WANG Xuguang, Ruxianguli Maimaitiyiming, XU Xiaopei, et al. Optimization of Mixed Bacteria Lactic Acid Fermentation Process of Kuche Apricot and Its Fermentation Kinetics Model [J]. Science and Technology of Food Industry, 2021, 42(9): 194−200. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070368.
Citation: WANG Xuguang, Ruxianguli Maimaitiyiming, XU Xiaopei, et al. Optimization of Mixed Bacteria Lactic Acid Fermentation Process of Kuche Apricot and Its Fermentation Kinetics Model [J]. Science and Technology of Food Industry, 2021, 42(9): 194−200. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070368.

Optimization of Mixed Bacteria Lactic Acid Fermentation Process of Kuche Apricot and Its Fermentation Kinetics Model

More Information
  • Received Date: July 28, 2020
  • Available Online: March 15, 2021
  • The lactic acid fermentation process of Kuqa apricot mixed bacteria (Lactobacillus plantarum and Lactobacillus reuteri) was optimized by the 4-factor central composite experimental design (CCD) using response surface analysis method, and the lactic acid bacteria kinetic model of growth and SOD activity was established through the logistic equation. The results showed that the optimal fermentation process was: Temperature was 37.0 ℃, the ratio Lactobacillus plantarum: Lactobacillus reuteri was 2.6:1, inoculation amount was 5.0%, and fermentation time was 30 h. Under these conditions, the superoxide dismutase (SOD) activity in apricot juice was 309.60 U/g, and the sensory score was 54.18. The fit between the predicted value of the kinetic model and the experimental value was 0.9970 and 0.9913, respectively. The fitting curve has a high correlation with the experimental data of lactic acid bacteria growth and SOD activity, and can well simulate the kinetic characteristics of the lactic acid fermentation process of apricot.
  • [1]
    Bujna E, Nikoletta Annamária Farkas, Tran A M, et al. Lactic acid fermentation of apricot juice by mono- and mixed cultures of probiotic Lactobacillus and Bifidobacterium strains[J]. Food Science and Biotechnology,2018,27(2):1−8.
    [2]
    Adkison E C, Biasi W B, Bikoba V, et al. Effect of canning and freezing on the nutritional content of apricots[J]. Journal of Food Science,2018,83(4-6):1757−1761.
    [3]
    Le Bourvellec C, Gouble B, Bureau S, et al. Impact of canning and storage on apricot carotenoids and polyphenols[J]. Food Chemistry,2017,240:615−625.
    [4]
    Tuorila H, Cardello A V. Consumer responses to an off-flavor in juice in the presence of specific health claims[J]. Food Quality & Preference,2002,13(7−8):561−569.
    [5]
    Cagno R D, Coda R, Angelis M D, et al. Exploitation of vegetables and fruits through lactic acid fermentation[J]. Food Microbiology,2013,33(1):1−10. doi: 10.1016/j.fm.2012.09.003
    [6]
    Cagno R D, Minervini G, Rizzello C G, et al. Effect of lactic acid fermentation on antioxidant, texture, color and sensory properties of red and green smoothies[J]. Food Microbiology,2011,28(5):1062−1071. doi: 10.1016/j.fm.2011.02.011
    [7]
    Fonteles T V, Costa M G M, Jesus, Ana Laura Tibério, et al. Optimization of the fermentation of cantaloupe juice by Lactobacillus casei NRRL B-442[J]. Food & Bioprocess Technology,2012,5(7):2819−2826.
    [8]
    Shubhada N, Rudresh D L, Jagadeesh S L, et al. Fermentation of pomegranate juice by lactic acid bacteria[J]. International Journal of Current Microbiology and Applied Sciences,2018,7(8):4160−4173.
    [9]
    Pereira A L F, Maciel T C, Rodrigues S. Probiotic beverage from cashew apple juice fermented withLactobacillus casei[J]. Food Research International,2011,44(5):1276−1283. doi: 10.1016/j.foodres.2010.11.035
    [10]
    Costa M G M, Fonteles T V, Ana Laura Tibério De Jesus, et al. Sonicated pineapple juice as substrate for L. casei cultivation for probiotic beverage development: Process optimisation and product stability[J]. Food Chemistry,2013,139:261−266. doi: 10.1016/j.foodchem.2013.01.059
    [11]
    Nam Jo Kim, Hye Lim Jang, Kyung Young Yoon. Potato juice fermented withLactobacillus casei as a probiotic functional beverage[J]. Food Science & Biotechnology,2012,21:1301−1307.
    [12]
