LIU Li, XIE Wei, XU Jinjin, et al. Process Optimization and Quality Analysis of Oyster Goat Yogurt[J]. Science and Technology of Food Industry, 2021, 42(9): 166−172. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070164.
Citation: LIU Li, XIE Wei, XU Jinjin, et al. Process Optimization and Quality Analysis of Oyster Goat Yogurt[J]. Science and Technology of Food Industry, 2021, 42(9): 166−172. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070164.

Process Optimization and Quality Analysis of Oyster Goat Yogurt

More Information
  • Received Date: July 13, 2020
  • Available Online: March 15, 2021
  • In this paper, oysters and goat milk were selected as the main raw materials, using Lactobacillus casei, Lactobacillus bulgaricus and Streptococcus thermophilus as mixed fermentation strains, to ferment into oyster goat yogurt. Taking acidity and sensory score as evaluation index, orthogonal experiment was carried out on the basis of single factor experiment to determine the optimal fermentation process of oyster goat yogurt, and its basic nutritional index and microbial index were tested, combined with the fermentation characteristics. The results showed that the optimal fermentation conditions for coagulated oyster goat yogurt were 8% oyster nutrient powder, 8% sucrose, 5% starter inoculation, 42 ℃ fermentation temperature and 8 h fermentation time. The oyster goat yogurt developed according to the optimal process had high apparent viscosity value, strong water holding capacity and fast fermentation speed. Furthermore, the number of lactic acid bacteria was as high as 109 CFU/mL, its nutritional value, total number of colonies, texture and taste could reach a higher quality level.
  • [1]
    Zhang Z, Zhou F, Liu X, et al. Particulate nanocomposite from oyster (Crassostrea rivularis) hydrolysates via zinc chelation improves zinc solubility and peptide activity[J]. Food Chemistry,2018,258:269−277. doi: 10.1016/j.foodchem.2018.03.030
    [2]
    农业部渔业渔政管理局. 2020年中国渔业统计年鉴[M]. 2020: 23.
    [3]
    Hwang Y-S, Cho J-H, Hwang S-M, et al. Processing and quality characteristics of retort pouched oyster soup from iqf oyster Crassostrea gigas[J]. Korean Journal of Fisheries and Aquatic Sciences,2016,49(6):772−778. doi: 10.5657/KFAS.2016.0772
    [4]
    Getachew A T, Lee H J, Cho Y J, et al. Optimization of polysaccharides extraction from pacific oyster (Crassostrea gigas) using subcritical water: Structural characterization and biological activities[J]. International Journal of Biological Macromolecules,2019,121:852−861. doi: 10.1016/j.ijbiomac.2018.10.091
    [5]
    Byun J-H, Choi Y J, Choung S Y. Protective effect of oyster hydrolysate peptide in alcohol induced alcoholic fatty liver in SD-rats[J]. Planta Medica,2016,82(S01):S1−S381.
    [6]
    Graet Y, Garem A. Heat-induced coagulation of goat milk: Modification of the environment of the casein micelles by membrane processes[J]. Lait,2002,82(6):673−681. doi: 10.1051/lait:2002041
    [7]
    Rani S, Pooja K, Pal G K. Exploration of potential angiotensin converting enzyme inhibitory peptides generated from enzymatic hydrolysis of goat milk proteins[J]. Biocatalysis and Agricultural Biotechnology,2017,11:83−88. doi: 10.1016/j.bcab.2017.06.008
    [8]
    Montoro M, Olalla M, Rufián Henares J, et al. Antioxidant, ACE-inhibitory and antimicrobial activity of fermented goat milk: Activity and physicochemical property relationship of the peptide components[J]. Food Function,2017,8:2783−2791. doi: 10.1039/C7FO00666G
    [9]
    Alles M, Scholten P, Bindels J. Current trends in the composition of infant milk formulas[J]. Current Paediatrics,2004,14(1):51−63. doi: 10.1016/j.cupe.2003.09.007
    [10]
    Zhou C, Hu J, Ma H, et al. Antioxidant peptides from corn gluten meal: Orthogonal design evaluation[J]. Food Chemistry,2015,187(15):270−278.
    [11]
    Brückner-Gühmann M, Benthin A, Drusch S. Enrichment of yoghurt with oat protein fractions: Structure formation, textural properties and sensory evaluation[J]. Food Hydrocolloids,2019,86:146−153. doi: 10.1016/j.foodhyd.2018.03.019
    [12]
    Shakerian M, Kiani H, Ehsani M R. Effect of buffalo milk on the yield and composition of buffalo feta cheese at various processing parameters[J]. Food Bioscience,2016,15(1):110−117.
