09.008
    [16]
    Guo Y, Liu Z, An H, et al. Nano-structure and properties of maize zein studied by atomic force microscopy[J]. Journal of Cereal Science,2005,41(3):277−281. doi: 10.1016/j.jcs.2004.12.005
    [17]
    Shukla R, Cheryan M. Zein: The industrial protein from corn[J]. Industrial Crops and Products,2001,13(3):171−192. doi: 10.1016/S0926-6690(00)00064-9
    [18]
    Jaggessar A, Mathew A, Wang H, et al. Mechanical, bactericidal and osteogenic behaviours of hydrothermally synthesised TiO2 nanowire arrays[J]. Journal of the Mechanical Behavior of Biomedical Materials,2018,80:311−319. doi: 10.1016/j.jmbbm.2018.02.011
    [19]
    Kazemimanesh M, Dastanpour R, Baldelli A, et al. Size, effective density, morphology, and nano-structure of soot particles generated from buoyant turbulent diffusion flames[J]. Journal of Aerosol Science,2019,132:22−31. doi: 10.1016/j.jaerosci.2019.03.005
    [20]
    全国信息与文献标准化技术委员会第6分委员会. GB/T 1037-1988塑料薄膜和片材透水蒸汽性试验方法杯式法[S]. 北京: 中国标准出版社, 1988.
    [21]
    ASTM. Standard test method for tensile properties of thin plastic sheeting[S]. D882-09, 2009.
    [22]
    Ni X W, Wang K, Wu K, et al. Stability, microstructure and rheological behavior of konjac glucomannan-zein mixed systems[J]. Carbohydrate Polymers,2018,188:260−267. doi: 10.1016/j.carbpol.2018.02.001
    [23]
    Wu C, Peng S, Wen C, et al. Structural characterization and properties of konjac glucomannan/curdlan blend films[J]. Carbohydrate Polymers,2012,89(2):497−503. doi: 10.1016/j.carbpol.2012.03.034
    [24]
    Salarbashi D, Tafaghodi M, Bazzaz B S F. Soluble soybean polysaccharide/TiO2bionanocomposite film for food application[J]. Carbohydrate Polymers,2018,186:384−393. doi: 10.1016/j.carbpol.2017.12.081
    [25]
    Ge L, Zhu M, Li X, et al. Development of active rosmarinic acid-gelatin biodegradable films with antioxidant and long-term antibacterial activities[J]. Food Hydrocolloids,2018,83:308−316. doi: 10.1016/j.foodhyd.2018.04.052
    [26]
    Zhang X, Xiao G, Wang Y, et al. Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications[J]. Carbohydrate Polymers,2017,169:101−107. doi: 10.1016/j.carbpol.2017.03.073
  • Cited by

    Periodical cited type(5)

    1. 隗立昂,李璐,马若飞,白圣贺,张爱国,牛康. 鱼类初加工装备关键技术研究进展. 现代农业装备. 2023(01): 2-7 .
    2. 陈朗,吴文锦,陈胜,石柳,郭晓嘉,汪兰. 淡水鱼前处理设备与技术研究现状和展望. 食品与机械. 2023(03): 207-216 .
    3. 潘扬,李涵,张莹,胡秋林,廖鄂,陈季旺. 粉蒸黄鳝加工工艺优化及米粉抗回生性能比较. 武汉轻工大学学报. 2023(06): 1-9 .
    4. 张军文,郑晓伟,陈庆余. 鱼体除鳞技术与除鳞装备研究综述. 安徽农学通报. 2021(01): 130-131 .
    5. 郑晓伟,陈庆余,张军文. 多段滚筒式罗非鱼高效低损去鳞工艺. 水产学报. 2021(07): 1101-1110 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (250) PDF downloads (24) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return