FANG Yaoyan, ZHAO Shenzhi, XU Dalun, et al. Research Progress of Allergen Proteins in Aquatic Products[J]. Science and Technology of Food Industry, 2021, 42(17): 381−388. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070207.
Citation: FANG Yaoyan, ZHAO Shenzhi, XU Dalun, et al. Research Progress of Allergen Proteins in Aquatic Products[J]. Science and Technology of Food Industry, 2021, 42(17): 381−388. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070207.

Research Progress of Allergen Proteins in Aquatic Products

More Information
  • Received Date: July 16, 2020
  • Available Online: July 06, 2021
  • Aquatic products are favored by consumers because of their rich nutrition and delicious taste. However, aquatic products are also a type of food that can easily cause food allergies. At present, the processing of global aquatic products is difficult to meet the needs of allergic people for food safety, and there is no specific medicine for the treatment of aquatic product allergy. Therefore, eating aquatic products can harm the health of people with potential allergies and reduce their standard of living. In recent years, with the increasing incidence of allergy in the world, the research on the sensitized protein of aquatic products has become one of the public health problems of global concern. In this paper, the biochemical characteristics and antigenepitopes of the main allergen proteins in aquatic products are introduced, including calcium binding protein, tropomyosin, arginine kinase, myosin light chain, hemocyanin, etc. Methods for detecting allergenic proteins such as the enzyme-linked immunosorbent assay, mass spectrometry, biosensor method, polymerase chain reaction based on allergenic protein and its DNA are described. Meanwhile, the current research status of using physical, chemical and biological methods to reduce the sensitization of allergic proteins are introduced, and the existing problems and development trends in the research and application of aquatic product allergen proteins are described and summarized. The purpose is to provide references for further understanding of allergen proteins of aquatic products and development of low-sensitization or no-sensitization aquatic foods.
  • [1]
    Renz H, Allen K, Sicherer S, et al. Food allergy[J]. Nature Reviews Disease Primers,2018,4(79):9−23.
    [2]
    Sicherer S H, Sampson H A. Food allergy: A review and update on epidemiology, pathogenesis, diagnosis, prevention and management[J]. Journal of Allergy Clinical Immunol, 2017, 141(1): 41−58.
    [3]
    Shriver S, Yang W, Chung S Y, etal. Pulsed ultraviolet light reduces immunoglobulin E binding to Atlantic white shrimp (Litopenaeus setiferus) extract[J]. International Journal of Environmental Research and Public Health, 2011, 8 (7): 2569−2583.
    [4]
    Husain Z, Schwartz R A. Food allergy update: more than a peanut of a problem[J]. International Journal of Dermatol,2013,52(3):286−294. doi: 10.1111/j.1365-4632.2012.05603.x
    [5]
    King T P, Hoffman D, Lowenstein H, et al. Allergen nomenclature[J]. Allergy, 1995, 50(9): 765−774.
    [6]
    Jenkins J A, Breiteneder H, Mills E N. Evolutionary distance from human homologs reflects allergenicity of animal food proteinse[J]. Journal of Allergy Clinical Immunology, 2007, 120(6): 1399−1405.
    [7]
    Lehrer S B, Ayuso R, Reese G. Seafood allergy and allergens: A review[J]. Marine Biotechnology, 2003, 5(4): 339−348.
    [8]
    Fu L L, Bobby J C, Shi H N, et a1. Food Allergy: From molecular mechanisms to control strategies[M]. Springer, 2019.
    [9]
    Elíes J, Yáñez M, Pereira T M C, et al. An update to calcium binding proteins[J]. Advances in Experimental Medicine and Biology,2020,1131:183−213.
    [10]
    Sharp M F, Stephen J N, Kraft L, et al. Immunological cross-reactivity between four distant parvalbumins-impact on allergen detection and diagnostics[J]. Molecular Immunology, 2015, 63 (2): 437−448.
    [11]
    Kuehn A, Swoboda I, Arumugam K, et al. Fish allergens at a glance: Variable allergenicity of parvalbumins, the major fish allergens[J]. Frontiers in Immunology, 2014, 5: 179.
    [12]
    Aas K, Elsayed S M. Characterization of a major allergen (Cod): Effect of enzymic allergenic activity[J]. The Journal of Allergy, 1969, 44(6): 333−343.
