Citation: | ZHAO Le, ZHAO Penghao, MENG Xiangchen. Research Progress on the Regulation of Bacteriocin Synthesis by Environmental Stress in Lactobacillus plantarum [J]. Science and Technology of Food Industry, 2021, 42(8): 396−403. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070084. |
[1] |
Butorac K, Banic M, Novak J, et al. The functional capacity of plantaricin-producing Lactobacillus plantarum SF9C and S-layer-carrying Lactobacillus brevis SF9B to withstand gastrointestinal transit[J]. Microbial Cell Factories,2020,19(1):106. doi: 10.1186/s12934-020-01365-6
|
[2] |
Chen P T, Hong Z S, Cheng C L, et al. Exploring fermentation strategies for enhanced lactic acid production with polyvinyl alcohol-immobilized Lactobacillus plantarum 23 using microalgae as feedstock[J]. Bioresource Technology,2020,308:123266. doi: 10.1016/j.biortech.2020.123266
|
[3] |
Hong Y F, Kim H, Kim H R, et al. Different immune regulatory potential of Lactobacillus plantarum and Lactobacillus sakei isolated from kimchi[J]. Journal of Microbiology and Biotechnology,2014,24(12):1629−1635. doi: 10.4014/jmb.1406.06062
|
[4] |
Liu J, Gu Z, Zhang H, et al. Preventive effects of Lactobacillus plantarum ST-III against Salmonella infection[J]. Lwt-Food Science and Technology,2019,105:200−205. doi: 10.1016/j.lwt.2019.02.043
|
[5] |
E Jingjing, Ma L, Chen Z, et al. Effects of buffer salts on the freeze-drying survival rate of Lactobacillus plantarum LIP-1 based on transcriptome and proteome analyses[J]. Food Chemistry,2020,326:126849. doi: 10.1016/j.foodchem.2020.126849
|
[6] |
Jin J, Jie L M, Zhang H, et al. Pediocin AcH is transcriptionally-regulated by a two-component system in Lactobacillus plantarum subs. plantarum[J]. Journal of Food Protection,2020,17(11):23−27.
|
[7] |
Lin T H, Pan T M. Characterization of an antimicrobial substance produced by Lactobacillus plantarum NTU 102[J]. Journal of Microbiology Immunology and Infection,2019,52(3):409−417. doi: 10.1016/j.jmii.2017.08.003
|
[8] |
Canak I, Markov K, Jakopovic Z, et al. Application of L. plantarum O1 producer of plantaricin NC8 (PLNC8) in biopreservation of aquatic food products[J]. Journal of Biotechnology,2017,256:S65−S65.
|
[9] |
Yao W, Yang L, Shao Z, et al. Identification of salt tolerance-related genes of Lactobacillus plantarum D31 and T9 strains by genomic analysis[J]. Annals of Microbiology,2020,70(1):3−9. doi: 10.1186/s13213-020-01549-w
|
[10] |
Leroy F, Vankrunkelsven S, De Greef J, et al. The stimulating effect of a harsh environment on the bacteriocin activity by Enterococcus faecium RZS C5 and dependency on the environmental stress factor used[J]. International Journal of Food Microbiology,2003,83(1):27−38. doi: 10.1016/S0168-1605(02)00316-1
|
[11] |
Hurtado A, Reguant C, Bordons A, et al. Expression of Lactobacillus pentosus B96 bacteriocin genes under saline stress[J]. Food Microbiology,2011,28(7):1339−1344. doi: 10.1016/j.fm.2011.06.004
|
[12] |
Maldonado-Barragan A, West S A. The cost and benefit of quorum sensing-controlled bacteriocin production in Lactobacillus plantarum[J]. Journal of Evolutionary Biology,2020,33(1):101−111. doi: 10.1111/jeb.13551
|
[13] |
Saucier L, Poon A, Stiles M E. Induction of bacteriocin in Carnobacterium piscicola LV17[J]. Journal of Applied Microbiology,2010,78(6):684−690.
