ZHANG Gensheng, SUN Weibao, YUE Xiaoxia, et al. Research Progress on Effects of Ultra High Pressure Sterilization on Microorganism and Physicochemical Properties of Liquid Whole Eggs[J]. Science and Technology of Food Industry, 2021, 42(10): 410−415. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070097.
Citation: ZHANG Gensheng, SUN Weibao, YUE Xiaoxia, et al. Research Progress on Effects of Ultra High Pressure Sterilization on Microorganism and Physicochemical Properties of Liquid Whole Eggs[J]. Science and Technology of Food Industry, 2021, 42(10): 410−415. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070097.

Research Progress on Effects of Ultra High Pressure Sterilization on Microorganism and Physicochemical Properties of Liquid Whole Eggs

More Information
  • Received Date: July 08, 2020
  • Available Online: March 14, 2021
  • Liquid whole eggs are convenient to produce and process but are susceptible to microorganism invasion which eventually lead to spoilage of product. Common thermal processing technology have negative impact on physical and chemical qualities of liquid whole eggs. While ultra-high pressure pasteurization belongs to non-thermal processing technology and almost have no influence on color, flavor and nutrition of liquid whole eggs. This study summarized the current situation of ultra-high pressure technology on pasteurization of microorganisms in liquid whole eggs and the impact on the physical and chemical properties of liquid whole eggs, analyzed the current problems and proposed suggestions for further study, in order to provide ideas and theoretical basis for ultra high pressure sterilization of liquid whole eggs.
  • [1]
    Sfaciotte R A P, Barbosa M J B, Wosiacki S R, et al. Efeito do período de armazenamento, local e tipo de tratamento sobre a qualidade de ovos brancos para consumo humano[J]. Pubvet,2014,8:2292−2450.
    [2]
    de Souza P M, Müller A, Beniaich A, et al. Functional properties and nutritional composition of liquid egg products treated in a coiled tube UV-C reactor[J]. Innovative Food Science & Emerging Technologies,2015,32:156−164.
    [3]
    易绍忠, 刘琴, 徐丹, 等. 壳聚糖/纳米蒙脱土涂膜对清洁鸡蛋的保鲜效果[J]. 包装工程,2017,38(7):43−48.
    [4]
    Techer C, Baron F, Jan S. Spoilage of animal products | Microbial spoilage of eggs and egg products[J]. Encyclopedia of Food Microbiology,2014:439−445.
    [5]
    Rivoal K, Quéguiner S, Boscher E, et al. Detection of Listeria monocytogenes in raw and pasteurized liquid whole eggs and characterization by PFGE[J]. International Journal of Food Microbiology,2010,138(1-2):56−62. doi: 10.1016/j.ijfoodmicro.2010.01.013
    [6]
    Syed M A, Jackson C R, Ramadan H, et al. Detection and molecular characterization of staphylococci from eggs of household chickens[J]. Foodborne Pathogens and Disease,2019:.1−8.
    [7]
    Sanz-Puig M, Velázquez-Moreira A, Torres C, et al. Resistance changes in Salmonella enterica serovar Typhimurium treated by high hydrostatic pressure and pulsed electric fields and assessment of virulence changes by using Caenorhabditis elegans as a test organism[J]. Innovative Food Science & Emerging Technologies,2019,51:51−56.
    [8]
    Mellata M, Johnson J R, Curtiss III R. Escherichia coli isolates from commercial chicken meat and eggs cause sepsis, meningitis and urinary tract infection in rodent models of human infections[J]. Zoonoses and Public Health,2018,65(1):103−113. doi: 10.1111/zph.12376
    [9]
    Tóth A, Németh C, ayari E, et al. Effects of minimal processing and vitamin c enrichment on microbiological safety and viscosity of liquid egg white[J]. Journal of Engineering and Processing Management,2019,11(1):46−50.
    [10]
    de Mendes Souza P, de Melo R, de Aguilar Santos M A, et al. Risk management of egg and egg products: Advanced methods applied[M]. Food Engineering. Intech Open, 2019.
