LUO Longlong, REN Weihe, CAI Linhai, et al. Research Progress on the Mechanism of Lactic Acid Bacteria in Improving Diabetes Metabolism[J]. Science and Technology of Food Industry, 2021, 42(8): 404−409. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2020070270.
Citation: LUO Longlong, REN Weihe, CAI Linhai, et al. Research Progress on the Mechanism of Lactic Acid Bacteria in Improving Diabetes Metabolism[J]. Science and Technology of Food Industry, 2021, 42(8): 404−409. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2020070270.

Research Progress on the Mechanism of Lactic Acid Bacteria in Improving Diabetes Metabolism

More Information
  • Received Date: July 22, 2020
  • Available Online: January 31, 2021
  • Lactic acid bacteria have a good therapeutic effect on diabetic patients, and the exploration of its mechanism has been intensified. Lactic acid bacteria can inhibit α-glucosidase in the intestine to reduce blood sugar, and reduce blood sugar levels by regulating insulin signal transduction, sugar metabolism, lipid metabolism and other related metabolic pathways. Promote insulin expression or reduce phosphorylation level to improve insulin resistance and affect the body. The glucose transport factors in turn affects glucose metabolism from the aspects of sugar reabsorption, down-regulates the expression of liposynthetase, inhibits adipogenesis, improves the abundance of intestinal flora and affects the integrity of intestinal flora, and affects inflammation and metabolic disorders to repair it. This article reviews the current research on the specific mechanism of lactic acid bacteria in improving diabetes, and provides references for the future prevention and treatment of diabetes by lactic acid bacteria.
  • [1]
    Diabetes atlas—8th edition[M/OL]. Inter National Diabetes Federation, 2017. http://www.Diabetesatlas.org/resources/2017-atlas.
    [2]
    Holman N, Young B, Gadsby R. Current prevalence of type 1 and type 2 dia-betes in adults and children in the UK[J]. Diabet Med,2015,32(9):1119−1120. doi: 10.1111/dme.12791
    [3]
    Bruno G, Runzao C, Cavallo-Perin P, et al. Incidence of type 1 and type 2 diabetesin adults aged 30-49 years: The population-based registry in the province of Turin, Italy[J]. Diabetes Care,2005,28(11):2613−2619. doi: 10.2337/diacare.28.11.2613
    [4]
    Cheng Y, Sibusiso L, Hou L, et al. Sargassum fusiforme fucoidan modifies the gut microbiota during alleviation of streptozotocin-induced hyperglycemia in mice[J]. International Journal of Biological Macromolecules,2019,131:1162−1170. doi: 10.1016/j.ijbiomac.2019.04.040
    [5]
    Tank, Tesar C, Wiltonr, et al. Interaction of antidiabetic α-glucosidase inhibitors and gut bacteria α-glucosidase[J]. Protein Sci,2018,27(8):1498−1508. doi: 10.1002/pro.3444
    [6]
    Duar R M, Lin X B, Zheng J, et al. Lifestyles in transition: evolution and natural history of the genus Lactobacillus[J]. FEMS Microbiol Rev,2017,41(Supp_1):S27−S48. doi: 10.1093/femsre/fux030
    [7]
    O’Callaghan J, W O’Toole P. Lactobacillus: Host–microbe relationships[J]. Curr Top Microbiol Immunol,2013,358:119−54.
    [8]
    Ghosh T, Beniwal A, Semwal A, et al. Mechanistic insights into probiotic properties of lactic acid bacteria associated with ethnic fermented dairy products[J]. Frontiers in Microbiology,2019,10:502. doi: 10.3389/fmicb.2019.00502
    [9]
    Huang Y, Wang X, Wang J, et al. Lactobacillus plantarum strains as potential probiotic cultures with cholesterol-lowering activity[J]. Journal of Dairy Science,2013,96(5):2746−2753. doi: 10.3168/jds.2012-6123
    [10]
    Huang Y C, Wu B H, Chu Y L, et al. Effects of tempeh fermentation with Lactobacillus plantarum and Rhizopus oligosporus on streptozotocin-induced type II diabetes mellitus in rats[J]. Nutrients,2018,10(9):1143. doi: 10.3390/nu10091143
    [11]
    Mekkes M C, Weenen T C, Brummer R J, et al. The development of probiotic treatment in obesity: A review[J]. Benef Microbes,2014,5(1):19−28. doi: 10.3920/BM2012.0069
    [12]
    Yan F, Li N, Shi J, et al. Lactobacillus acidophilus alleviates type 2 diabetes by regulating hepatic glucose, lipid metabolism and gut microbiota in mice[J]. Food Funct,2019,10(9):5804−5815. doi: 10.1039/C9FO01062A
    [13]
    缪子敬, 李志万, 周学海, 等. α-葡萄糖苷酶抑制剂的研究进展[J]. 广东化工,2019,46(17):96−97, 101. doi: 10.3969/j.issn.1007-1865.2019.17.042
    [14]
    Li X, Wang N, Yin B, et al. Effects of Lactobacillus plantarum CCFM0236 on hyperglycaemia and insulin resistance in high-fat and streptozotocin-induced type 2 diabetic mice[J]. J Appl Microbiol,2016,121(6):1727−1736. doi: 10.1111/jam.13276
    [15]
    党芳芳. 副干酪乳杆菌对糖尿病的改善作用及其机制研究[D]. 黑龙江: 东北农业大学, 2018.
