PAN Jun, LIU Xiuwei, SHI Pingping, et al. Chemical Constituents and Antioxidant Activities in Vitro of Ganoderma leucocontextum [J]. Science and Technology of Food Industry, 2021, 42(9): 340−346. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306. 2020070241.
Citation: PAN Jun, LIU Xiuwei, SHI Pingping, et al. Chemical Constituents and Antioxidant Activities in Vitro of Ganoderma leucocontextum [J]. Science and Technology of Food Industry, 2021, 42(9): 340−346. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306. 2020070241.

Chemical Constituents and Antioxidant Activities in Vitro of Ganoderma leucocontextum

More Information
  • Received Date: July 20, 2020
  • Available Online: March 15, 2021
  • To study the main chemical components and antioxidant activity of Ganoderma leucocontextum, Ganoderma lucidum and Ganoderma sinense were used as control, a variety of analysis methods were used to analyze the nutritional components, polysaccharides, triterpenes, total saponins, ganoderic acid A, amino acids, and trace elements of G. leucocontextum. The scavenging activities of 1, 1-diphenyl-2-trinitrophenylhydrazine (DPPH) free radical and hydroxyl radical (·OH) of G. leucocontextum extracts from different varieties were investigated. The results showed that the crude protein content and total amino acid content of G. leucocontextum were 18.02%~19.02%, 113.61~163.51 mg/g, which were significantly higher than G. lucidum and G. sinense. The main activity contents of polysaccharides, triterpenoids and ganoderma acid A in G. leucocontextum were 0.99%~1.42%, 1.22%~1.40%, 0.069%~0.084%, respectively, which were significantly higher than in G. lucidum and G. sinense. The content of total amino acids in G. leucocontextum ranged from 113.61 mg/g to 163.51 mg/g, and the contents of glutamic acid and aspartic acid were high. IC50 value of methanol extract from G. leucocontextum on DPPH and hydroxyl free radical were 0.13~0.19 and 0.54~0.89 mg/mL, respectively, showing a good dose-response relationship, and its antioxidant activity was higher than that of G. sinense. This study provides a theoretical basis for the comprehensive development of G. leucocontextum.
  • [1]
    Cao Y, Wu S H, Dai Y C. Species clarification of the prize medicinal Ganoderma mushroom “Lingzhi”[J]. Fungal Diversity,2012,56:49−62. doi: 10.1007/s13225-012-0178-5
    [2]
    张汇, 聂少平, 艾连中, 等. 灵芝多糖的结构及其表征方法研究进展[J]. 中国食品学报,2020,20(1):290−301.
    [3]
    周选围, 林娟, 周良. 灵芝主要营养成分的测定分析[J]. 陕西师范大学学报:自然科学版,1998(S1):219−222.
    [4]
    林娟, 周选围. 三种灵芝主要营养成分的比较分析[J]. 中国林副特产,1999(3):1−2.
    [5]
    Liu L Y, Chen H, Liu C, et al. Triterpenoids of Ganoderma theaecolum and their hepatoprotective activities[J]. Fitoterapia,2014,98:254−259. doi: 10.1016/j.fitote.2014.08.004
    [6]
    Liu R M, Li Y B, Zhong J J. Cytotoxic and pro-apoptotic effects of novel ganoderic acid derivatives on human cervical cancer cells in vitro[J]. European Journal of Pharmacology,2012,681:23−28. doi: 10.1016/j.ejphar.2012.02.007
    [7]
    谢怡琼, 王琪瑞, 孙思雅, 等. 灵芝的药理作用和临床应用研究进展[J]. 临床医学研究与实践,2020,5(10):191−193.
    [8]
    郝萌萌, 王金艳, 冯娜, 等. 灵芝子实体中不同极性的三萜体外抗肿瘤及抗炎活性比较[J]. 菌物学报,2019,38(6):917−925.
