XIE Yanying, AN Geer, BAO Luying, et al. Research Progress on the Sterilization Mechanism of Pulse Light and Its Efficacy on the Meat Foods[J]. Science and Technology of Food Industry, 2021, 42(9): 405−411. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2020070041.
Citation: XIE Yanying, AN Geer, BAO Luying, et al. Research Progress on the Sterilization Mechanism of Pulse Light and Its Efficacy on the Meat Foods[J]. Science and Technology of Food Industry, 2021, 42(9): 405−411. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2020070041.

Research Progress on the Sterilization Mechanism of Pulse Light and Its Efficacy on the Meat Foods

More Information
  • Received Date: July 05, 2020
  • Available Online: March 15, 2021
  • Pulsed light is a new type of non-thermal sterilization technology, which uses broad spectrum, instantaneous and high energy pulsed light to prevent bacterial cell DNA replication, destroy protease activity and its spatial structure, and cause the leakage or loss of the integrity of soluble matter in the cell. This paper reviews the sterilization mechanism and influencing factors of pulsed light, analyzes the inactivation effect of pulsed light on pathogenic microorganisms (Salmonella, Listeria monocytogenes, Escherichia coli, etc.) that are common in meat foods, explains the influence of meat color, flavor and sensory quality, and finally provides suggestions and theoretical support for the application of pulsed light sterilization technology in meat food processing.
  • [1]
    Liu M, Liu S H, Han T J. Effects of thermal processing on digestion stability and immunore activity of the Litopenaeus vannamei matrix[J]. Food and Function,2019,10:5374−5385. doi: 10.1039/C9FO00971J
    [2]
    韩艳秋, 胡梦坤, 崔超, 等. 脉冲强光技术在食品加工中的应用[J]. 农业科技与装备,2013,8:62−63. doi: 10.3969/j.issn.1674-1161.2013.08.028
    [3]
    Schottroff F, Fröhling A, Zunabovic-Pichler M, et al. Sublethal injury and viable but non-culturable (vbnc) state in microorganisms during preservation of food and biological materials by non-thermal processes[J]. Frontiers in Microbiology,2018,9(2773):1−19.
    [4]
    John D, Hosahalli S, Ramaswamy. Pulsed light technology to enhance food safety and quality: A mini-review[J]. Current Opinion in Food Science,2018,23:70−79. doi: 10.1016/j.cofs.2018.06.004
    [5]
    张瑞雪, 张文桂, 管峰, 等. 脉冲强光在食品工业的研究和应用进展[J]. 食品科学,2017,38(23):305−312. doi: 10.7506/spkx1002-6630-201723048
    [6]
    Garvey M, Rowan N J. Pulsed U V as a potential surface sanitizer in food production processes to ensure consumer safety[J]. Current Opinion in Food Science,2019,26:65−70. doi: 10.1016/j.cofs.2019.03.003
    [7]
    白妍, 葛雨珺, 向迎春, 等. 非热杀菌技术杀灭食品中芽孢效能及机理研究进展[J]. 食品科学,2019,40(15):314−322. doi: 10.7506/spkx1002-6630-20180908-083
    [8]
    Sun D W. Emerging technologies for food processing[M]. (2 nd) Academic Press, Dublin, 2014.
    [9]
    Yoon Yia J, Baea Y K, Cheigh C I, et al. Microbial inactivation and effects of interrelated factors of intense pulsed light (IPL) treatment for Pseudomonas aeruginosa[J]. LWT-Food Science and Technology,2016,77:52−59.
    [10]
    Zhang B Q, Sun B X, Ma F M. The design and theoretical analysis of major components of pulse light sterilization equipment[J]. Procedia Engineering,2012,37:260−267. doi: 10.1016/j.proeng.2012.04.237
    [11]
    Mahendran R, Ratish Ramanan K, Francisco J B, et al. Recent advances in the application of pulsed light processing for improving food safety and increasing shelf life[J]. Trends in Food Science and Technology,2019,88:67−69. doi: 10.1016/j.jpgs.2019.03.010
    [12]
    王蓓, 洪晨, Khir R,等. 脉冲强光对黄曲霉菌孢子的杀菌效果、微观结构及动力学的影响[J]. 中国食品学报,2020,20(4):10−17.