    [11]
    彭思嘉, 侯志强, 徐贞贞, 等. 超高压和高温短时杀菌对樱桃汁品质的影响[J]. 食品工业科技,2018(17):71−78.
    [12]
    巩雪, 常江, 孙智慧, 等. 扇贝超高压保鲜包装实验[J]. 包装工程,2017,38(7):49−52.
    [13]
    孔晓雪, 韩衍青, 付勇, 等. 流式细胞术在超高压诱导大肠杆菌O157: H7亚致死研究中的应用[J]. 食品科学,2018(3):135−141.
    [14]
    Royer C A. Why and how does pressure unfold proteins?[J]. Subcell Biochem,2015,72:59−71.
    [15]
    Gänzle M, Liu Y. Mechanisms of pressure-mediated cell death and injury in Escherichia coli: from fundamentals to food applications[J]. Frontiers in Microbiology,2015,6:599.
    [16]
    Gayán E, Govers S K, Aertsen A. Impact of high hydrostatic pressure on bacterial proteostasis[J]. Biophysical Chemistry,2017,231:3−9. doi: 10.1016/j.bpc.2017.03.005
    [17]
    Fidalgo L, Saraiva J A, Aubourg S P, et al. High pressure effects on the activities of cathepsins B and D of mackerel and horse mackerel muscle[J]. Czech Journal of Food Sciences,2016,32(2):188−193.
    [18]
    Naderi N, House J D, Pouliot Y, et al. Effects of high hydrostatic pressure processing on hen egg compounds and egg products[J]. Comprehensive Reviews in Food Science and Food Safety,2017,16(4):707−720. doi: 10.1111/1541-4337.12273
    [19]
    Avila Ruiz G, Xi B, Minor M, et al. High-pressure–high-temperature processing reduces Maillard reaction and viscosity in whey protein–sugar solutions[J]. Journal of Agricultural and Food Chemistry,2016,64(38):7208−7215. doi: 10.1021/acs.jafc.6b01955
    [20]
    夏远景, 李志义, 陈淑花, 等. 液体蛋的超高压杀菌效果试验研究[J]. 家畜生态学报,2008(1):67−69.
    [21]
    马先红. 液态鸡蛋超高压杀菌工艺的研究[J]. 吉林化工学院学报,2010,27(4):32−35.
    [22]
    苏娅, 谢慧明, 李欢, 等. 液态调味蛋清超高压杀菌增活工艺研究[J]. 安徽农业科学,2013(7):321−323.
    [23]
    Tóth A, Németh Cs, Palotás P, et al. HHP treatment of liquid egg at 200~350 MPa[J]. Journal of Physics Conference Series,2017:950.
    [24]
    白洁, 陶国琴, 彭义交, 等. 高静压加工对新鲜蛋液微生物及品质的影响[J]. 食品科学,2015,36(1):64−68.
    [25]
    杨瑞香. 鸡蛋蛋白液超高压冷杀菌效果研究[D]. 天津: 天津科技大学, 2010.
    [26]
    Nemeth C, Dalmadi I, Friedrich L, et al. Pasteurization of liquid egg by high hydrostatic pressure (HHP) treatment[J]. African Journal of Microbiology Research,2012,6(3):660−664.
    [27]
    Németh C, Dalmadi I, Mráz B, et al. Effect of high pressure treatment on liquid whole egg[J]. High Pressure Research,2012,32(2):330−336.
    [28]
    张根生, 吕云雄, 遇世友, 等. 超高压处理对鸡全蛋液杀菌效果和品质的影响[J]. 包装工程,2020,41(5):74−82.
    [29]
    凌欣, 谢晖英, 方晗熙, 等. 超高压对液态蛋色泽及微生物的影响[J]. 农产品加工(上),2018(5):10−12.
    [30]
    Tóth A, Németh C, Csáti R, et al. A pilot study of ultrasonication pre-treatment and high pressure processing affecting microbial inactivation and color attributes of liquid whole egg[J] Journal of Hygienic Engineering and Design, 2018, 23: 21-24.