    [9]
    Liu T, Zhou J C, Li W X, et al. Effects of sporoderm-broken spores of Ganoderma lucidum on growth performance, antioxidant function and immune response of broilers[J]. Animal Nutrition,2020,6(1):39−46. doi: 10.1016/j.aninu.2019.11.005
    [10]
    Li T H, Hu H P, Deng W Q, et al. Ganoderma leucocontextum, a new member of the G. lucidum complex from southwestern China[J]. Mycoscience,2015,56(1):81−85. doi: 10.1016/j.myc.2014.03.005
    [11]
    Zhao Z Z, Chen H P, Li Z H, et al. Leucocontextins A-R, lanostane-type triterpenoids from Ganoderma leucocontextum[J]. Fitoterapia,2016,109:91−98. doi: 10.1016/j.fitote.2015.12.004
    [12]
    王昱, 何九军, 张宗舟. 白肉灵芝水提物对衰老大鼠皮肤的作用研究[J]. 天然产物研究与开发,2019,31(12):2131−2136.
    [13]
    沐华, 蔡铭, 徐靖, 等. 破壁与去壁灵芝孢子粉的化学成分与抗氧化活性比较[J]. 食品工业科技,2020,41(10):32−37, 51.
    [14]
    中华人民共和国卫生和计划生育委员会. GB 5009.3-2016食品中水分的测定[S]. 北京: 中国标准出版社, 2016.
    [15]
    中华人民共和国卫生和计划生育委员会. GB 5009.4-2016食品中灰分的测定[S]. 北京: 中国标准出版社, 2016.
    [16]
    中华人民共和国卫生和计划生育委员会. GB 5009.5-2016食品中蛋白质的测定[S]. 北京: 中国标准出版社, 2016.
    [17]
    中华人民共和国卫生和计划生育委员会. GB 5009.6-2016食品中脂肪的测定[S]. 北京: 中国标准出版社, 2016.
    [18]
    中华人民共和国卫生和计划生育委员会. GB 5009.9-2016食品中淀粉的测定 [S]. 北京: 中国标准出版社, 2016.
    [19]
    中华人民共和国卫生和计划生育委员会. GB/T 5009.10-2003植物类食品中粗纤维的测定[S]. 北京: 中国标准出版社, 2003.
    [20]
    中华人民共和国卫生和计划生育委员会. GB 5009.124-2016食品中氨基酸的测定 [S]. 北京: 中国标准出版社, 2016.
    [21]
    中华人民共和国卫生和计划生育委员会. GB 5009.268-2016食品中多元素的测定[S]. 北京: 中国标准出版社, 2016.
    [22]
    国家药典委员会. 中华人民共和国药典[M]. 北京: 中国医药科技出版社, 2015.
    [23]
    杨道强, 陆胜民, 夏其乐, 等. 灵芝酒浸提过程中主要功能成分的变化及抗氧化作用研究[J]. 食品与生物技术学报,2016,35(2):205−210. doi: 10.3969/j.issn.1673-1689.2016.02.015
    [24]
    周丹英, 胡云莉, 夏正燕, 等. 一测多评法定量分析灵芝及灵芝孢子粉中单体三萜成分的应用[J]. 亚太传统医药,2017,13(14):24−26.
    [25]
    于晓丹, 王一菲, 姜霁航, 等. 狭长孢灵芝液体发酵上清液抗氧化活性研究(英文)[J]. 菌物学报,2020,39(1):84−98.
    [26]
    Larrauri J A, Nchez-Moreno C S, Saura-Calixto F. Effect of temperature on the free radical scavenging capacity of extracts from red and white grape pomace peels[J]. Journal of Agricultural & Food Chemistry,1998,46(7):2694.
    [27]
    林海燕, 王珊珊, 孙珊, 等. 响应面法优化南极磷虾亚铁螯合肽制备工艺及其理化性质[J]. 食品工业科技,2019,40(21):166−173.
    [28]
    郭金英, 朱优优, 刘贵巧, 等. 不同品种灵芝主要活性成分与营养物质比较分析[J]. 北方园艺,2017(17):177−180.
    [29]
    王凤芳. 杏鲍菇中营养成分的分析测定[J]. 食品科学,2002,23(4):132−135. doi: 10.3321/j.issn:1002-6630.2002.04.035
    [30]
    周聪, 蔡盼盼, 陈青君. 美味蘑菇子实体营养品质分析[J]. 中国农学通报,2019,35(13):140−145. doi: 10.11924/j.issn.1000-6850.casb18020005
    [31]
    靳羽慧, 邓楚君, 赵慧, 等. 3种常见食用菌营养成分和嘌呤物质含量分析[J]. 中国食用菌,2018,37(4):62−65, 81.
