WU Zhongwei, ZHANG Zhaohui, LENG Doudou, et al. Optimization of Ultrasonic-assisted Extraction Conditions and Physico-chemical Analysis of Mycelia Polysaccharides from Paecilomyces hepiali [J]. Science and Technology of Food Industry, 2021, 42(10): 175−182. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070258.
Citation: WU Zhongwei, ZHANG Zhaohui, LENG Doudou, et al. Optimization of Ultrasonic-assisted Extraction Conditions and Physico-chemical Analysis of Mycelia Polysaccharides from Paecilomyces hepiali [J]. Science and Technology of Food Industry, 2021, 42(10): 175−182. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070258.

Optimization of Ultrasonic-assisted Extraction Conditions and Physico-chemical Analysis of Mycelia Polysaccharides from Paecilomyces hepiali

More Information
  • Received Date: July 21, 2020
  • Available Online: March 14, 2021
  • PHMPs extraction conditions were optimized by ultrasonic-assisted method from the power of the P. hepiali fermentation mycelium. Then the phenol sulfuric method, Coomassie brilliant blue staining method, Meta-Hydroxydiphenyl, Fourier transform infrared spectroscopy (FT-IR), high performance gel permeation chromatography (HPGPC) and 1-phenyl-3-methyl-5-pyrazolone (PMP) pre-column derivatization method were applied to analyze chemical composition, molecular weight distribution and monosaccharide kinds. Results showed the optimal extraction conditions with an extraction yield of 13.10% ± 0.22% for PHMPs were determined as follows: Extraction temperature 81 ℃, extraction time 36 min, ultrasound power 297 W and ratio of water to raw material 44 mL/g. Furthermore, the chemical composition analysis revealed that the contents of neutral sugar, protein, uronic acid, phosphate were 78.48% ± 2.08%, 9.82% ± 0.09%, 3.76% ± 0.11%, 2.23% ± 0.09%, respectively. The FT-IR spectra showed the several characteristic functional groups absorption of carbohydrate existed in PHMPs. High performance gel permeation chromatography inferred that the PHMPs was composed of two main peaks of 638 and 575 kDa, with a wide molecular weight range of 5.6~285 kDa polysaccharide fractions. The monosaccharide composition tests indicated that there were the main monosaccharides of mannose, glucose and galactose in molar ratios of 42.32:27.58:21.14 and a small amount of ribose, rhamnose, glucuronic acid, galacturonic acid, arabinose in molar ratios of 0.42:2.89:2.25:1.16:2.24 in PHEMPs.
  • [1]
    Yan J M, Zhu L, Qu Y H, et al. Analyses of active antioxidant polysaccharides from four edible mushrooms[J]. International Journal of Biological Macromolecules,2019,123:945−956. doi: 10.1016/j.ijbiomac.2018.11.079
    [2]
    Singdevsachan S K, Auroshree P, Mishra J, et al. Mushroom polysaccharides as potential prebiotics with their antitumor and immunomodulating properties: A review[J]. Bioactive Carbohydrates and Dietary Fibre,2016,7:1−14.
    [3]
    Ren L, Reynisson J, Perera C, et al. The physicochemical properties of a new class of anticancer fungal polysaccharides: A comparative study[J]. Carbohydrate Polymers,2013,97:177−187. doi: 10.1016/j.carbpol.2013.04.064
    [4]
    邓加聪, 曾锈华, 陈婕, 等. 香菇多糖的提取工艺及抗氧化性研究[J]. 化学工程与装备,2020(5):12−14.
    [5]
    Sun X W, Sun Y P, Zhang Q B, et al. Screening and comparison of antioxidant activities of polysaccharides from Coriolus versicolor[J]. International Journal of Biological Macromolecules, 2014, 69: 12−19.
    [6]
    Kang Q Z, Chen S S, Li S F, et al. Comparison on characterization and antioxidant activity of polysaccharides from Ganoderma lucidum by ultrasound and conventional extraction[J]. International Journal of Biological Macromolecules,2019,124:1137−1144. doi: 10.1016/j.ijbiomac.2018.11.215
    [7]
    Wang B J, Won S J, Yu Z R, et al. Free radical scavenging and apoptotic effects of Cordyceps sinensis fractionated by supercritical carbon dioxide[J]. Food and Chemical Toxicology,2005,43:543−552. doi: 10.1016/j.fct.2004.12.008
    [8]
    付佳乐, 耿直. 灰树花多糖体外抑菌及抗氧化活性研究[J]. 中国现代应用药学,2020,37(8):945−948.