    [31]
    Wang C Y, Hsu C P, Huang H W, et al. The relationship between inactivation and morphological damage of Salmonella enterica treated by high hydrostatic pressure[J]. Food research International,2013,54(2):1482−1487. doi: 10.1016/j.foodres.2013.08.004
    [32]
    Ponce E, Pla R, Sendra E, et al. Destruction of Salmonella enteritidis inoculated in liquid whole egg by high hydrostatic pressure: Comparative study in selective and non-selective media[J]. Food Microbiology,1999,16(4):357−365. doi: 10.1006/fmic.1998.0248
    [33]
    Yuste J, Capellas M, Pla R, et al. Use of conventional media and thin agar layer method for recovery of foodborne pathogens from pressure-treated poultry products[J]. Journal of Food Science,2003,68(7):2321−2324. doi: 10.1111/j.1365-2621.2003.tb05766.x
    [34]
    Bari M L, Ukuku D O, Mori M, et al. Effect of hydrostatic pressure pulsing on the inactivation of Salmonella enteritidis in liquid whole egg[J]. Foodborne Pathogens and Disease,2008,5(2):175−182. doi: 10.1089/fpd.2007.0055
    [35]
    Isiker G, Gurakan G C, Bayindirli A. Combined effect of high hydrostatic pressure treatment and hydrogen peroxide on Salmonella enteritidis in liquid whole egg[J]. European Food Research and Technology,2003,217(3):244−248. doi: 10.1007/s00217-003-0759-3
    [36]
    Huang E, Mittal G S, Griffiths M W. Inactivation of Salmonella enteritidis in liquid whole egg using combination treatments of pulsed electric field, high pressure and ultrasound[J]. Biosystems Engineering,2006,94(3):403−413. doi: 10.1016/j.biosystemseng.2006.03.008
    [37]
    Moody A, Marx G, Swanson B G, et al. A comprehensive study on the inactivation of Escherichia coli under nonthermal technologies: High hydrostatic pressure, pulsed electric fields and ultrasound[J]. Food Control,2014,37:305−314. doi: 10.1016/j.foodcont.2013.09.052
    [38]
    Ma J, Wang H, Yu L, et al. Dynamic self-recovery of injured Escherichia coli O157: H7 induced by high pressure processing[J]. LWT,2019:108308.
    [39]
    Cadesky L, Walkling-Ribeiro M, Kriner K T, et al. Structural changes induced by high-pressure processing in micellar casein and milk protein concentrates[J]. Journal of Dairy Science,2017,100(9):7055−7070. doi: 10.3168/jds.2016-12072
    [40]
    Monfort S, Ramos S, Meneses N, et al. Design and evaluation of a high hydrostatic pressure combined process for pasteurization of liquid whole egg[J]. Innovative Food Science & Emerging Technologies,2012,14:1−10.
    [41]
    Huang H W, Lung H M, Chang Y H, et al. Inactivation of pathogenic Listeria monocytogenes in raw milk by high hydrostatic pressure[J]. Foodborne Pathogens and Disease,2015,12(2):139−144. doi: 10.1089/fpd.2014.1871
    [42]
    Lee D U, Heinz V, Knorr D. Biphasic inactivation kinetics of Escherichia coli in liquid whole egg by high hydrostatic pressure treatments[J]. Biotechnology Progress,2001,17(6):1020−1025. doi: 10.1021/bp010095o
    [43]
    Hoppe A, Jung S, Patnaik A, et al. Effect of high pressure treatment on egg white protein digestibility and peptide products[J]. Innovative Food Science & Emerging Technologies,2013,17:54−62.
