Citation: | FANG Yaoyan, ZHAO Shenzhi, XU Dalun, et al. Research Progress of Allergen Proteins in Aquatic Products[J]. Science and Technology of Food Industry, 2021, 42(17): 381−388. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070207. |
[1] |
Renz H, Allen K, Sicherer S, et al. Food allergy[J]. Nature Reviews Disease Primers,2018,4(79):9−23.
|
[2] |
Sicherer S H, Sampson H A. Food allergy: A review and update on epidemiology, pathogenesis, diagnosis, prevention and management[J]. Journal of Allergy Clinical Immunol, 2017, 141(1): 41−58.
|
[3] |
Shriver S, Yang W, Chung S Y, etal. Pulsed ultraviolet light reduces immunoglobulin E binding to Atlantic white shrimp (Litopenaeus setiferus) extract[J]. International Journal of Environmental Research and Public Health, 2011, 8 (7): 2569−2583.
|
[4] |
Husain Z, Schwartz R A. Food allergy update: more than a peanut of a problem[J]. International Journal of Dermatol,2013,52(3):286−294. doi: 10.1111/j.1365-4632.2012.05603.x
|
[5] |
King T P, Hoffman D, Lowenstein H, et al. Allergen nomenclature[J]. Allergy, 1995, 50(9): 765−774.
|
[6] |
Jenkins J A, Breiteneder H, Mills E N. Evolutionary distance from human homologs reflects allergenicity of animal food proteinse[J]. Journal of Allergy Clinical Immunology, 2007, 120(6): 1399−1405.
|
[7] |
Lehrer S B, Ayuso R, Reese G. Seafood allergy and allergens: A review[J]. Marine Biotechnology, 2003, 5(4): 339−348.
|
[8] |
Fu L L, Bobby J C, Shi H N, et a1. Food Allergy: From molecular mechanisms to control strategies[M]. Springer, 2019.
|
[9] |
Elíes J, Yáñez M, Pereira T M C, et al. An update to calcium binding proteins[J]. Advances in Experimental Medicine and Biology,2020,1131:183−213.
|
[10] |
Sharp M F, Stephen J N, Kraft L, et al. Immunological cross-reactivity between four distant parvalbumins-impact on allergen detection and diagnostics[J]. Molecular Immunology, 2015, 63 (2): 437−448.
|
[11] |
Kuehn A, Swoboda I, Arumugam K, et al. Fish allergens at a glance: Variable allergenicity of parvalbumins, the major fish allergens[J]. Frontiers in Immunology, 2014, 5: 179.
|
[12] |
Aas K, Elsayed S M. Characterization of a major allergen (Cod): Effect of enzymic allergenic activity[J]. The Journal of Allergy, 1969, 44(6): 333−343.
|
[13] |
Ruethers T, Taki A C, Johnston E B, et a1. Seafood allergy: A comprehensive review of fish and shellfish allergens[J]. Molecular Immunology, 2018, 100: 28−57.
|
[14] |
Heick J, Fischer M, Popping B. First screening method for the simultaneous detection of seven allergens by liquid chromatography mass spectrometry[J]. Journal ofChromatogr A,2011,1218(7):938−943. doi: 10.1016/j.chroma.2010.12.067
|
[15] |
Sharp M F, Stephen J N, Kraft L, et al. Immunological cross-reactivity between four distant parvalbumins-Impact on allergen detection and diagnostics[J]. Molecular Immunology,2015,63(2):437−448. doi: 10.1016/j.molimm.2014.09.019
|
[16] |
Kubota H, Kobayashi A, Kobayashi Y, et al. Reduction in IgE reactivity of Pacific mackerel parvalbumin by heat treatment[J]. Food Chemistry, 2016, 206: 78−84.
|
[17] |
Sun L R, Xu L L, Huang Y H, et al. Identification and comparison of allergenicity of native and recombinant fish major allergen parvalbumins from Japanese flounder (Paralichthys olivaceus)[J]. Food and Function,2019,10(10):6615−6623. doi: 10.1039/C9FO01402K
|
[18] |
Morii A, Mita H, Ishizaki S. et al. Importance of conformation for the IgE reactivity of sarcoplasmic calcium-binding protein from the black tiger shrimp Penaeus monodon[J]. European Food Research Technology, 2013, 236: 16−-170.
|
[19] |
Chen H L, Cao M J, Cai Q F, et al. Purification and characterisation of sarcoplasmic calcium-binding protein, a novel allergen of red swamp crayfish (Procambarus clarkii)[J]. Food Chemistry, 2013, 139: 213−223.