    [9]
    Yan J K, Wang W Q, Wu J Y. Recent advances in Cordyceps sinensis polysaccharides: Mycelial fermentation, isolation, structure, and bioactivities: A review[J]. Journal of Functional Foods,2014,6:33−47. doi: 10.1016/j.jff.2013.11.024
    [10]
    朱佳石, 郭英兰, 姚艺桑, 等. 冬虫夏草成熟过程中中国被毛孢和蝙蝠蛾拟青霉DNA共存及竞争增殖力、化学成分变化[J]. 菌物研究,2007,5(4):215−224.
    [11]
    曹阳, 张淑华, 梁冲, 等. 蝙蝠蛾拟青霉菌丝体化学成分研究[J]. 中国药物化学杂志,2019,29(4):300−304.
    [12]
    Wu Z W, Zhang M X, Xie M H, et al. Extraction, characterization and antioxidant activity of mycelialpolysaccharides from Paecilomyces hepiali HN1[J]. Carbohydrate Polymers,2016,137:541−548. doi: 10.1016/j.carbpol.2015.11.010
    [13]
    Wu D T, Meng L Z, Wang L Y, et al. Chain conformation and immunomodulatory activity of ahyper branched polysaccharide from Cordyceps sinensis[J]. Carbohydrate Polymers, 2014, 110: 405−414.
    [14]
    Shashidhar M G, Giridhar P, Sankar K U, et al. Bioactive principles from Cordyceps sinensis: A potent food supplement -A review[J]. Journal of Functional Foods,2013,5:1013−1030. doi: 10.1016/j.jff.2013.04.018
    [15]
    中华人民共和国卫生部. 真菌类保健食品申报与审评规定(试行)[J]. 中国食品卫生杂志,2005,17(4):367−368.
    [16]
    Chen L, Xu W W, Lin S L, et al. Cell wall structure of mushroom sclerotium (Pleurotus tuber regium): Part 1. Fractionation and characterization of soluble cell wall polysaccharides[J]. Food Hydrocolloids,2014,36:189−195. doi: 10.1016/j.foodhyd.2013.09.023
    [17]
    Yin X L, You Q H, Su X Y. A comparison study on extraction of polysaccharides from Tricholoma matsutake by response surface methodology[J]. Carbohydrate Polymers,2014,102:419−422. doi: 10.1016/j.carbpol.2013.11.072
    [18]
    Shi M, Yang Y N, Hu X S, et al. Effect of ultrasonic extraction conditions on antioxidative and immunomodulatory activities of a Ganoderma lucidum polysaccharide originated from fermented soybean curd residue[J]. Food Chemistry,2014,155:50−56. doi: 10.1016/j.foodchem.2014.01.037
    [19]
    Chemat F, Zill-e-Huma, Khan M. K. Applications of ultrasound in food technology: Processing, preservation and extraction[J]. Ultrasonics Sonochemistry,2011,18:813−835. doi: 10.1016/j.ultsonch.2010.11.023
    [20]
    Kadam S U, Tiwari B K, Smyth, Donnell C P O. Optimization of ultrasound assisted extraction of bioactive components from brown seaweed Ascophyllum nodosum using response surface methodology[J]. Ultrasonics Sonochemistry,2015,23:308−316. doi: 10.1016/j.ultsonch.2014.10.007
    [21]
    Cheung Y C, Liu X X, Wang W Q, et al. Ultrasonic disruption of fungal mycelia for efficient recovery of polysaccharide-protein complexes from viscous fermentation broth of a medicinal fungus[J]. Ultrasonics Sonochemistry,2015,22:243−248. doi: 10.1016/j.ultsonch.2014.05.006
    [22]
    Yan J K, Wang Y Y, Ma H L, et al. Ultrasonic effects on the degradation kinetics, preliminary characterization and antioxidant activities of polysaccharides from Phellinus linteus mycelia[J]. Ultrasonics Sonochemistry,2016,29:251−257. doi: 10.1016/j.ultsonch.2015.10.005
    [23]
    武忠伟, 黄蓓蓓, 张朝辉, 等. 蝙蝠蛾拟青霉发酵全液喷雾干燥工艺优化研究[J]. 食品工业科技,2017,38(8):284−289.