|
[14] |
崔艳华, 曲晓军, 马莺. 双组分系统分析预测共生机制[J]. 哈尔滨工业大学学报,2010,42(11):1798−1804. doi: 10.11918/j.issn.0367-6234.2010.11.026
|
[15] |
Medarametla P, Gatta V, Kajander T, et al. Structure-based virtual screening of LsrK kinase inhibitors to target quorum sensing[J]. Chemmedchem,2018,13(22):2400−2407. doi: 10.1002/cmdc.201800548
|
[16] |
Di Cagno R, De Angelis M, Coda R, et al. Molecular adaptation of sourdough Lactobacillus plantarum DC400 under co-cultivation with other lactobacilli[J]. Research in Microbiology,2009,160(5):358−366. doi: 10.1016/j.resmic.2009.04.006
|
[17] |
Man L L, Meng X C, Zhao R H, et al. The role of plNC8HK-plnD genes in bacteriocin production in Lactobacillus plantarum KLDS1.0391[J]. International Dairy Journal,2014,34(2):267−274. doi: 10.1016/j.idairyj.2013.08.009
|
[18] |
Ruiz-Barba J L, Caballero-Guerrero B, Maldonado-Barragán A, et al. Coculture with specific bacteria enhances survival of Lactobacillus plantarum NC8, an autoinducer-regulated bacteriocin producer, in olive fermentations[J]. Food Microbiology,2010,27(3):413−417. doi: 10.1016/j.fm.2009.10.002
|
[19] |
Saenz Y, Rojo-Bezares B, Navarro L, et al. Genetic diversity of the pln locus among oenological Lactobacillus plantarum strains[J]. International Journal of Food Microbiology,2009,134(3):176−183. doi: 10.1016/j.ijfoodmicro.2009.06.004
|
[20] |
Straume D, Johansen R F, Bjoras M, et al. DNA binding kinetics of two response regulators, PlnC and PlnD, from the bacteriocin regulon of Lactobacillus plantarum C11[J]. Bmc Biochemistry,2009,10(1):1−11. doi: 10.1186/1471-2091-10-1
|
[21] |
Diep D B, Johnsborg O, Risoen P A, et al. Evidence for dual functionality of the operon plnABCD in the regulation of bacteriocin production in Lactobacillus plantarum[J]. Molecular Microbiology,2010,41(3):633−644.
|
[22] |
Diep D B, Ronny M, Ola J, et al. Inducible bacteriocin production in Lactobacillus is regulated by differential expression of the pln operons and by two antagonizing response regulators, the activity of which is enhanced upon phosphorylation[J]. Molecular Microbiology,2010,47(2):483−494.
|
[23] |
Maldonado-Barragan A, Ruiz-Barba J L, Jimenez-Diaz R. Knockout of three-component regulatory systems reveals that the apparently constitutive plantaricin-production phenotype shown by Lactobacillus plantarum on solid medium is regulated via quorum sensing[J]. International Journal of Food Microbiology,2009,130(1):35−42. doi: 10.1016/j.ijfoodmicro.2008.12.033
|
[24] |
Tai H F, Foo H L, Rahim R A, et al. Molecular characterisation of new organisation of plnEF and plw loci of bacteriocin genes harbour concomitantly in Lactobacillus plantarum I-UL4[J]. Microbial Cell Factories,2015,14:89. doi: 10.1186/s12934-015-0280-y
|
[25] |
Zhai Z, Yang Y, Wang H, et al. Global transcriptomic analysis of Lactobacillus plantarum CAUH2 in response to hydrogen peroxide stress[J]. Food Microbiology,2020,87:103389. doi: 10.1016/j.fm.2019.103389
|
[26] |
Wu R, Song X, Liu Q, et al. Gene expression of Lactobacillus plantarum FS5-5 in response to salt stress[J]. Annals of Microbiology,2016,66(3):1181−1188. doi: 10.1007/s13213-016-1199-1
|
[27] |
林松洋, 郝利民, 刘鑫, 等. 乳酸菌耐盐分子机制研究进展[J]. 食品科学,2018,39(3):295−301. doi: 10.7506/spkx1002-6630-201803044
|
[28] |
Glaasker E, Heuberger E H M L, Konings W N, et al. Mechanism of osmotic activation of the quaternary ammonium compound transporter (QacT) of Lactobacillus plantarum[J]. Journal of Bacteriology,1998,180(21):5540. doi: 10.1128/JB.180.21.5540-5546.1998
|
[29] |
Kleerebezem M, Boekhorst J, Van Kranenburg R, et al. Complete genome sequence of Lactobacillus plantarum WCFS1[J]. Proceedings of the National Academy of Sciences of the United States of America,2003,100(4):1990−1995. doi: 10.1073/pnas.0337704100
|
[30] |
Padan E, Bibi E, Ito M, et al. Alkaline pH homeostasis in bacteria: New insights[J]. Biochimica Et Biophysica Acta Biomembranes,2005,1717(2):67−88. doi: 10.1016/j.bbamem.2005.09.010
|
[31] |
Wang Y, Chen C, Ai L, et al. Complete genome sequence of the probiotic Lactobacillus plantarum ST-III[J]. Journal of Bacteriology,2011,193(1):313−324. doi: 10.1128/JB.01159-10
|
[32] |
Chen C, Ai L, Zhou F, et al. Complete nucleotide sequence of plasmid pST-III from Lactobacillus plantarum ST-III[J]. Plasmid,2011,67(3):236−244.