    [13]
    Leng J, Mukhopadhyay S, Sokorai K, et al. Inactivation of Salmonella in cherry tomato stem scars and quality preservation by pulsed light treatment and antimicrobial wash[J]. Food Control,2020,110:107005. doi: 10.1016/j.foodcont.2019.107005
    [14]
    Kramer B, Wunderlich J, Muranyi P. Recent findings in pulsed light disinfection[J]. Journal of Applied Microbiology,2017,122(4):830−856. doi: 10.1111/jam.13389
    [15]
    Chen D J, Cheng Y L, Peng P, et al. Effects of intense pulsed light on Cronobacter sakazakii and Salmonella surrogate Enterococcus faecium inoculated in different powdered foods[J]. Food Chemistry,2019,296:23−28. doi: 10.1016/j.foodchem.2019.05.180
    [16]
    Pellicera J A, Navarroa P, Gómez-Lópezb V M. Pulsed light inactivation of polygalacturonase[J]. Food Chemistry,2019,271:109−113. doi: 10.1016/j.foodchem.2018.07.194
    [17]
    Abida J, Rayees B, Massodi F A. Review article pulsed light technology: A novel method for food preservation[J]. International Food Research Journal,2014,21(3):839−848.
    [18]
    Hilton S T, Moraes J O, Moraru C I. Effect of sublethal temperatures on pulsed light inactivation of bacteria[J]. Innovative Food Science and Emerging Technologies,2017,39:49−54. doi: 10.1016/j.ifset.2016.11.002
    [19]
    Faghihzadeha F, Anayaa N M, Hadjeres H, et al. Pulse UV light effect on microbial biomolecules and organic pollutants degradation in aqueous solutions[J]. Chemosphere,2019,216:677−683. doi: 10.1016/j.chemosphere.2018.10.176
    [20]
    Woodling S E, Moraru C I. Effect of spectral range in surface inactivation of Listeria innocua using broad-spectrum pulsed light[J]. Journal of Food Protection,2007,70(4):909−916. doi: 10.4315/0362-028X-70.4.909
    [21]
    Aguirre J S, De Fernando G G, Hierro E, et al. Characterization of damage on Listeria innocua surviving to pulsed light: effect on growth, DNA and proteome[J]. International Journal of Food Microbiology,2018,284:63−72. doi: 10.1016/j.ijfoodmicro.2018.07.002
    [22]
    Cassar J R, Mills E W, Campbell J, et al. Pulsed UV light as a microbial reduction intervention for boneless/skinless chicken thigh meat[J]. Meat and Muscle Biology,2018,2(2):142. doi: 10.22175/rmc2018.126
    [23]
    王勃, 刘昕, 马涛, 等. 响应面法优化脉冲强光对面包表面细菌的杀菌工艺[J]. 食品科学,2014,35(18):74−77. doi: 10.7506/spkx1002-6630-201418014
    [24]
    Kramer B, Wunderlich J, Muranyi P. Impact of treatment parameters on pulsed light inactivation of microorganisms on a food simulant surface[J]. Innovative Food Science and Emerging Technologies,2017,40:83−90.
    [25]
    Koch F, Wiacek C, Braun P G. Pulsed light treatment for the reduction of Salmonella typhimurium and Yersinia enterocolitica on pork skin and pork loin[J]. International Journal of Food Microbiology,2019,292:64−71. doi: 10.1016/j.ijfoodmicro.2018.11.014
    [26]
    Aguilar J G D S. Pulsed light treatment in food[J]. Chemical Reports,2019,1(2):108−111. doi: 10.25082/CR.2019.02.007
    [27]
    Paskeviciute E, Buchovec I, Luksiene Z. High-power pulsed light for decontamination of chicken from food pathogens: A study on antimicrobial efficiency and organoleptic properties[J]. Journal of Food Safety,2011,31(1):61−68. doi: 10.1111/j.1745-4565.2010.00267.x
    [28]
    Mcleod A, Hovde Liland K, Haugen J E, et al. Chicken fillets subjected to UV-C and pulsed UV light:Reduction of pathogenic and spoilage bacteria, and changes in sensory quality[J]. Journal of Food Safety,2017,38(1):e12421.