    [16]
    Hansen J B, Arkhammar P O, Bodvarsdottir T B, et al. Inhibition of insulin secretion as a new drug target in the treatment of metabolic disorders[J]. Curr Med Chem,2004,11(12):1595−1615. doi: 10.2174/0929867043365026
    [17]
    Li X, Wang E, Yin B, et al. Effects of Lactobacillus casei CCFM419 on insulin resistance and gut microbiota in type 2 diabetic mice[J]. Benef Microbes,2017,8(3):421−432. doi: 10.3920/BM2016.0167
    [18]
    Korkmaz O A, Sumlu E, Koca H B, et al. Effects of Lactobacillus plantarum and Lactobacillus helveticus on renal insulin signaling, inflammatory markers, and glucose transporters in high-fructose-fed rats[J]. Medicina (Kaunas),2019,55(5):207. doi: 10.3390/medicina55050207
    [19]
    Sumlu E, Bostancı A, Sadi G, et al. Lactobacillus plantarum improves lipogenesis and IRS-1/AKT/eNOS signalling pathway in the liver of high-fructose-fed rats[J]. Arch Physiol Biochem,2020:1−9.
    [20]
    Fan C Y, Wang M X, Ge C X, et al. Betaine supplementation protects against high-fructose-induced renal injury in rats[J]. Nutr Biochem,2014,25(3):353−362. doi: 10.1016/j.jnutbio.2013.11.010
    [21]
    Nizar J M, Shepard B D, Vo V T, et al. Renal tubule insulin receptor modestly promotes elevated blood pressure and markedly stimulates glucose reabsorption[J]. JCI Insight,2018,3(16):95−107.
    [22]
    Rayasam G V, Tulasi V K, Sodhi R, et al. Glycogen synthase kinase 3: More than a namesake[J]. Br J Pharmacol,2009,156(6):885−898. doi: 10.1111/j.1476-5381.2008.00085.x
    [23]
    Zarfeshani A, Khaza'ai H, Mohd Ali R, et al. Effect of Lactobacillus casei on the production of pro-inflammatory markers in streptozotocin-induced diabetic rats[J]. Probiotics Antimicrob Proteins,2011,3(3-4):168−174. doi: 10.1007/s12602-011-9080-9
    [24]
    Yadav R, Dey D K, Vij R, et al. Evaluation of anti-diabetic attributes of Lactobacillus rhamnosus MTCC: 5957, Lactobacillus rhamnosus MTCC: 5897 and Lactobacillus fermentum MTCC: 5898 in streptozotocin induced diabetic rats[J]. Microb Pathog,2018,125:454−462. doi: 10.1016/j.micpath.2018.10.015
    [25]
    Shih C C, Shlau M T, Lin C H, et al. Momordica charantia ameliorates insulin resistance and dyslipidemia with altered hepatic glucose production and fatty acid synthesis and AMPK phosphorylation in high-fat-fed mice[J]. Phytother Res,2014,28(3):363−371. doi: 10.1002/ptr.5003
    [26]
    Taylor R, Al-Mrabeh A, Zhyzhneuskaya S, et al. Remission of human type 2 diabetes requires decrease in liver and pancreas fat content but is dependent upon capacity for β cell recovery[J]. Cell Metab,2018,28(4):667. doi: 10.1016/j.cmet.2018.08.010
    [27]
    Liu D, Huang Y, Bu D, et al. Sulfur dioxide inhibits vascular smooth muscle cell proliferation via suppressing the Erk/MAP kinase pathway mediated by cAMP/PKA signaling[J]. Cell Death Dis,2014,5(5):e1251. doi: 10.1038/cddis.2014.229
    [28]
    Hsieh F C, Lee C L, Chai C Y, et al. Oral administration of Lactobacillus reuteri GMNL-263 improves insulin resistance and ameliorates hepatic steatosis in high fructose-fed rats[J]. Nutr Metab (Lond),2013,10(1):35. doi: 10.1186/1743-7075-10-35
    [29]
    Liu C, Shen Y J, Tu Q B, et al. Pedunculoside, a novel triterpene saponin extracted from Ilex rotunda, ameliorates high-fat diet induced hyperlipidemia in rats[J]. Biomed Pharmacother,2018,101:608−616. doi: 10.1016/j.biopha.2018.02.131
    [30]
    路晓杰, 刘久茜, 曹永国, 等. 普洱熟茶提取物对实验性非酒精性脂肪肝鼠脂代谢指标及肠道菌群的调节作用[J]. 中国兽医学报,2018,38(4):751−758.