|
[33] |
乌日娜, 宋雪飞, 刘倩颖, 等. 植物乳杆菌分子伴侣蛋白基因在盐胁迫下的表达分析[J]. 食品科学,2015(11):119−123. doi: 10.7506/spkx1002-6630-201511023
|
[34] |
Cotter P D, Hill C. Surviving the acid test: Responses of gram-positive bacteria to low pH[J]. Microbiology and Molecular Biology Reviews,2003,67(3):429−442. doi: 10.1128/MMBR.67.3.429-453.2003
|
[35] |
Liu S W, Li K, Yang S L, et al. Development of a SCAR (Sequence-characterised amplified region) marker for acid resistance-related gene in Lactobacillus plantarum[J]. Extremophiles,2015,19(2):355−361. doi: 10.1007/s00792-014-0721-2
|
[36] |
Derzelle S, Hallet B, Francis K P, et al. Changes in cspL, cspP, and cspC mRNA abundance as a function of cold shock and growth phase in Lactobacillus plantarum[J]. Journal of Bacteriology,2000,182(18):5105−5113. doi: 10.1128/JB.182.18.5105-5113.2000
|
[37] |
Castaldo C, Siciliano R A, Muscariello L, et al. CcpA affects expression of the groESL and dnaK operons in Lactobacillus plantarum[J]. Microbial Cell Factories,2006,5(1):35−35. doi: 10.1186/1475-2859-5-35
|
[38] |
刘倩颖. 基于RT-PCR技术对植物乳杆菌耐盐分子机理的研究[D]. 哈尔滨: 东北农业大学, 2014.
|
[39] |
Eric M, Francoise B, Esther I, et al. Comparative proteomic analysis of Lactobacillus plantarum for the identification of key proteins in bile tolerance[J]. Bmc Microbiology,2011,11(1):63−63. doi: 10.1186/1471-2180-11-63
|
[40] |
Engelhardt T, Albano H, Kisko G, et al. Antilisterial activity of bacteriocinogenic Pediococcus acidilactici HA6111-2 and Lactobacillus plantarum ESB 202 grown under pH and osmotic stress conditions[J]. Food Microbiology,2015,48:109−115. doi: 10.1016/j.fm.2014.11.015
|
[41] |
Lim S M. Cultural conditions and nutritional components affecting the growth and bacteriocin production of Lactobacillus plantarum KC21[J]. Food Science & Biotechnology,2010,19(3):793−802.
|
[42] |
Leal-Sanchez M V, Jimenez-Diaz R, Maldonado-Barragan A, et al. Optimization of bacteriocin production by batch fermentation of Lactobacillus plantarum LPCO10[J]. Applied & Environmental Microbiology,2002,68(9):4465−4471.
|
[43] |
Vazquez J A, Cabo M L, Gonzalez M P, et al. The role of amino acids in nisin and pediocin production by two lactic acid bacteria: A factorial study[J]. Enzyme & Microbial Technology,2004,34(3):319−325.