    [24]
    张媛媛, 张彬. 苯酚-硫酸法与蒽酮-硫酸法测定绿茶茶多糖的比较研究[J]. 食品科学,2016,37(4):158−163. doi: 10.7506/spkx1002-6630-201604028
    [25]
    Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Chemistry,1976,72:248−254.
    [26]
    Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronic acids[J]. Analytical Chemistry,1973,54:484−489.
    [27]
    Ames B N, Dubin D T. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid[J]. Journal of Biological Chemistry,1960,235:769−775. doi: 10.1016/S0021-9258(19)67936-6
    [28]
    Dai J, Wu Y, Chen S W, et al. Sugar compositional determination of polysaccharides from Dunaliella salina by modified RP-HPLC method of precolumn derivatization with 1-phenyl-3-methyl-5-pyrazolone[J]. Carbohydrate Polymers,2010,82:629−635. doi: 10.1016/j.carbpol.2010.05.029
    [29]
    Oroian M, Ursachi F, Dranca F. Influence of ultrasonic amplitude, temperature, time and solvent concentration on bioactive compounds extraction from propolis[J]. Ultrasonics - Sonochemistry,2020,64:105021. doi: 10.1016/j.ultsonch.2020.105021
    [30]
    Surasak H, Pavasant P P, Shotipruk A. Ultrasound-assisted extraction of anthraquinones from roots of Morinda citrifolia[J]. Ultrasonics Sonochemistry, 2006, 13;543-548.
    [31]
    Zhong K, Zhang Q, Tong L T, et al. Molecular weight degradation and rheological properties of schizophyllan under ultrasonic treatment[J]. Ultrasonics Sonochemistry,2015,23:75−80. doi: 10.1016/j.ultsonch.2014.09.008
    [32]
    赵彪希, 张海德, 张媚健, 等. 冬虫夏草多糖单糖组成及免疫活性研究[J]. 食品工业科技,2020,41(13):27−31.
    [33]
    Fan J L, Wu Z W, Zhao T H, et al. Characterization, antioxidant and hepatoprotective activities ofpolysaccharides from Ilex latifolia Thunb[J]. Carbohydrate Polymers,2014,101:990−997. doi: 10.1016/j.carbpol.2013.10.037
    [34]
    Gan D, Ma L P, Jiang C X, et al. Production, preliminary characterization and antitumor activity in vitro of polysaccharides from the mycelium of Pholiota dinghuensis Bi[J]. Carbohydrate Polymers,2011,84:997−1003. doi: 10.1016/j.carbpol.2010.12.058
    [35]
    张惟杰. 糖复合物生化研究技术[M]. 杭州: 浙江大学出版社, 1999: 193−196.
    [36]
    Cheung Y C, Siu K C, Wu J Y. Kinetic models for ultrasound-assisted extraction of water-soluble components and polysaccharides from medicinal fungi[J]. Food and Bioprocess Technology,2013,6:2659−2665. doi: 10.1007/s11947-012-0929-z
    [37]
    He L, Ji P F, Cheng J W, et al. Structural characterization and immunostimulatory activity of a novel protein-bound polysaccharide produced by Hirsutella sinensis Liu, Guo, Yu & Zeng[J]. Food Chemistry,2013,141:946−953. doi: 10.1016/j.foodchem.2013.04.053
    [38]
    Guan J, Zhao J, Feng K, et al. Comparison and characterization of polysaccharides from natural and cultured Cordyceps using saccharide mapping[J]. Analytical and Bioanalytical Chemistry,2011,399:3465−3474. doi: 10.1007/s00216-010-4396-y
  • Cited by

    Periodical cited type(5)

    1. 孙兆敏,黄水木,阎光宇,李颖,刘萌,余蕾. 食品中丙烯酰胺的来源、毒性及减控措施研究进展. 福建轻纺. 2023(07): 18-21+31 .
    2. 何名芳,涂家涛. 焙烤食品添加剂的使用及发展探讨. 食品安全导刊. 2022(03): 139-141 .
    3. 周媛,吴岳,许蕊,闫瑞霞,张娟,张中兴. 各种添加物对食品中丙烯酰胺的影响. 食品工业. 2021(07): 195-198 .
    4. 金山,孙小凡. 食品中丙烯酰胺的形成、检测及其抑制和管理研究进展. 食品安全质量检测学报. 2021(15): 5915-5922 .
    5. 刘旖旎,刘芳,王德宝,孙芝兰,吴海虹. 纳米抗菌纤维的静电纺丝制备技术及其抗菌活性研究进展. 中国食品学报. 2021(12): 358-368 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return