    [31]
    Xie N, Cui Y, Yin Y N, et al. Effects of two Lactobacillus strains on lipid metabolism and intestinal microflora in rats fed a high-cholesterol diet[J]. BMC Complement Altern Med,2011,11:53. doi: 10.1186/1472-6882-11-53
    [32]
    Qian Y, Li M, Wang W, et al. Effects of Lactobacillus casei YBJ02 on lipid metabolism in hyperlipidemic mice[J]. J Food Sci,2019,84(12):3793−3803. doi: 10.1111/1750-3841.14787
    [33]
    Zhao Z, Wang C, Zhang L, et al. Lactobacillus plantarum NA136 improves the non-alcoholic fatty liver disease by modulating the AMPK/Nrf2 pathway[J]. Appl Microbiol Biotechnol,2019,103(14):5843−5850. doi: 10.1007/s00253-019-09703-4
    [34]
    Park D Y, Ahn Y T, Huh C S, et al. Dual probiotic strains suppress high fructose-induced metabolic syndrome[J]. World J Gastroenterol,2013,19(2):274−283. doi: 10.3748/wjg.v19.i2.274
    [35]
    Horie M, Miura T, Hirakata S, et al. Comparative analysis of the intestinal flora in type 2 diabetes and nondiabetic mice[J]. Exp Anim,2017,66(4):405−416. doi: 10.1538/expanim.17-0021
    [36]
    Vijay-Kumar M, Aitken J D, Carvalho F A, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5[J]. Science,2010,328(5975):228−231. doi: 10.1126/science.1179721
    [37]
    Lin H V, Frassetto A, Kowalik E J Jr, et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms[J]. PLoS One,2012,7(4):e35240. doi: 10.1371/journal.pone.0035240
    [38]
    Wang G, Li X, Zhao J, Zhang H, et al. Lactobacillus casei CCFM419 attenuates type 2 diabetes via a gut microbiota dependent mechanism[J]. Food Funct,2017,8(9):3155−3164. doi: 10.1039/C7FO00593H
    [39]
    Li S, Qi C, Zhu H, et al. Lactobacillus reuteri improves gut barrier function and affects diurnal variation of the gut microbiota in mice fed a high-fat diet[J]. Food Funct,2019,10(8):4705−4715. doi: 10.1039/C9FO00417C
    [40]
    Balakumar M, Prabhu D, Sathishkumar C, et al. Improvement in glucose tolerance and insulin sensitivity by probiotic strains of Indian gut origin in high-fat diet-fed C57BL/6J mice[J]. Eur J Nutr,2018,57(1):279−295. doi: 10.1007/s00394-016-1317-7
    [41]
    Kim K A, Gu W, Lee I A, et al. High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway[J]. PLoS One,2012,7(10):47713−47723. doi: 10.1371/journal.pone.0047713
    [42]
    Toye A A, Dumas M E, Blancher C, et al. Subtle metabolic and liver gene transcriptional changes underlie diet-induced fatty liver susceptibility in insulin-resistant mice[J]. Diabetologia,2007,50(9):1867−1879. doi: 10.1007/s00125-007-0738-5
    [43]
    Dumas M E. Barton R H, Toye A, et al. Metabolic profiling reveals a contribution of gut mierobiota to fatty liver phenotype in insulin-resistant mice[J]. Proc Natl Acad Sci USA,2006,103:12511−12516. doi: 10.1073/pnas.0601056103
  • Cited by

    Periodical cited type(7)

    1. 杨晓华,洪嘉淇,王临好,潘丽怡,郭何子贤,王洁,廖振林. 降糖活性乳酸菌的筛选及对2型糖尿病小鼠的改善作用. 食品科学. 2025(08): 151-161 .
    2. 兰星,李媛,李莎. 妊娠期糖尿病患者阴道微生态状况与绒毛膜羊膜炎和妊娠结局的相关性分析. 中国妇幼保健. 2023(14): 2550-2553 .
    3. 张雪静,牛红红,苗欣宇,华梅,孙慕白,刘文健,王景会. 自然发酵玉米液中乳酸菌的分离、鉴定及益生特性研究. 中国酿造. 2023(08): 129-134 .
    4. 谢秀明,热孜姑丽·库尔班,马彦科,林勇,杨洁. 阿勒泰传统酸驼乳中乳酸菌发酵乳益生活性评价. 中国乳品工业. 2023(08): 12-19+24 .
    5. 唐铭,高聪聪,王宁宇,胡梅梅,韩雪梅,王海宽. 副干酪乳杆菌TK1501发酵大豆粉对小鼠Ⅱ型糖尿病的干预作用. 食品研究与开发. 2022(12): 61-70 .
    6. 曹英,侯敏,易光平,买尔哈巴·艾合买提,薛杉,陈钢粮,崔卫东. 驼乳制品中抑制α-淀粉酶和α-葡萄糖苷酶活性乳酸菌的筛选及益生特性研究. 食品工业科技. 2022(19): 191-201 . 本站查看
    7. 申永艳,何贵新,肖婷,玉黎燕. 针灸疗法调节肠道菌群防治动脉粥样硬化的研究进展. 广西医学. 2021(13): 1627-1630 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (625) PDF downloads (82) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return