JIANG Peng, LI Ren, DAI Lingyan, et al. Effects of Soaking and Microwave Treatments on Cultivability of Three Kinds of Sorghums[J]. Science and Technology of Food Industry, 2021, 42(8): 70−74. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2020070103.
Citation: JIANG Peng, LI Ren, DAI Lingyan, et al. Effects of Soaking and Microwave Treatments on Cultivability of Three Kinds of Sorghums[J]. Science and Technology of Food Industry, 2021, 42(8): 70−74. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2020070103.

Effects of Soaking and Microwave Treatments on Cultivability of Three Kinds of Sorghums

More Information
  • Received Date: July 09, 2020
  • Available Online: January 28, 2021
  • In order to study the effects of soaking and microwave treatments on the cultivability of three kinds of sorghum, soaking time and temperature on the water absorption of sorghums, and those of microwave time and power on the cooking cultivability degree and time were studied by single factor test method. The results indicated that the optimal soaking time for Longmiliang No.1, Longza No.13 and Hongnuo sorghum were 2, 2 and 3 h, respectively, and those rates of water absorption present trends of rising first, then falling and rising again with the increase of soaking time; The soaking temperatures were 45, 35 and 35 ℃, respectively, and those rates of water absorption showed rising trends with soaking temperature. Under the optimal soaking conditions, the cultivability degree of sorghum Longza No.1 reached 100%, the cooking time was shortened by 20 min under microwave power 600 W and 8 min of microwave time. And the cultivability degree and cooking time of Longza No. 13 were same to Longza No.1 under microwave power 800 W and 11 min. While Hongnuo sorghum present 100% cultivability degree and only 15 min of cultivability time under the same microwave condition to Longza No. 13. It’s clear to show that the optimal soaking and microwave treatments parameters for sorghums processing, in which those will present data support for cultivability of sorghums.
  • [1]
    陆勇, 郭丽慧, 李学红, 等. 高粱淀粉的理化特性及其水解率的研究[J]. 食品工业,2015,36(9):29−33.
    [2]
    范国华, 郭瑞峰. 高粱深加工产品的应用现状研究[J]. 粮食科技与经济,2020,45(3):145−148.
    [3]
    Belton P S, Taylor J R N. Sorghum and millets: Protein sources for Africa[J]. Trends in Food Science & Technology,2004,15(2):94−98.
    [4]
    Althwab S, Carr T P, Weller C L, et al. Advances in grain sorghum and its co-products as a human health promoting dietary system[J]. Food Research International,2015,77:349−359. doi: 10.1016/j.foodres.2015.08.011
    [5]
    Aruna C R, Ratnavathi C V, Suguna M, et al. Genetic variability and GxE interactions for total polyphenol content and antioxidant activity in white and red sorghums (Sorghum bicolor)[J]. Plant Breeding,2020,139(1):1−12. doi: 10.1111/pbr.12761
    [6]
    冯兴垚, 杨文斌, 罗惠波, 等. 3种酿酒高粱蒸煮工艺的优化[J]. 食品科技,2017,42(11):187−194.
    [7]
    陈静, 刘宏, 沈群. 12种杂粮米蒸煮特性研究[J]. 食品科技,2012,37(9):143−146.
    [8]
    Liu H, Fan H, Cao R, et al. Physicochemical properties and in vitro digestibility of sorghum starch altered by high hydrostatic pressure[J]. International Journal of Biological Macromolecules,2016,92:753−760. doi: 10.1016/j.ijbiomac.2016.07.088
    [9]
    Cabrera-Ramírez A H, Luzardo-Ocampo I, Ramírez-Jiménez A K, et al. Effect of the nixtamalization process on the protein bioaccessibility of white and red sorghum flours during in vitro gastrointestinal digestion[J]. Food Research International,2020,134:1−33.