    Kim S M, Um B H. Evaluation of the antioxidant activity of phenolic compounds among blueberry cultivars by HPLC-ESI/MS and on-line HPLC-ABTS system[J]. Journal of Medicinal Plant Research,2010,5(20):5008−5016.
    [13]
    Septembre-Malaterre A, Remize F, Poucheret P. Fruits and vegetables, as a source of nutritional compounds and phytochemicals: Changes in bioactive compounds during lactic fermentation[J]. Food Research International,2017,104:86−99.
    [14]
    Rodriguez H, Landete J M, Rivas B D L, et al. Metabolism of food phenolic acids by Lactobacillus plantarum CECT 748T[J]. Food Chemistry,2008,107(4):1393−1398. doi: 10.1016/j.foodchem.2007.09.067
    [15]
    Adyanthaya I, Kwon Y I, Apostolidis E, et al. Apple postharvest preservation is linked to phenolic content and superoxide dismutase activity[J]. Journal of Food Biochemistry,2010,33(4):535−556.
    [16]
    Kumar S, Jain V, Malhotra S P. Superoxide dismutase from Zizyphus mauritiana Lamk. : Characterization and stability as a function of temperature and pH[J]. Journal of Food Biochemistry,2011,35(5):1407−1412. doi: 10.1111/j.1745-4514.2010.00460.x
    [17]
    Chidi B S, Rossouw D, Buica A S, et al. Determining the impact of industrial wine yeast strains on organic acid production under white and red wine-like fermentation conditions[J]. South African Journal for Enology & Viticulture,2015,36(3):316−327.
    [18]
    Lucio O, Pardo I, Heras, José María, et al. Influence of yeast strains on managing wine acidity using Lactobacillus plantarum[J]. Food Control,2018,92:471−478. doi: 10.1016/j.foodcont.2018.05.027
    [19]
    Knoll C, Fritsch S, Schnell S, et al. Influence of pH and ethanol on malolactic fermentation and volatile aroma compound composition in white wines[J]. LWT - Food Science and Technology,2011,44(10):2077−2086. doi: 10.1016/j.lwt.2011.05.009
    [20]
    Mónica Herrero, Estefanía Noriega, Luis A García, et al. Influence of a malolactic starter on the quality of the cider produced on an industrial scale[J]. European Food Research and Technology,2005,221(1−2):168−174. doi: 10.1007/s00217-005-1134-3
    [21]
    Matejčeková Z, Soltészová F, Ača P, et al. Application of Lactobacillus plantarum in functional products based on fermented buckwheat[J]. Journal of Food Science,2018,83:1053−1062. doi: 10.1111/1750-3841.14090
    [22]
    Mohamad N L, Kamal S M M, Mokhtar M N, et al. Dynamic mathematical modelling of reaction kinetics for xylitol fermentation using Candida tropicalis[J]. Biochemical Engineering Journal,2016,111:10−17. doi: 10.1016/j.bej.2016.02.017
    [23]
    Laopaiboon L, Phukoetphim N, Laopaiboon P. Logistic function and modified Gompertz models for batch ethanol fermentation kinetics from sweet sorghum juice under high gravity condition[J]. New Biotechnology,2016,33:S86−S87.
    [24]
    熊亚, 李敏杰, 姜少娟. 芒果酒发酵动力学模型及抗氧化性研究[J]. 食品工业科技,2019,40(3):7−12.
    [25]
    Wibowo D, Fleet G H, Lee T H, et al. Factors affecting the induction of malolactic fermentation in red wines with Leuconostoc oenos[J]. Journal of Applied Bacteriology,2010,64(5):421−428.
    [26]
    Adamberg K, Kask S, Laht T M, et al. The effect of temperature and pH on the growth of lactic acid bacteria: A pH-auxostat study[J]. International Journal of Food Microbiology,2003,85(1-2):171−183. doi: 10.1016/S0168-1605(02)00537-8
    [27]
    Hood S K, Zoitola E A. Effect of low pH on the ability of Lactobacillus acidophilus to survive and adhere to human intestinal cells[J]. Journal of Food Science,2010,53(5):1514−1516.
    [28]
    Chick H, Shin H S, Ustunol Z. Growth and acid production by lactic acid bacteria and bifidobacteria grown in skim milk containing honey[J]. Journal of Food Science,2010,66(3):478−481.
    [29]
    黄艳丽, 尹锦荣, 王琼, 等. 响应面法优化多依果酒的酿造工艺[J]. 中国酿造,2020,39(4):205−209. doi: 10.11882/j.issn.0254-5071.2020.04.040
  • Cited by

    Periodical cited type(5)

    1. 隗立昂,李璐,马若飞,白圣贺,张爱国,牛康. 鱼类初加工装备关键技术研究进展. 现代农业装备. 2023(01): 2-7 .
    2. 陈朗,吴文锦,陈胜,石柳,郭晓嘉,汪兰. 淡水鱼前处理设备与技术研究现状和展望. 食品与机械. 2023(03): 207-216 .
    3. 潘扬,李涵,张莹,胡秋林,廖鄂,陈季旺. 粉蒸黄鳝加工工艺优化及米粉抗回生性能比较. 武汉轻工大学学报. 2023(06): 1-9 .
    4. 张军文,郑晓伟,陈庆余. 鱼体除鳞技术与除鳞装备研究综述. 安徽农学通报. 2021(01): 130-131 .
    5. 郑晓伟,陈庆余,张军文. 多段滚筒式罗非鱼高效低损去鳞工艺. 水产学报. 2021(07): 1101-1110 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (387) PDF downloads (22) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return