    [32]
    周晓华, 贺平, 刘冰杰, 等. 河南部分地区不同品种的香菇营养价值分析[J]. 农业与技术,2020,40(11):8−10.
    [33]
    唐明先, 陈杭, 罗孝贵, 等. 灵芝新品种康定灵芝选育研究[J]. 中国食用菌,2018,37(5):84−86.
    [34]
    金鑫, 周思菊, 李强, 等. 5种灵芝菌株的农艺性状、活性成分和功效分析[J]. 四川农业大学学报,2019,37(1):53−59.
    [35]
    刘绍雄, 刘春丽, 李建英, 等. 白肉灵芝人工栽培及活性成分研究进展[J]. 中国食用菌 2020, 39(4): 1-4, 16.
    [36]
    云金虎, 江皓, 韩文学, 等. 不同品种海棠叶茶游离氨基酸组成分析与评价[J]. 食品与发酵工业,2020,46(19):237−243.
    [37]
    Populin T, Moret S, Truant S, et al. A survey on the presence of free glutamic acid in foodstuffs, with and without added monosodium glutamate[J]. Food Chemistry,2007,104:1712−1717. doi: 10.1016/j.foodchem.2007.03.034
    [38]
    Abeysinghe C P, Illeperuma C K. Formulation of an MSG (monosodium glutamate) free instant vegetable soup mix[J]. Journal of the National Science Foundation of Sri Lanka,2006,34:91−95. doi: 10.4038/jnsfsr.v34i2.2087
    [39]
    Talmud P J, Bujac S R, Hall S, et al. Substitution of asparagine for aspartic acid at residue 9 (D9N) of lipoprotein lipase markedly augments risk of ischaemic heart disease in male smokers[J]. Atherosclerosis,2000,149(1):75−81. doi: 10.1016/S0021-9150(99)00309-3
    [40]
    秦颖超, 周加义, 朱敏, 等. 谷氨酸吸收转运及对肠道发育影响的研究进展[J]. 动物营养学报,2019,31(2):544−552. doi: 10.3969/j.issn.1006-267x.2019.02.008
    [41]
    Yang L C, Zhang Q, Piao J H, et al. Association of estrogen receptor-α gene PvuII polymorphisms with the effect of calcium supplementation on skeletal development in Chinese pubertal girls[J]. Biomedical and Environmental Sciences,2009(6):480−487 (in Chinese).
    [42]
    Rubin K W. Iron & anemia[J]. Foodservice Director,1998,11(9):106.
    [43]
    Giacco F, Brownlee M. Oxidative stress and diabetic complications[J]. Circulation Research,2010,107(9):1058−1070. doi: 10.1161/CIRCRESAHA.110.223545
    [44]
    Finkel T, Holbrook N J. Oxidants, oxidative stress and the biology of ageing[J]. Nature,2000,408(6809):239−247. doi: 10.1038/35041687
    [45]
    Simon F. Hydroxyl radical activation of a Ca2+-sensitive nonselective cation channel involved in epithelial cell necrosis[J]. AJP: Cell Physiology,2004,287(4):963−970. doi: 10.1152/ajpcell.00041.2004
    [46]
    Taheri A, Bakhshizadeh G A. Antioxidant and ACE inhibitory activities of kawakawa (Euthynnus affinis) protein hydrolysate produced by skipjack tuna pepsin[J]. Journal of Aquatic Food Product Technology,2020,29(2):148−166. doi: 10.1080/10498850.2019.1707924
  • Cited by

    Periodical cited type(3)

    1. 李佩艳,苏娇,肖鑫鑫,党东阳,罗登林,韩四海. 草酸处理对采后银条贮藏品质与细胞壁降解的影响及其通径分析. 食品与发酵工业. 2025(04): 83-90 .
    2. 张高鹏,曲珈莹,侯雪宁,赵薇,侯双迪,薛敏,刘霞,范艳丽. 不同高氧预处理时间对枸杞鲜果贮藏保鲜作用比较. 现代食品科技. 2023(07): 130-137 .
    3. 李彤,魏超昆,张惠玲,魏兆军. 枸杞(Lycium barbarum L.)籽饼粕酶解及其美拉德肽盐的开发. 中国食品添加剂. 2022(12): 62-74 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (449) PDF downloads (32) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return