    [13]
    Ruethers T, Taki A C, Johnston E B, et a1. Seafood allergy: A comprehensive review of fish and shellfish allergens[J]. Molecular Immunology, 2018, 100: 28−57.
    [14]
    Heick J, Fischer M, Popping B. First screening method for the simultaneous detection of seven allergens by liquid chromatography mass spectrometry[J]. Journal ofChromatogr A,2011,1218(7):938−943. doi: 10.1016/j.chroma.2010.12.067
    [15]
    Sharp M F, Stephen J N, Kraft L, et al. Immunological cross-reactivity between four distant parvalbumins-Impact on allergen detection and diagnostics[J]. Molecular Immunology,2015,63(2):437−448. doi: 10.1016/j.molimm.2014.09.019
    [16]
    Kubota H, Kobayashi A, Kobayashi Y, et al. Reduction in IgE reactivity of Pacific mackerel parvalbumin by heat treatment[J]. Food Chemistry, 2016, 206: 78−84.
    [17]
    Sun L R, Xu L L, Huang Y H, et al. Identification and comparison of allergenicity of native and recombinant fish major allergen parvalbumins from Japanese flounder (Paralichthys olivaceus)[J]. Food and Function,2019,10(10):6615−6623. doi: 10.1039/C9FO01402K
    [18]
    Morii A, Mita H, Ishizaki S. et al. Importance of conformation for the IgE reactivity of sarcoplasmic calcium-binding protein from the black tiger shrimp Penaeus monodon[J]. European Food Research Technology, 2013, 236: 16−-170.
    [19]
    Chen H L, Cao M J, Cai Q F, et al. Purification and characterisation of sarcoplasmic calcium-binding protein, a novel allergen of red swamp crayfish (Procambarus clarkii)[J]. Food Chemistry, 2013, 139: 213−223.
    [20]
    Brown J H, Cohen C. Regulation of muscle contraction by tropomyosin and troponin: How structure illuminates function[J]. Advances in Protein Chemistry, 2005, 71: 121−59.
    [21]
    Gonzalez-Fernandez J, Alguacil-Guillen M, Cuellar C, et al. Possible allergenic role of tropomyosin in patients with adverse reactions after fish intake[J]. Immunol Invest,2018,47(4):416−429. doi: 10.1080/08820139.2018.1451882
    [22]
    Chinnappan R, Rahamn A A, AlZabn R, et al. Aptameric biosensor for the sensitive detection of major shrimp allergen, tropomyosin[J]. Food Chemistry, 2020, 314: 126133.
    [23]
    傅玲琳, 富舒洁, 王彦波, 等. 凡纳对虾原肌球蛋白硫酸铵沉淀分离纯化方法的优化[J]. 食品科学,2017,38(18):187−192. [Fu Linglin, Fu Shujie, Wang Yanbo, et al. Optimization of separation and purification method for tropomyosin of Penaeus vannamei with ammonium sulfate precipitation[J]. Food Science,2017,38(18):187−192. doi: 10.7506/spkx1002-6630-201718030
    [24]
    Ayuso R, Sanchez-Garcia S, Lin J, et al. Greater epitope recognition of shrimp allergens by children than by adults suggests that shrimp sensitization decreases with age[J]. Journal of Allergy and Clinical Immunology,2010,125:1286−1293. doi: 10.1016/j.jaci.2010.03.010
    [25]
    Mao H Y, Cao M J, Maleki S J, et al. Structural characterization and IgE epitope analysis of arginine kinase from Scylla paramamosain[J]. Molecular Immunology, 2013, 56: 463−470.
    [26]
    Yin S J, Zhang L M, Zhang L L, et al. Metabolic responses and arginine kinase expression of juvenile cuttlefish (Sepia pharaonis) under salinity stress[J]. International Journal of Biological Macromolecules,2018,113:881−888. doi: 10.1016/j.ijbiomac.2018.03.036
    [27]
    Pedrosa M, Boyano-Martinez T, Garcia-Ara C, et al. Shellfish allergy: A comprehensive review[J]. Clinical Reviews in Allergy & Immunology, 2015, 49: 203−216.
    [28]
    Ayuso R, Grishina G, Bardina L, et al. Myosin light chain is a novel shrimp allergen, Lit v 3[J]. Journal of Allergy and Clinical Immunology, 2008, 122: 795−802.