    [13]
    Matsuo Y, Miura L A, Apaki T, et al. Proximate composition and profiles of free amino acids, fatty acids, minerals and aroma compounds in Citrus natsudaidai peel[J]. Food Chemistry,2019,279(1):356−363.
    [14]
    Puvvanenthir A, Stevovitch-rykner C, Mccann T H, et al. Synergistic effect of milk solids and carrot cell wall particles on the rheology and texture of yoghurt gels[J]. Food Research International,2014,62:701−708. doi: 10.1016/j.foodres.2014.04.023
    [15]
    Redondo N, García-González N, Diaz-Prieto L E, et al. Effects of ewe's milk yogurt (whole and semi-skimmed) and cow's milk yogurt on inflammation markers and gut microbiota of subjects with borderline-high plasma cholesterol levels: A crossover study[J]. European Journal of Nutrition,2019,58(3):1113−1124. doi: 10.1007/s00394-018-1626-0
    [16]
    Silva F, Oliveira M, Sampaio K, et al. Effect of Isabel grape addition on the physicochemical, microbiological and sensory characteristics of probiotic goat milk yogurt[J]. Food Function,2017,8(6):2121−2132. doi: 10.1039/C6FO01795A
    [17]
    Wang Q, Li W, He Y, et al. Novel antioxidative peptides from the protein hydrolysate of oysters (Crassostrea talienwhanensis)[J]. Food chemistry,2014,145(15):991−996.
    [18]
    Liu H, Chen J, XiaoYu A N, et al. Optimization of enzymatic hydrolysis of oysters and amino acid composition and nutritional quality of oyster hydrolysates[J]. Food Science,2017,38(14):240−244.
    [19]
    Feng C, Wang B, Zhao A, et al. Quality characteristics and antioxidant activities of goat milk yogurt with added jujube pulp[J]. Food Chemistry,2019,277(30):238−245.
    [20]
    Alderman G, B. R. C. Energy and protein requirements of ruminants[J]. Animal Feed Science and Technology,1995,56(1−2):180−181. doi: 10.1016/0377-8401(95)90026-8
    [21]
    Serafeimidou A, Zlatanos S, Kritikos G, et al. Change of fatty acid profile, including conjugated linoleic acid (CLA) content, during refrigerated storage of yogurt made of cow and sheep milk[J]. Journal of Food Composition and Analysis,2013,31(1):24−30. doi: 10.1016/j.jfca.2013.02.011
    [22]
    Liu C-J, Tang X-D, Yu J, et al. Gut microbiota alterations from different Lactobacillus probiotic-fermented yoghurt treatments in slow-transit constipation[J]. Journal of Functional Foods,2017,38:110−118. doi: 10.1016/j.jff.2017.08.037
    [23]
    Jaster H, Arend G D, Rezzadori K, et al. Enhancement of antioxidant activity and physicochemical properties of yogurt enriched with concentrated strawberry pulp obtained by block freeze concentration[J]. Food Research International,2018,104:119−125. doi: 10.1016/j.foodres.2017.10.006
    [24]
    Kang S H, Yu M S, Kim J M, et al. Biochemical, microbiological, and sensory characteristics of stirred yogurt containing red or green pepper (Capsicum annuum cv. Chungyang) Juice[J]. Korean Journal for Food Science of Animal Resources,2018,38(3):451−467.
    [25]
    Raikos V, Grant S B, Hayes H, et al. Use of β-glucan from spent brewer’s yeast as a thickener in skimmed yogurt: Physicochemical, textural, and structural properties related to sensory perception[J]. Journal of Dairy Science,2018,101(7):5821−5831. doi: 10.3168/jds.2017-14261
    [26]
    Čapla J, Zajác P, Vietoris V, et al. Determination of selected species texture processed cheese and processed products different batches under different conditions keep them for eating quality[J]. Journal of Central European Agriculture,2015,16(3):250−268. doi: 10.5513/JCEA01/16.3.1618
  • Cited by

    Periodical cited type(27)

    1. 戴明云,李斌,张朝阳,白富瑾,肖伟. 螺旋藻生长影响因素及功能特性应用研究进展. 现代农业科技. 2025(01): 161-165+179 .
    2. 李雪贤,刘洋,皮杰,桂雨婷,陆娟娟. 螺旋藻的主要成分及生理功能研究进展. 水产养殖. 2025(02): 37-42 .
    3. 韩佩,夏嵩,闫冰,姜钦亮,王一雯. 极大螺旋藻对四氧嘧啶性糖尿病小鼠的降血糖作用. 食品研究与开发. 2025(09): 44-51 .
    4. 吴朋徽,刘耀,张磊,肖芃颖,张玥. 微藻两阶段培养技术研究进展. 微生物学通报. 2024(01): 1-16 .