    [44]
    Andrassy E, Farkas J, Seregély Z, et al. Changes of hen eggs and their components caused by non-thermal pasteurizing treatments II. Some non-microbiological effects of gamma irradiation or hydrostatic pressure processing on liquid egg white and egg yolk[J]. Acta Alimentaria,2006,35(3):305−318. doi: 10.1556/AAlim.35.2006.3.8
    [45]
    Yamamoto K. Food processing by high hydrostatic pressure[J]. Bioscience, Biotechnology, and Biochemistry,2017,81(4):672−679. doi: 10.1080/09168451.2017.1281723
    [46]
    Frydenberg R P, Hammershøj M, Andersen U, et al. Protein denaturation of whey protein isolates (WPIs) induced by high intensity ultrasound during heat gelation[J]. Food chemistry,2016,192:415−423. doi: 10.1016/j.foodchem.2015.07.037
    [47]
    Yang R X, Li W Z, Zhu C Q, et al. Effects of ultra-high hydrostatic pressure on foaming and physical-chemistry properties of egg white[J]. Journal of Biomedical Science and Engineering,2009,2(8):617−620. doi: 10.4236/jbise.2009.28089
    [48]
    Naderi N, Pouliot Y, House J D, et al. High hydrostatic pressure effect in extraction of 5-methyltetrahydrofolate (5-MTHF) from egg yolk and granule fractions[J]. Innovative Food Science & Emerging Technologies,2017,43:191−200.
    [49]
    De Maria S, Ferrari G, Maresca P. Effects of high hydrostatic pressure on the conformational structure and the functional properties of bovine serum albumin[J]. Innovative Food Science & Emerging Technologies,2016,33:67−75.
    [50]
    Yuan L, Lu L, Lu W, et al. Modeling the effects of pressure, temperature, saccharide, pH, and protein content on the HHP inactivation of Escherichia coli[J]. Journal of Food Process Engineering,2017,40(5):e12550. doi: 10.1111/jfpe.12550
    [51]
    Singh A, Ramaswamy H S. High pressure modification of egg components: Exploration of calorimetric, structural and functional characteristics[J]. Innovative Food Science & Emerging Technologies,2015,32:45−55.
    [52]
    Bastarrachea L, Dhawan S, Sablani S S. Engineering properties of polymeric-based antimicrobial films for food packaging: A review[J]. Food Engineering Reviews,2011,3(2):79−93. doi: 10.1007/s12393-011-9034-8
    [53]
    Wang C Y, Huang H W, Hsu C P, et al. Recent advances in food processing using high hydrostatic pressure technology[J]. Critical Reviews in Food Science and Nutrition,2016,56(4):527−540. doi: 10.1080/10408398.2012.745479
    [54]
    Duan X, Li M, Shao J, et al. Effect of oxidative modification on structural and foaming properties of egg white protein[J]. Food Hydrocolloids,2018,75:223−228. doi: 10.1016/j.foodhyd.2017.08.008
    [55]
    Yan W, Qiao L, Gu X, et al. Effect of high pressure treatment on the physicochemical and functional properties of egg yolk[J]. European Food Research and Technology,2010,231(3):371−377. doi: 10.1007/s00217-010-1286-7
    [56]
    Aguilar J M, Cordobés F, Jerez A, et al. Influence of high pressure processing on the linear viscoelastic properties of egg yolk dispersions[J]. Rheologica acta,2007,46(5):731−740. doi: 10.1007/s00397-007-0170-2
    [57]
    Singh A, Sharm a M, Ramaswamy H S. Effect of high pressure treatment on rheological characteristics of egg components[J]. International Journal of Food Properties,2015,18(3):558−571. doi: 10.1080/10942912.2013.837063
    [58]
    Gharbi N, Labbafi M. Influence of treatment-induced modification of egg white proteins on foaming properties[J]. Food Hydrocolloids,2019,90:72−81. doi: 10.1016/j.foodhyd.2018.11.060
    [59]
    Giarratano M, Duffuler P, Chamberland J, et al. Combination of high hydrostatic pressure and ultrafiltration to generate a new emulsifying ingredient from egg yolk[J]. Molecules,2020,25(5):1184. doi: 10.3390/molecules25051184
    [60]
    Lee D U. Effects of combination treatments of nisin and high-intensity ultrasound with high pressure on the functional properties of liquid whole egg[J]. Food Science and Biotechnology,2009,18(6):1511−1514.