    [29]
    Piboonpocanun S, Jirapongsananuruk O, Tipayanon T, et al. Identification of hemocyanin as a novel non-cross-reactive allergen from the giant freshwater shrimp Macrobrachium rosenbergii[J]. Molecular Nutrution and Food Research, 2011, 55: 1492−1498.
    [30]
    Zhang J J, Duan R, Tian Y Y, et al. Characterisation of acid-soluble collagen from skin of silver carp (Hypophthalmichthys molitrix)[J]. Food Chemistry, 2009, 116(1): 318−322.
    [31]
    Hamada Y, Nagashima Y, Shiomi K. Identification of collagen as a new fish allergen[J]. Journal of Agriculture Chemical Society of Japan, 2001, 65: 285−291.
    [32]
    Wang B P, Li Z X, Zheng L N, et al. Identification and characterization of a new IgE-binding protein in Mackerel ( Scomber japonicus) by MALDI-TOF-MS[J]. Journal of Ocean University of China (Ocean Coastal Sea Res),2011,10(1):93−98.
    [33]
    Elsayed S, Apold J. Immunochemical analysis of cod fish allergen M: Locations of the immunoglobulin binding sites as demonstrated by the native and synthetic peptides[J]. Allergy, 1983, 38: 449−459.
    [34]
    Zhang Z Y, Li X M, Xiao H, et al. IgE-binding epitope mapping of tropomyosin allergen (Exo m 1) from Exopalaemon modestus, the freshwater Siberian prawn[J]. Food Chemistry,2020,309:125603. doi: 10.1016/j.foodchem.2019.125603
    [35]
    Yoshida S, Ichimura A, Shiomi K. Elucidation of a major IgE epitope of Pacific mackerel parvalbumin[J]. Food Chemistry, 2008, 111: 857−861.
    [36]
    华希玮, 谢彦海, 陈红兵. 日本沼虾原肌球蛋白线性表位预测研究[J]. 食品工业科技, 2020,41(17):84−90, 97.

    Hua Xiwei, Xie Yanhai, Chen Hongbing. Japan spermatogenesis tropomyosin linear epitope prediction research [J]. Food industry science and technology, 2020,41(17):84−90, 97 .
    [37]
    Monaci L, Angelis E D, Montemurro N, et al. Comprehensive overview and recent advances in proteomics MS based methods for food allergens analysis[J]. TrAC Trends in Analytical Chemistry,2018,106:21−36. doi: 10.1016/j.trac.2018.06.016
    [38]
    Cai Q F, Wang X C, Liu G M, et al. Development of a monoclonal antibody-based competitive enzyme linked-immunosorbent assay (c-ELISA) for quantification of silver carp parvalbumin[J]. Food Control, 2013, 29: 241−247.
    [39]
    Zhang H, Lu Y, Ushio H, et al. Development of sandwich ELISA for detection and quantification of invertebrate major allergen tropomyosin by a monoclonal antibody[J]. Food Chemistry, 2014, 150: 151−157.
    [40]
    Yu Z W, Wang Y Q, Li Z X, et al. Development of ELISA method for detecting crustacean major allergen tropomyosin in processed food samples[J]. Food Analytical Methods, 2019, 12 (12): 2719−2729.
    [41]
    Bereszczak J Z, Brancia F L. Offline and online liquid chromatography mass spectrometry in quantitative proteomics[J]. Combinatorial Chemistry and High Throughput Screening, 2009, 12: 185−193.
    [42]
    Korte R, Monneuse J M, Gemrot E, et al. A new HPLC-MS method for the detection of lobster and shrimp allergens in food samples via MRM and MRM3[J]. Journal of Agricultural and Food Chemistry, 2016, 64: 6219−6227.
    [43]
    Stella R, Sette G, Moressa A, et al. LC-HRMS/MS for the simultaneous determination of four allergens in fish and swine food products[J]. Food Chemistry,2020,331:127276. doi: 10.1016/j.foodchem.2020.127276
    [44]
    Sun L, Lin H, Li Z, et al. Development of a method for the quantification of fish major allergen parvalbumin in food matrix via liquid chromatography-tandem mass spectrometry with multiple reaction monitoring[J]. Food Chemistry, 2019, 276: 358−365.