|
[20] |
Brown J H, Cohen C. Regulation of muscle contraction by tropomyosin and troponin: How structure illuminates function[J]. Advances in Protein Chemistry, 2005, 71: 121−59.
|
[21] |
Gonzalez-Fernandez J, Alguacil-Guillen M, Cuellar C, et al. Possible allergenic role of tropomyosin in patients with adverse reactions after fish intake[J]. Immunol Invest,2018,47(4):416−429. doi: 10.1080/08820139.2018.1451882
|
[22] |
Chinnappan R, Rahamn A A, AlZabn R, et al. Aptameric biosensor for the sensitive detection of major shrimp allergen, tropomyosin[J]. Food Chemistry, 2020, 314: 126133.
|
[23] |
傅玲琳, 富舒洁, 王彦波, 等. 凡纳对虾原肌球蛋白硫酸铵沉淀分离纯化方法的优化[J]. 食品科学,2017,38(18):187−192. [Fu Linglin, Fu Shujie, Wang Yanbo, et al. Optimization of separation and purification method for tropomyosin of Penaeus vannamei with ammonium sulfate precipitation[J]. Food Science,2017,38(18):187−192. doi: 10.7506/spkx1002-6630-201718030
|
[24] |
Ayuso R, Sanchez-Garcia S, Lin J, et al. Greater epitope recognition of shrimp allergens by children than by adults suggests that shrimp sensitization decreases with age[J]. Journal of Allergy and Clinical Immunology,2010,125:1286−1293. doi: 10.1016/j.jaci.2010.03.010
|
[25] |
Mao H Y, Cao M J, Maleki S J, et al. Structural characterization and IgE epitope analysis of arginine kinase from Scylla paramamosain[J]. Molecular Immunology, 2013, 56: 463−470.
|
[26] |
Yin S J, Zhang L M, Zhang L L, et al. Metabolic responses and arginine kinase expression of juvenile cuttlefish (Sepia pharaonis) under salinity stress[J]. International Journal of Biological Macromolecules,2018,113:881−888. doi: 10.1016/j.ijbiomac.2018.03.036
|
[27] |
Pedrosa M, Boyano-Martinez T, Garcia-Ara C, et al. Shellfish allergy: A comprehensive review[J]. Clinical Reviews in Allergy & Immunology, 2015, 49: 203−216.
|
[28] |
Ayuso R, Grishina G, Bardina L, et al. Myosin light chain is a novel shrimp allergen, Lit v 3[J]. Journal of Allergy and Clinical Immunology, 2008, 122: 795−802.
|
[29] |
Piboonpocanun S, Jirapongsananuruk O, Tipayanon T, et al. Identification of hemocyanin as a novel non-cross-reactive allergen from the giant freshwater shrimp Macrobrachium rosenbergii[J]. Molecular Nutrution and Food Research, 2011, 55: 1492−1498.
|
[30] |
Zhang J J, Duan R, Tian Y Y, et al. Characterisation of acid-soluble collagen from skin of silver carp (Hypophthalmichthys molitrix)[J]. Food Chemistry, 2009, 116(1): 318−322.
|
[31] |
Hamada Y, Nagashima Y, Shiomi K. Identification of collagen as a new fish allergen[J]. Journal of Agriculture Chemical Society of Japan, 2001, 65: 285−291.
|
[32] |
Wang B P, Li Z X, Zheng L N, et al. Identification and characterization of a new IgE-binding protein in Mackerel ( Scomber japonicus) by MALDI-TOF-MS[J]. Journal of Ocean University of China (Ocean Coastal Sea Res),2011,10(1):93−98.
|
[33] |
Elsayed S, Apold J. Immunochemical analysis of cod fish allergen M: Locations of the immunoglobulin binding sites as demonstrated by the native and synthetic peptides[J]. Allergy, 1983, 38: 449−459.
|
[34] |
Zhang Z Y, Li X M, Xiao H, et al. IgE-binding epitope mapping of tropomyosin allergen (Exo m 1) from Exopalaemon modestus, the freshwater Siberian prawn[J]. Food Chemistry,2020,309:125603. doi: 10.1016/j.foodchem.2019.125603
|
[35] |
Yoshida S, Ichimura A, Shiomi K. Elucidation of a major IgE epitope of Pacific mackerel parvalbumin[J]. Food Chemistry, 2008, 111: 857−861.
|
[36] |
华希玮, 谢彦海, 陈红兵. 日本沼虾原肌球蛋白线性表位预测研究[J]. 食品工业科技, 2020,41(17):84−90, 97.