    [10]
    Qiang X, Green B D, Zhenzhou Z, et al. Innovative processing techniques for altering the physicochemical properties of wholegrain brown rice (Oryza sativa L.)-opportunities for enhancing food quality and health attributes[J]. Critical Reviews in Food Science and Nutrition,2018:1−54.
    [11]
    Xu F, Chen Z, Huang M, et al. Effect of intermittent microwave drying on biophysical characteristics of rice[J]. Journal of Food Process Engineering,2017:e12590.
    [12]
    Shen L, Zhu Y, Wang L, et al. Improvement of cooking quality of germinated brown rice attributed to the fissures caused by microwave drying[J]. Journal of Food Science and Technology,2019,56(1):2737−2749.
    [13]
    李存芝, 傅亮, 虞兵, 等. 微波膨化薏米饼的研究[J]. 食品工业科技,2010,31(03):236−238.
    [14]
    王立东, 张桂芳, 包国凤. α-化快熟红小豆制备工艺研究及质构特性分析[J]. 农产品加工,2015(14):43−46.
    [15]
    中华人民共和国建设部, 国家质量监督检验检疫总局. 谷物及谷物制品水分的测定GB/T 21305-2007 [S]. 北京: 中国标准出版社.
    [16]
    姚万春, 唐玉明, 任道群, 等. 不同品种大麦与高粱的酿酒性能对比[J]. 酿酒科技,2018(11):35−39.
    [17]
    张桂芳, 张东杰, 王立东, 等. 速熟绿豆加工工艺的优化[J]. 食品工业科技,2017,38(11):205−208.
    [18]
    Sarangapani C, Devi Y, Thirundas R, et al. Effect of low-pressure plasma on physico-chemical properties of parboiled rice[J]. LWT-Food Science and Technology,2015,63(1):452−460. doi: 10.1016/j.lwt.2015.03.026
    [19]
    易翠平, 李艳, 姚辰, 等. 发芽白高粱的工艺优化及主要营养成分分析[J]. 中国粮油学报,2015,30(6):27−31, 42. doi: 10.3969/j.issn.1003-0174.2015.06.006
    [20]
    毛祥, 温雪瓶, 黄丹, 等. 5种常用酿酒高粱的主要成分及淀粉特性差异分析[J]. 中国酿造,2020,39(3):57−62. doi: 10.11882/j.issn.0254-5071.2020.03.012
    [21]
    Pal P, Singh N, Kaur P, et al. Comparison of composition, protein, pasting, and phenolic compounds of brown rice and germinated brown rice from different cultivars[J]. Cereal Chemistry Journal,2016,93(6):584−592. doi: 10.1094/CCHEM-03-16-0066-R
    [22]
    Borges C W C, Jorge L M de M, Jorge R M M. Kinetic modeling and thermodynamic properties of soybean cultivar (BRS257) during hydration process[J]. Journal of Food Process Engineering,2017,40(6):e12579. doi: 10.1111/jfpe.12579
    [23]
    Zheng X Z, Liu C H, Chen Z Y, et al. Effect of drying conditions on the texture and taste characteristics of rough rice[J]. Drying Technology,2011,29(11):1297−1305. doi: 10.1080/07373937.2011.592032
    [24]
    刘昊, 顾丰颖, 刘子毅, 等. 微波的热与非热效应对淀粉性质的影响[J]. 核农学报,2020,34(2):363−369.
    [25]
    Sharanagat V S, Suhag R, Anand P, et al. Physico-functional, thermo-pasting and antioxidant properties of microwave roasted sorghum [Sorghum bicolor (L.) Moench][J]. Journal of Cereal Science,2018,85:111−119.
    [26]
    肖梦颖, 张瑞栋, 张壮, 等. 辽宁省地方高粱品种食用品质性状研究[J]. 中国农业科学,2019,52(04):591−601.
    [27]
    Balbinoti T C V, Jorge L M M, Jorge R M M. Modeling the hydration step of the rice (Oryza sativa) parboiling process[J]. Journal of Food Engineering,2018,216:81−89. doi: 10.1016/j.jfoodeng.2017.07.020
    [28]
    Thirumdas R, Saragapani C, Ajinkya M T, et al. Influence of low pressure cold plasma on cooking and textural properties of brown rice[J]. Innovative Food Science & Emerging Technologies,2016,37:53−60.
    [29]
    Mohapatra D, Bal S. Cooking quality and instrumental textural attributes of cooked rice for different milling fractions[J]. Journal of Food Engineering,2006,73(3):253−259. doi: 10.1016/j.jfoodeng.2005.01.028
  • Related Articles