    [45]
    Wang Y, Rao Z, Zhou J, et al. A chiral assembly of gold nanoparticle trimer-based biosensors for ultrasensitive detection of the major allergen tropomyosin in shellfish[J]. Biosens Bioelectron,2019,132:84−89. doi: 10.1016/j.bios.2019.02.038
    [46]
    Zhou J, Wang Y, Qian Y, et al. Quantification of shellfish major allergen tropomyosin by SPR biosensor with gold patterned Biochips[J]. Food Control,2020:107.
    [47]
    Fernandes T J R, Costa J, Oliveira M B P P, et al. A new real-time PCR quantitative approach for the detection of shrimp crustaceans as potential allergens[J]. Journal of Food Composition and Analysis,2018,72:7−14. doi: 10.1016/j.jfca.2018.05.012
    [48]
    Fernandes T J R, Costa J, Oliveira M B P P, et al. Exploiting 16S rRNA gene for the detection and quantification of fish as a potential allergenic food: A comparison oftwo real-time PCR approaches[J]. Food Chemistry 2018, 245: 1034−1041.
    [49]
    Eischeid A C, Stadig S R: A group-specific, quantitative real-time PCR assay for detection of crab, a crustacean shellfish allergen, in complex food matrices[J]. Food Chemistry, 2018, 244: 224−231.
    [50]
    Ozawa H, Yamamura A, Kimijima T, et al. Elimination of the major allergen tropomyosin from shrimp muscle by boiling treatment[J]. Fisheries Science, 2020, 86 (7): 197−202.
    [51]
    Fang L, Li G M, Gu R Z, et al. Influence of thermal treatment on the characteristics of major oyster allergen Cra g 1 (tropomyosin)[J]. Journal of the Science of Food and Agriculture,2018,98(14).
    [52]
    Kamath S D, Abdel Rahman A M, Komoda T, et al. Impact of heat processing on the detection of the major shellfish allergen tropomyosin in crustaceans and molluscs using specific monoclonal antibodies[J]. Food Chemistry, 2013, 141(4): 4031−4039.
    [53]
    Antônio F M V, Romero M P B C, Luana C B B C, et al. Gamma irradiation as an alternative treatment to abolish allergenicity of lectins in food[J]. Food Chemistry, 2011, 124: 1289−1295.
    [54]
    Zhu X W, Huang H, Zhao Q, et al. Research progress in modification of soy protein at subunit level[J]. Food Science and Technology Research, 2012, 23: 388−392.
    [55]
    Muanghorn W, Konsue N, Sham H, et al. Effects of gamma irradiation on tropomyosin allergen, proximate composition and mineral elements in giant freshwater prawn (Macrobrachium rosenbergii)[J]. Journal of Food Science and Technology,2018,55(5):1960−1965. doi: 10.1007/s13197-018-3104-3
    [56]
    官爱艳, 罗华彬, 梅卡琳, 等. 电子束辐照对中华管鞭虾原肌球蛋白免疫原性及其构象的影响[J]. 食品科学,2018,40(3):116−121. [Guan Aiyan, Luo Huabin, Mei Kalin, et al. Effects of electron beam irradiation on the immunogenicity and conformation of tropomyosin in the shrimp Penaeus sinensis[J]. Food Science,2018,40(3):116−121.
    [57]
    Li Z X, Lu Z C, Khan M N, et al. Protein carbonylation during electron beam irradiation may be responsible for changes in IgE binding to turbot parvalbumin[J]. Food and Chemical Toxicology, 2014, 69(7): 32−37.
    [58]
    牟慧. 虾过敏原表位在辐照与热处理中免疫原性的变化及表位氨基酸分析[D]. 北京: 中国农业科学院, 2014.

    Mou H. Changes in immunogenicity of shrimp allergen epitopes during irradiation and heat treatment and analysis of amino acid epitopes[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014.