  • Related Articles

    [1]XUE Jiaqi, WANG Ying, ZHOU Hui, HUANG Junyi, XU Baocai. Research Progress of Packaging Technology in the Preservation of Meat Products[J]. Science and Technology of Food Industry, 2021, 42(16): 367-373. DOI: 10.13386/j.issn1002-0306.2020080047
    [2]CAI Yan-ping, ZHANG Sha-sha, LIU Jian-hua, DING Yu-ting, LIU Shu-lai. Preservation Effects of CO2-cold Seawater Combined with Antioxidants on Litopenaeus vannamei[J]. Science and Technology of Food Industry, 2019, 40(15): 271-275,297. DOI: 10.13386/j.issn1002-0306.2019.15.045
    [3]YI Shu-min, ZHANG Shi-wen, YE Bei-bei, YANG Ling, LI Xue-peng, YU Xiao-jun, DING Hao-chen, HUANG Jian-lian, XIE Jing, LI Jian-rong. Effect of Composite Biological Preservative on the Quality of Nemipterus virgatus Sausages[J]. Science and Technology of Food Industry, 2019, 40(4): 226-231. DOI: 10.13386/j.issn1002-0306.2019.04.037
    [4]ZHAO Hai-yang, GAO Li-qiong, CUI Wen-li, WANG Zhi-neng, ZHENG Quan-hui, WU Guang-xu. Quality Changes of Monopterus albus Slices during Refrigerated Preservation[J]. Science and Technology of Food Industry, 2018, 39(21): 293-298. DOI: 10.13386/j.issn1002-0306.2018.21.052
    [5]SU Hong, SHEN Liang, BI Shi-jie, ZHANG Xiao-mei, GUO Rui, LIU Hong-ying. Preservation Effect of Complex Biological Preservatives on Takifugu rubripes during Cold Storage[J]. Science and Technology of Food Industry, 2018, 39(15): 298-301,321. DOI: 10.13386/j.issn1002-0306.2018.15.052
    [6]ZHANG Li, ZHANG Juan, WANG Qian, MA Ling-yan, DING Wu. Application of eugenol nanoparticles on preservation of chilled pork[J]. Science and Technology of Food Industry, 2017, (22): 280-285. DOI: 10.13386/j.issn1002-0306.2017.22.054
    [7]LAN Rong, WU Zhi-ming, ZHANG Li-qiu. Effect of glucose oxidase on the preservation of raspberries[J]. Science and Technology of Food Industry, 2014, (22): 308-312. DOI: 10.13386/j.issn1002-0306.2014.22.059
    [8]LU Yu-xi, SHEN Ping, LI Xue-ying, YANG Xian-shi, CHI Hai. Influence of preservative on squid quality changes during frozen[J]. Science and Technology of Food Industry, 2014, (19): 274-279. DOI: 10.13386/j.issn1002-0306.2014.19.050
    [9]LIU Xiao, XIE Jing. Effect of biopreservation combined with modified atmosphere packaging on qualities of chilled pork[J]. Science and Technology of Food Industry, 2014, (12): 344-348. DOI: 10.13386/j.issn1002-0306.2014.12.067
    [10]YU Gang, ZHANG Hong-jie, YANG Shao-ling, CEN Jian-wei, HAO Shu-xian, YANG Xian-qing. Research progress in preservation methods for tuna and its quality changes during storage[J]. Science and Technology of Food Industry, 2013, (21): 381-384. DOI: 10.13386/j.issn1002-0306.2013.21.035
  • Cited by

    Periodical cited type(20)

    1. 蒋云聪,张玉涵,魏占姣,齐立军,武亚明. 分子蒸馏精制胡椒精油工艺优化及其成分分析. 中国食品添加剂. 2024(01): 266-271 .
    2. 周宇,提靖靓,袁梦,翟成凯,章海风,李春梅,王芸. 三个地区马铃薯烘烤后食用品质评价分析. 美食研究. 2024(01): 86-94 .