Hua Xiwei, Xie Yanhai, Chen Hongbing. Japan spermatogenesis tropomyosin linear epitope prediction research [J]. Food industry science and technology, 2020,41(17):84−90, 97 .
|
[37] |
Monaci L, Angelis E D, Montemurro N, et al. Comprehensive overview and recent advances in proteomics MS based methods for food allergens analysis[J]. TrAC Trends in Analytical Chemistry,2018,106:21−36. doi: 10.1016/j.trac.2018.06.016
|
[38] |
Cai Q F, Wang X C, Liu G M, et al. Development of a monoclonal antibody-based competitive enzyme linked-immunosorbent assay (c-ELISA) for quantification of silver carp parvalbumin[J]. Food Control, 2013, 29: 241−247.
|
[39] |
Zhang H, Lu Y, Ushio H, et al. Development of sandwich ELISA for detection and quantification of invertebrate major allergen tropomyosin by a monoclonal antibody[J]. Food Chemistry, 2014, 150: 151−157.
|
[40] |
Yu Z W, Wang Y Q, Li Z X, et al. Development of ELISA method for detecting crustacean major allergen tropomyosin in processed food samples[J]. Food Analytical Methods, 2019, 12 (12): 2719−2729.
|
[41] |
Bereszczak J Z, Brancia F L. Offline and online liquid chromatography mass spectrometry in quantitative proteomics[J]. Combinatorial Chemistry and High Throughput Screening, 2009, 12: 185−193.
|
[42] |
Korte R, Monneuse J M, Gemrot E, et al. A new HPLC-MS method for the detection of lobster and shrimp allergens in food samples via MRM and MRM3[J]. Journal of Agricultural and Food Chemistry, 2016, 64: 6219−6227.
|
[43] |
Stella R, Sette G, Moressa A, et al. LC-HRMS/MS for the simultaneous determination of four allergens in fish and swine food products[J]. Food Chemistry,2020,331:127276. doi: 10.1016/j.foodchem.2020.127276
|
[44] |
Sun L, Lin H, Li Z, et al. Development of a method for the quantification of fish major allergen parvalbumin in food matrix via liquid chromatography-tandem mass spectrometry with multiple reaction monitoring[J]. Food Chemistry, 2019, 276: 358−365.
|
[45] |
Wang Y, Rao Z, Zhou J, et al. A chiral assembly of gold nanoparticle trimer-based biosensors for ultrasensitive detection of the major allergen tropomyosin in shellfish[J]. Biosens Bioelectron,2019,132:84−89. doi: 10.1016/j.bios.2019.02.038
|
[46] |
Zhou J, Wang Y, Qian Y, et al. Quantification of shellfish major allergen tropomyosin by SPR biosensor with gold patterned Biochips[J]. Food Control,2020:107.
|
[47] |
Fernandes T J R, Costa J, Oliveira M B P P, et al. A new real-time PCR quantitative approach for the detection of shrimp crustaceans as potential allergens[J]. Journal of Food Composition and Analysis,2018,72:7−14. doi: 10.1016/j.jfca.2018.05.012
|
[48] |
Fernandes T J R, Costa J, Oliveira M B P P, et al. Exploiting 16S rRNA gene for the detection and quantification of fish as a potential allergenic food: A comparison oftwo real-time PCR approaches[J]. Food Chemistry 2018, 245: 1034−1041.
|
[49] |
Eischeid A C, Stadig S R: A group-specific, quantitative real-time PCR assay for detection of crab, a crustacean shellfish allergen, in complex food matrices[J]. Food Chemistry, 2018, 244: 224−231.
|
[50] |
Ozawa H, Yamamura A, Kimijima T, et al. Elimination of the major allergen tropomyosin from shrimp muscle by boiling treatment[J]. Fisheries Science, 2020, 86 (7): 197−202.
|
[51] |
Fang L, Li G M, Gu R Z, et al. Influence of thermal treatment on the characteristics of major oyster allergen Cra g 1 (tropomyosin)[J]. Journal of the Science of Food and Agriculture,2018,98(14).
|
[52] |
Kamath S D, Abdel Rahman A M, Komoda T, et al. Impact of heat processing on the detection of the major shellfish allergen tropomyosin in crustaceans and molluscs using specific monoclonal antibodies[J]. Food Chemistry, 2013, 141(4): 4031−4039.