    5. 姜梦云,刘旭,衣然. 4种前处理方法-原子荧光光谱法测定螺旋藻中总砷含量. 食品安全导刊. 2024(03): 56-58 .
    6. 孙博,武晋海,李金凤,赵佳敏,刘金桃,黄凤丽. 螺旋藻口服液制备的工艺优化. 食品安全导刊. 2024(08): 127-131+135 .
    7. 唐魁延,龚艺松,田冬青,张晓宇,聂远洋,李波. 螺旋藻豆腐的研制开发. 河南科技学院学报(自然科学版). 2024(04): 15-27 .
    8. 薛宪辉,李思雨,郭睿,崔文凯,纪蓓. 螺旋藻风味酱的发酵工艺研究. 中国调味品. 2024(08): 69-73 .
    9. 王丽梅,西妮,穆文静,苏小军,张永明. 基于Cite Space对螺旋藻藻蓝蛋白的研究进展与热点分析. 食品与发酵工业. 2024(16): 313-323 .
    10. 宋盈萱,尹馨一,刘盈萱. 螺旋藻营养成分及生物活性研究进展. 食品安全导刊. 2024(27): 178-182 .
    11. 曾巧辉,余杏同,林妙銮. 螺旋藻蛋白-原花青素稳定亚麻籽油品质的研究. 佛山科学技术学院学报(自然科学版). 2024(05): 54-68 .
    12. 杨正磊,冯鑫,尹淑涛. 微藻资源概述及微藻多糖的生物活性研究进展. 中国食物与营养. 2024(09): 58-66 .
    13. 陈慧桢,吕莹果,陈洁,李雪琴. 螺旋藻方便面片制备工艺优化. 粮食与油脂. 2024(11): 135-142+162 .
    14. 柯善文,习向玉,陈翊可,张官鹏,宋富艳,韩栋敏,苏蓉,李晓雪,牛鑫,单华佳,梁倩倩. PDA培养基中添加不同有机氮源物质对黑木耳退化菌种复壮效果的影响. 山东农业科学. 2024(11): 121-126 .
    15. 袁泽文,高旭芳,田益玲. 响应面法优化乙酸锌对螺旋藻护色的研究. 粮食与油脂. 2023(04): 137-140 .
    16. 米顺利,竹烨,张艺,黄晓菊,蒋心怡,易湘茜. 螺旋藻复配代餐粉的研制. 保鲜与加工. 2023(07): 43-49 .
    17. 李平,吕莹果,李雪琴,陈洁. 螺旋藻粉对面团流变性质及面筋结构的影响. 食品科学. 2023(14): 63-71 .
    18. 王志忠,穆洁,巩东辉,郭彩凤,王志国,宝俊刚. 钝顶螺旋藻与五种常见食物营养成分对比分析. 食品与发酵科技. 2023(04): 111-115+121 .
    19. 郭旭,魏登枭,钟彩荣,兰英,何勇锦,陈必链. 正己烷与氯化钙介导法联产提取未破壁螺旋藻的藻蓝蛋白和油脂. 食品与发酵工业. 2023(17): 202-208 .
    20. 魏登,李美善,刘艳霞,金永燮,佟立爽. 精酿绿啤加工工艺优化及其挥发性风味鉴定分析. 中国食品添加剂. 2023(10): 217-225 .
    21. 魏登,刘艳霞,金永燮,佟立爽. 菠菜螺旋藻复合精酿小麦绿啤挥发性香气表征研究. 食品安全导刊. 2023(30): 88-91 .
    22. 吴慧. 螺旋藻曲奇饼干制作工艺的研究. 食品安全导刊. 2022(04): 128-131+135 .
    23. 付雨,姜雨,王进博,张铂瑾,宋宸,孙明霞. 螺旋藻类保健食品批准情况及问题. 食品与机械. 2022(08): 1-6+13 .
    24. 李青卓,张楠,梅兴国,吴基良. 新鲜螺旋藻中β-胡萝卜素提取与测定. 湖北科技学院学报(医学版). 2022(04): 287-291 .
    25. 刘璐璐,陈玟璇,刘小慧,李世乐,许志浩,陈洪彬,郑宗平,王宝贝. 雨生红球藻对戚风蛋糕品质的影响及其虾青素稳定性. 食品工业科技. 2022(19): 76-83 . 本站查看
    26. 佟立爽,王晏驰,周娜,李美善,魏登. 不同温度条件下精酿绿啤二次发酵的挥发性风味差异分析. 中国食品添加剂. 2022(11): 9-17 .
    27. 张春艳,张震,仇钧仪,初宇轩,彭磊磊,罗鹏,陈成勋. 饲料添加复合氨基酸对锦鲤生长和生理生化指标的影响. 经济动物学报. 2022(04): 261-267 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (199) PDF downloads (23) Cited by(36)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return