|
[44] |
Yi H, Han X, Yang Y, et al. Effect of exogenous factors on bacteriocin production from Lactobacillus paracasei J23 by using a resting cell system[J]. International Journal of Molecular Sciences,2013,14(12):24355−24365. doi: 10.3390/ijms141224355
|
[45] |
Parlindungan E, Dekiwadia C, Tran K T M, et al. Morphological and ultrastructural changes in Lactobacillus plantarum B21 as an indicator of nutrient stress[J]. Lwt-Food Science and Technology,2018,92:556−563. doi: 10.1016/j.lwt.2018.02.072
|
[46] |
Cortes B W, Naditz A L, Anast J M, et al. Transcriptome sequencing of Listeria monocytogenes reveals major gene expression changes in response to lactic acid stress exposure but a less pronounced response to oxidative stress[J]. Frontiers in Microbiology,2020,10:3110. doi: 10.3389/fmicb.2019.03110
|
[47] |
Zheng S, Sonomoto K. Diversified transporters and pathways for bacteriocin secretion in gram-positive bacteria[J]. Applied Microbiology and Biotechnology,2018,102(10):4243−4253. doi: 10.1007/s00253-018-8917-5
|
[48] |
Ushijima Y, Ohniwa R L, Morikawa K. Identification of nucleoid associated proteins (NAPs) under oxidative stress in Staphylococcus aureus[J]. Bmc Microbiology,2017,17:8. doi: 10.1186/s12866-016-0922-1
|
[49] |
Froderberg L, Houben E N G, Baars L, et al. Targeting and translocation of two lipoproteins in Escherichia coli via the SRP/Sec/YidC pathway[J]. Journal of Biological Chemistry,2007,279(30):31026.
|
[50] |
Neumann-Haefelin C, Schafer U, Muller M, et al. SRP-dependent co-translational targeting and SecA-dependent translocation analyzed as individual steps in the export of a bacterial protein[J]. Embo Journal,2014,19(23):6419−6426.
|
[51] |
Lin J T, Zhu Y F, Tang H L, et al. Identification of a GntR family regulator BusR(Tha) and its regulatory mechanism in the glycine betaine ABC transport system of Tetragenococcus halophilus[J]. Extremophiles,2019,23(4):451−460. doi: 10.1007/s00792-019-01096-6
|
[52] |
Tsirigotaki A, De Geyter J, Sostaric N, et al. Protein export through the bacterial Sec pathway[J]. Nature Reviews Microbiology,2017,15(1):21−36. doi: 10.1038/nrmicro.2016.161
|
[53] |
宋雪飞, 郭晶晶, 姜静, 等. 植物乳杆菌FS5-5在盐胁迫下的转录组学分析[J]. 食品科学,2017(6):26−32.
|
[54] |
张明阳. argG、argH和argR基因对Lactococcus lactis NZ9000胁迫抗性的影响[D]. 无锡: 江南大学, 2016.
|
[55] |
Vrancken G, Rimaux T, Wouters D, et al. The arginine deiminase pathway of Lactobacillus fermentum IMDO 130101 responds to growth under stress conditions of both temperature and salt[J]. Food Microbiology,2009,26(7):720−7274. doi: 10.1016/j.fm.2009.07.006
|
[56] |
Heunis T, Deane S, Smit S, et al. Proteomic profiling of the acid stress response in Lactobacillus plantarum 423[J]. Journal of Proteome Research,2014,13(9):4028−4039. doi: 10.1021/pr500353x
|
[57] |
Jeon E, Lee S, Won J I, et al. Development of Escherichia coli MG1655 strains to produce long chain fatty acids by engineering fatty acid synthesis (FAS) metabolism[J]. Enzyme & Microbial Technology,2011,49(1):44−51.
|
[58] |
王茜茜, 宋雪飞, 郭晶晶, 等. 基于iTRAQ技术对植物乳杆菌FS5-5的耐盐特性分析[J]. 微生物学报,2017,57(10):1461−1470.
|
[59] |
Pieterse B. Unravelling the multiple effects of lactic acid stress on Lactobacillus plantarum by transcription profiling[J]. Microbiology,2005,151(12):3881−3894. doi: 10.1099/mic.0.28304-0
|
[60] |
Sun Y, Fukamachi T, Saito H, et al. ATP requirement for acidic resistance in Escherichia coli[J]. Journal of Bacteriology,2011,193(12):3072−3077. doi: 10.1128/JB.00091-11
|
[61] |
Pang B, Mcfaline J L, Burgis N E, et al. Defects in purine nucleotide metabolism lead to substantial incorporation of xanthine and hypoxanthine into DNA and RNA[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(7):2319−24. doi: 10.1073/pnas.1118455109
|
[62] |
Hormann S, Scheyhing C, Behr J, et al. Comparative proteome approach to characterize the high-pressure stress response of Lactobacillus sanfranciscensis DSM 20451T[J]. Proteomics,2010,6(6):1878−1885.