    [59]
    胡志和, 王星璇, 张晴青, 等. 高压处理诱发虾原机球蛋白结构变化与致敏性的关系[J]. 食品科学,2017,38(11):33−39. [Hu Zhihe, Wang Xingxuan, Zhang Qingqing, et al. The relationship between structural changes and sensitization of shrimp protoglobulin induced by high pressure treatment[J]. Food Science,2017,38(11):33−39. doi: 10.7506/spkx1002-6630-201711006
    [60]
    Jin Y F, Deng Y, Qian B J, et al. Allergenic response to squid (Todarodes pacificus) tropomyosin tod p1 structure modifications induced by high hydrostatic pressure[J]. Food Chemistry Toxicol, 2014, 76: 86−93.
    [61]
    柳澜昱. 超高压处理对虾仁蛋白溶出及致敏性消减的研究[D]. 天津: 天津商业大学, 2015.

    Liu Lanyu. Study on the dissolution of shrimp protein and the reduction of sensitization by ultra-high pressure treatment[D]. Tianjin: Tianjin University of Commerce, 2015.
    [62]
    蔺海鑫, 林洪, 王晓斐, 等. 美拉德反应对菲律宾蛤仔原肌球蛋白结构及免疫活性的影响[J]. 食品科学,2016,37(3):22−26. [Lin Haixin, Lin Hong, Wang Xiaofi, et al. Effects of Maillard reaction on the structure and immune activity of tromyosin in Filipino Clam[J]. Food Science,2016,37(3):22−26. doi: 10.7506/spkx1002-6630-201603005
    [63]
    Zhao Y J, Cai Q F, Jin T C, et al. Effect of Maillard reaction on the structural and immunological properties of recombinant silver carp parvalbumin[J]. LWT Food Science and Technology, 2017, 75: 25−33.
    [64]
    Song Y N, Li Z X, Lin H, et al. Effect of malondialdehyde treatment on the IgE binding capacity and conformational structure of shrimp tropomyosin[J]. Food Chemistry, 2015, 175(175): 374−380.
    [65]
    张弛. 酶解处理对虾致敏蛋白的致敏性影响分析[D]. 杭州: 中国计量学院, 2015.

    Zhang Chi. Effects of enzymatic hydrolysis on sensitization of prawn sensitization proteins[D]. Hangzhou: China Jiliang University, 2015.
    [66]
    Zhang J T, Liu W Y, Fang L, et al. Effect of acid and in vitro digestion on conformation and IgE-binding capacity of major oyster allergen Cra g 1 (tropomyosin)[J]. Allergologia et Immunopathologia,2020,48(1):26−33. doi: 10.1016/j.aller.2019.08.001
  • Cited by

    Periodical cited type(9)

    1. 孙喜,王召路,贾谨睿,王梦洋,孙润卓,王鹏,史新娥. 虫草素及其在生猪养殖中的应用. 畜牧兽医杂志. 2024(04): 1-7 .
    2. 池杰明. 虫草素抗肿瘤新型给药系统研究进展. 中外医疗. 2024(35): 195-198 .
    3. 卢茂芳,李薇,李小兰,唐湘黔,李柯. RP-HPLC双波长法同时测定参橘草营养强化饮液中5种成分的含量. 湖南中医杂志. 2023(03): 182-186 .
    4. 冯辽辽,马一翔,刘广平,黄琰莹,刘萱,贺晓龙. 北虫草菌糠中多糖的提取及成分测定. 延安大学学报(自然科学版). 2023(03): 29-34 .
    5. 宋羚,田迪,黄蓉,刘新会,罗家兴,马啸. 虫草素对肺癌细胞生长及迁移的影响. 菌物学报. 2022(07): 1088-1098 .
    6. 张鑫,周雪冰,高铭,吕游,王莹,杨春宇,朴英实,任香善. 虫草素通过激活AMPK和MAPK信号通路抑制脂代谢抑制人胃癌细胞的增殖和迁移. 细胞与分子免疫学杂志. 2022(06): 513-521 .
    7. 盛瑜,谭超杰,白丽丹,孙晶波,安丽萍,郭笑. 北虫草化学成分及药理作用研究进展. 中国食用菌. 2021(02): 1-5+22 .
    8. 徐悉哲,王言之,李世芬,胡奇,王玉邦. 蛹虫草对小鼠免疫功能的调节作用. 江苏医药. 2021(07): 661-663 .
    9. 蔡曦,尚超,孟丽荣. 虫草素抗肿瘤药理作用及其机制的研究进展. 药物评价研究. 2021(07): 1548-1554 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (335) PDF downloads (39) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return