    [1]WU Yaogang, HE Yuke, ZHAO Zhou, YU Hui, GUO Zhiqiang, XIAO Juan. Analysis of Nutrient and Fatty Acid Composition of Different By-products of Yellowfin Tuna in South China Sea[J]. Science and Technology of Food Industry, 2024, 45(22): 254-262. DOI: 10.13386/j.issn1002-0306.2024010074
    [2]YU Xinyu, LI Shanshan, TAO Lingchen, ZHANG Guozhi, HU Fuliang. Recent Advances in Determination Methods of Fatty Acid Markers in Royal Jelly[J]. Science and Technology of Food Industry, 2023, 44(3): 499-507. DOI: 10.13386/j.issn1002-0306.2022040049
    [3]ZHAO Yuehan, HOU Zhaohua, GUO Honglian. Analysis of Fatty Acids, Amino Acids, Cholesterol Nutrition Components in Six Poultry Eggs[J]. Science and Technology of Food Industry, 2022, 43(10): 323-330. DOI: 10.13386/j.issn1002-0306.2021080200
    [4]ZHENG Xiaoshan, JI Hongwu, ZHANG Zewei, ZHANG Di, ZHOU Ying, TANG Zhendong, SUN Weizhen, LIU Shucheng, SONG Wenkui. Changes of Lipid and Fatty Acid Composition in Shrimps (Litopenaeus vannamei) before and after Hot-air-drying[J]. Science and Technology of Food Industry, 2022, 43(10): 87-93. DOI: 10.13386/j.issn1002-0306.2021080216
    [5]YANG Shao-ling, QI Bo, LI Lai-hao, DENG Jian-chao, HU Xiao, WU Yan-yan, HAO Shu-xian. Composition Analysis and Evaluation of Amino Acids and Fatty Acids in Natural Shark Fin Cartilage[J]. Science and Technology of Food Industry, 2018, 39(13): 14-18,24. DOI: 10.13386/j.issn1002-0306.2018.13.003
    [6]YUAN Jia-jia, MAO Lin-chun, REN Xing-chen, LU Wen-jing. Optimization of ultrasonic- assisted extraction conditions and fatty acids components analysis of seed oil in Perilla frutescens[J]. Science and Technology of Food Industry, 2016, (19): 227-231. DOI: 10.13386/j.issn1002-0306.2016.19.036
    [7]YAN Kai- qin, SU Ke- ying, XU Yang- hui, TANG Jia- ying, WU Qing. Optimization of pre- column derivatization condition of fatty acid by high performance liquid chromatography[J]. Science and Technology of Food Industry, 2016, (14): 54-58. DOI: 10.13386/j.issn1002-0306.2016.14.002
    [8]ZHAO Yan, TU Yong-gang, LI Jian-ke, DENG Wen-hui, SHAO Lan-lan. Determination of fatty acids composition in fermented whole egg yolk[J]. Science and Technology of Food Industry, 2013, (23): 336-339. DOI: 10.13386/j.issn1002-0306.2013.23.064
    [9]LIANG Jun-yu, YIN Zhen-xiong, ZHAO Bao-tang, SONG Shen, GAO Qing-ya, YAO Jian, ZHANG Ji. Extraction of xanthocera seeds oil by the method of ultrasound and aqueous enzymatic and fatty acid evaluation[J]. Science and Technology of Food Industry, 2013, (23): 254-259. DOI: 10.13386/j.issn1002-0306.2013.23.040
    [10]WANG Zhen, LI Jun, GUO Xiao-guan, PANG Hong-yu. Determination of fatty acids in marinated meat by gas chromatography-quadrupole mass spectrometry[J]. Science and Technology of Food Industry, 2013, (18): 68-71. DOI: 10.13386/j.issn1002-0306.2013.18.023
  • Cited by

    Periodical cited type(4)

    1. 赵克东,阮长青,李志江,汤华成,王长远. 超声辅助制备抗性淀粉研究进展. 食品工业科技. 2025(05): 8-16 . 本站查看
    2. 张楚佳,贾健辉,高嫚,王泽冉,刘颖,窦博鑫,张娜. 3种物理方法制备抗性粳米淀粉的结构与物化特性. 中国食品学报. 2025(01): 193-207 .
    3. 聂童巧,邱永婷,袁传勋,金日生. 复合酶法制备高直链玉米抗性淀粉工艺研究及其结构表征. 食品科技. 2024(12): 258-266 .
    4. 曹策. RS3型抗性淀粉的制备及在食品工业中的应用研究进展. 安徽农学通报. 2023(19): 100-105 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (303) PDF downloads (19) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return