|
[63] |
Vanbogelen R A, Neidhardt F C. Ribosomes as sensors of heat and cold shock in Escherichia coli[J]. Proceedings of the National Academy of Sciences of the United States of America,1990,87(15):5589−5593. doi: 10.1073/pnas.87.15.5589
|
[64] |
陈卫, 赵山山, 张秋香. 乳酸菌的耐盐机制[J]. 中国食品学报,2013,13(10):1−7.
|
[65] |
Kovacic L, Paulic N, Leonardi A, et al. Structural insight into LexA-RecA interaction[J]. Nucleic Acids Research,2013,41(21):9901−9910. doi: 10.1093/nar/gkt744
|
[1] | LI Yue, WANG Long, MIAO Rongxin, SUN Ying, ZHU Xiuqing. Influence of Different Improvers on Germination Brown Rice-Wheat Flour Dough Properties and Steamed Bread Quality[J]. Science and Technology of Food Industry, 2023, 44(24): 222-228. DOI: 10.13386/j.issn1002-0306.2023020256 |
[2] | LI Pan-ying, DAI Tao-tao, CHEN Jun, LIU Yun-fei, LIU Cheng-mei, LI Ti. Effect of Proanthocyanidins on Retrogradation of Rice Starch[J]. Science and Technology of Food Industry, 2018, 39(18): 6-11. DOI: 10.13386/j.issn1002-0306.2018.18.002 |
[3] | LI Jin-xin, ZHU Yun-ping, TENG Chao, LI Xiu-ting, LI Jin-long. Study on effect of twelve kinds of hydrocolloids on quality of Chinese steamed bread[J]. Science and Technology of Food Industry, 2018, 39(11): 248-252. DOI: 10.13386/j.issn1002-0306.2018.11.042 |
[4] | CHANG Xiao-hong, ZHANG Bei, HAO Ming-yuan, ZHANG Jia-fan, YIN Qi, WU Fei-yang, XIE Xin-hua. Effect of polydextrose on the retrogradation of rice starch gel[J]. Science and Technology of Food Industry, 2018, 39(10): 69-72. DOI: 10.13386/j.issn1002-0306.2018.10.013 |
[5] | HE Ping, ZHU Hong-shuai, CHANG Xiao-hong, WANG Ya-ru, YUE Shuang, LI Yan-fang, AI Zhi-lu, XIE Xin-hua. Effect of low and ultralow- temperature freezing on retrogradation properties of waxy rice starch gel[J]. Science and Technology of Food Industry, 2016, (22): 99-102. DOI: 10.13386/j.issn1002-0306.2016.22.011 |
[6] | SU Dong-hai, SU Dong-min, DING Yan-xin. Effect of xylanase on staling rate of Mantou with NMR technology[J]. Science and Technology of Food Industry, 2014, (18): 101-105. DOI: 10.13386/j.issn1002-0306.2014.18.013 |
[7] | JIANG Nan, XIU Lin, LIU Jing-sheng, ZHAO Bao-li. Effect of different food additives on Anti-staling of cornmeal dumpling skin[J]. Science and Technology of Food Industry, 2014, (07): 182-185. DOI: 10.13386/j.issn1002-0306.2014.07.047 |
[8] | LIU Hai-yan, ZHANG Juan-juan, WANG Xiao-mei, DONG Xue, WANG Chun-xia, FAN Su-qin, XIE Su-hua. Effect of sodium alginate on baking performance of bread[J]. Science and Technology of Food Industry, 2013, (20): 319-322. DOI: 10.13386/j.issn1002-0306.2013.20.077 |
1. |
高燕,陈义,姜重燕,舒蕾,张佳容. 新疆乌鲁木齐地区常住居民膳食模式对心血管疾病高危人群的影响研究. 华南预防医学. 2023(12): 1576-1579 .
![]() |