|
[53] |
Antônio F M V, Romero M P B C, Luana C B B C, et al. Gamma irradiation as an alternative treatment to abolish allergenicity of lectins in food[J]. Food Chemistry, 2011, 124: 1289−1295.
|
[54] |
Zhu X W, Huang H, Zhao Q, et al. Research progress in modification of soy protein at subunit level[J]. Food Science and Technology Research, 2012, 23: 388−392.
|
[55] |
Muanghorn W, Konsue N, Sham H, et al. Effects of gamma irradiation on tropomyosin allergen, proximate composition and mineral elements in giant freshwater prawn (Macrobrachium rosenbergii)[J]. Journal of Food Science and Technology,2018,55(5):1960−1965. doi: 10.1007/s13197-018-3104-3
|
[56] |
官爱艳, 罗华彬, 梅卡琳, 等. 电子束辐照对中华管鞭虾原肌球蛋白免疫原性及其构象的影响[J]. 食品科学,2018,40(3):116−121. [Guan Aiyan, Luo Huabin, Mei Kalin, et al. Effects of electron beam irradiation on the immunogenicity and conformation of tropomyosin in the shrimp Penaeus sinensis[J]. Food Science,2018,40(3):116−121.
|
[57] |
Li Z X, Lu Z C, Khan M N, et al. Protein carbonylation during electron beam irradiation may be responsible for changes in IgE binding to turbot parvalbumin[J]. Food and Chemical Toxicology, 2014, 69(7): 32−37.
|
[58] |
牟慧. 虾过敏原表位在辐照与热处理中免疫原性的变化及表位氨基酸分析[D]. 北京: 中国农业科学院, 2014.
Mou H. Changes in immunogenicity of shrimp allergen epitopes during irradiation and heat treatment and analysis of amino acid epitopes[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014.
|
[59] |
胡志和, 王星璇, 张晴青, 等. 高压处理诱发虾原机球蛋白结构变化与致敏性的关系[J]. 食品科学,2017,38(11):33−39. [Hu Zhihe, Wang Xingxuan, Zhang Qingqing, et al. The relationship between structural changes and sensitization of shrimp protoglobulin induced by high pressure treatment[J]. Food Science,2017,38(11):33−39. doi: 10.7506/spkx1002-6630-201711006
|
[60] |
Jin Y F, Deng Y, Qian B J, et al. Allergenic response to squid (Todarodes pacificus) tropomyosin tod p1 structure modifications induced by high hydrostatic pressure[J]. Food Chemistry Toxicol, 2014, 76: 86−93.
|
[61] |
柳澜昱. 超高压处理对虾仁蛋白溶出及致敏性消减的研究[D]. 天津: 天津商业大学, 2015.
Liu Lanyu. Study on the dissolution of shrimp protein and the reduction of sensitization by ultra-high pressure treatment[D]. Tianjin: Tianjin University of Commerce, 2015.
|
[62] |
蔺海鑫, 林洪, 王晓斐, 等. 美拉德反应对菲律宾蛤仔原肌球蛋白结构及免疫活性的影响[J]. 食品科学,2016,37(3):22−26. [Lin Haixin, Lin Hong, Wang Xiaofi, et al. Effects of Maillard reaction on the structure and immune activity of tromyosin in Filipino Clam[J]. Food Science,2016,37(3):22−26. doi: 10.7506/spkx1002-6630-201603005
|
[63] |
Zhao Y J, Cai Q F, Jin T C, et al. Effect of Maillard reaction on the structural and immunological properties of recombinant silver carp parvalbumin[J]. LWT Food Science and Technology, 2017, 75: 25−33.
|
[64] |
Song Y N, Li Z X, Lin H, et al. Effect of malondialdehyde treatment on the IgE binding capacity and conformational structure of shrimp tropomyosin[J]. Food Chemistry, 2015, 175(175): 374−380.
|
[65] |
张弛. 酶解处理对虾致敏蛋白的致敏性影响分析[D]. 杭州: 中国计量学院, 2015.
Zhang Chi. Effects of enzymatic hydrolysis on sensitization of prawn sensitization proteins[D]. Hangzhou: China Jiliang University, 2015.
|
[66] |
Zhang J T, Liu W Y, Fang L, et al. Effect of acid and in vitro digestion on conformation and IgE-binding capacity of major oyster allergen Cra g 1 (tropomyosin)[J]. Allergologia et Immunopathologia,2020,48(1):26−33. doi: 10.1016/j.aller.2019.08.001
|