    3. 张琳,胡娅洁,康海龙,李慧,刘庆爽,喻东威,于敏,逯刚. 基于超快速电子鼻对生乳快速鉴别及应用. 中国食品添加剂. 2024(08): 208-216 .
    4. 崔春,梁佳欣,袁梦,高明奇,陈芝飞,张弛,杨雯静,邢雨晴,黄家乐,许春平. 不同干燥方式对甘薯固体香料挥发性/半挥发性成分和表面结构的影响. 食品工业科技. 2023(10): 27-35 . 本站查看
    5. 杨红玉,张颖,吴梦茜,朱慧,李洪梅,黄璐琦,田慧,袁媛. 米蒸地黄辅料米的优选及其抗骨质疏松作用研究. 中国中药杂志. 2023(10): 2749-2756 .
    6. 庄志雄,张雁,邓媛元,唐小俊,刘光,李萍,李雁. 烫漂及喷雾干燥对甜玉米挥发性风味化合物的影响. 食品科学. 2023(14): 274-282 .
    7. 韩艳秋,叶春苗,李莉峰. 乳酸菌发酵对薯干质构和风味的影响. 食品研究与开发. 2023(15): 50-54 .
    8. 尤俊昊,张保,荀航,姚曦,王进,汤锋. 毛竹竹秆加压热水提取工艺优化及化学成分分析. 林产化学与工业. 2023(04): 107-114 .
    9. 肖庆泉. 栽培密度与钾肥施用量对普薯32农艺性状和产量的影响. 福建农业科技. 2023(07): 67-72 .
    10. 肖庆泉. 秋季不同移栽期对鲜食甘薯经济性状和品质的影响. 安徽农学通报. 2023(20): 21-24 .
    11. 赵俊梅,王学清,韩美坤,胡亚亚,高志远,焦伟静,刘兰服,辛国胜,杨雪,马志民,牟德华. 不同类型甘薯最佳烹饪方式评价. 中国粮油学报. 2022(08): 102-110 .
    12. 张玉涵,蒋云聪,魏占姣,张晶晶,齐立军. 基于超快速气相电子鼻构建不同品种花椒和花椒提取物指纹图谱库及应用研究. 中国食品添加剂. 2022(09): 226-233 .
    13. 洪蕴恒,宋聚红,梁丽鹏,付雅丽,王海山. 影响甘薯食用品质因素分析. 蔬菜. 2022(11): 40-43 .
    14. 沈升法,项超,吴列洪,季志仙. 迷你甘薯‘心香’的品质研究和育种利用进展. 分子植物育种. 2022(21): 7249-7258 .
    15. 赵思颖,李璐,刘小茜,赵钢军,吴海滨,罗剑宁,龚浩,郑晓明,李俊星. 基于感官品质、质构特征及理化成分分析的中国南瓜果实感官综合评价预测模型. 食品科学. 2022(23): 63-71 .
    16. 陈龙,史春余,孟迪,许燕,柳洪鹃. 硫酸钾对甘薯块根烤后口感品质的影响. 中国粮油学报. 2021(07): 40-46 .
    17. 张玉涵,李腾飞,魏占姣,齐立军,高伟. 基于超快速气相电子鼻构建不同产地胡椒及胡椒提取物指纹图谱库及应用研究. 中国食品添加剂. 2021(09): 97-104 .
    18. 赵俊梅,高小宽,胡亚亚,韩美坤,马志民,牟德华. 不同品种鲜食型甘薯烘烤后品质的研究. 食品研究与开发. 2021(20): 1-7 .
    19. 项伟,许健,董芳,张道微,黄艳岚,张亚,张超凡. 基于模糊数学的甘薯食用品质感官评价模型. 植物遗传资源学报. 2021(06): 1624-1634 .
    20. 贾赵东,马佩勇,边小峰,禹阳,张铅,刘帅,谢一芝. 鲜食甘薯食用品质感官评价技术规程. 江苏农业科学. 2021(23): 185-189 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (385) PDF downloads (27) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return