    [29]
    Dincer A H, Baysal T. Decontamination techniques of pathogen bacteria in meat and poultry[J]. Critical Reviews in Microbiology,2004,30(3):197−204. doi: 10.1080/10408410490468803
    [30]
    Haughton P N, Lyng J G, Morgan D J, et al. Efficacy of high-intensity pulsed light for the microbiological decontamination of chicken, associated packaging, and contact surfaces[J]. Foodborne Pathogens and Disease,2011,8(1):109−117. doi: 10.1089/fpd.2010.0640
    [31]
    Liu N, Zhu Q J, Zeng X F, et al. Influences of pulsed light-UV treatment on the storage period of dry-cured meat and shelf life prediction by ASLT method[J]. Journal Food Science Technology,2019,56(4):1744−1756. doi: 10.1007/s13197-019-03603-1
    [32]
    Kramer B, Wunderlich J, Muranyi P. Inactivation of Listeria innocua on packaged meat products by pulsed light[J]. Food Packaging and Shelf Life,2019,21:100353. doi: 10.1016/j.fpsl.2019.100353
    [33]
    Cassar J R, Edward W. Decontamination of chicken thigh meat by pulsed ultraviolet light[J]. Meat and Muscle Biology,2019,3(1):479−487.
    [34]
    Cheigh C I, Hwang H J, Chung M S. Intense pulsed light (IPL) and UV-C treatments for inactivating Listeria monocytogenes on solid medium and seafoods[J]. Food Research International,2013,54(1):745−752. doi: 10.1016/j.foodres.2013.08.025
    [35]
    Rajkovic A, Tomasevicc I, Meulenaer B D, et al. The effect of pulsed UV light on Escherichia coli O157: H7, Listeria monocytogenes, Salmonella typhimurium, Staphylococcus aureus and Staphylococcal enterotoxin A on sliced fermented salami and its chemical quality[J]. Food Control,2017,73:829−837. doi: 10.1016/j.foodcont.2016.09.029
    [36]
    Hierro E, Ganan M, Barroso E, et al. Pulsed light treatment for the inactivation of selected pathogens and the shelf-life extension of beef and tuna carpaccio[J]. International Journal of Food Microbiology,2012,158(1):42−48. doi: 10.1016/j.ijfoodmicro.2012.06.018
    [37]
    Reichel J, Kehrenberg C, Krischek C. Inactivation of Yersinia enterocolitica and brochothrix thermosphacta on pork by UV-C irradiation[J]. Meat Science,2019,158:107909. doi: 10.1016/j.meatsci.2019.107909
    [38]
    Ganan M, Hierro E, Hospital X F, et al. Use of pulsed light to increase the safety of ready-to-eat cured meat products[J]. Food Control,2013,32(2):512−517. doi: 10.1016/j.foodcont.2013.01.022
    [39]
    Keklik N M, Demirci A, PURI V M. Decontamination of unpackaged and vacuum-packaged boneless chicken breast with pulsed ultraviolet light[J]. Poultry Science,2010,89(3):570−581. doi: 10.3382/ps.2008-00476
    [40]
    Holck A, Liland K H, Carlehög M. et al. Reductions of Listeria monocytogenes on cold-smoked and raw salmon fillets by UV-C and pulsed UV light[J]. Innovative Food Science and Emerging Technologies,2018,50:1−10. doi: 10.1016/j.ifset.2018.10.007
    [41]
    Pedrós-Garrido S, Condón-Abantob S, Clemente I, et al. Efficacy of ultraviolet light (UV-C) and pulsed light (PL) for the microbiological decontamination of raw salmon (salmosalar) and food contact surface materials[J]. Innovative Food Science and Emerging Technologies,2018,50:124−131. doi: 10.1016/j.ifset.2018.10.001
    [42]
    Figueroa-Garcia J E, Silva1 J L, Kim T, et al. Use of pulsed-light to treat raw channel catfish fillets[J]. Journal of the Mississippi Academy of Science,2002,47(2):114−120.
    [43]
    Hierro E, Barroso E, Hoz L D L, et al. Efficacy of pulsed light for shelf-life extension and inactivation of Listeria monocytogenes on ready-to-eat cooked meat products[J]. Innovative Food Science and Emerging Technologies,2011,12(3):275−281. doi: 10.1016/j.ifset.2011.04.006
    [44]
    Uesugi A R, Moraru C I. Reduction of Listeria on ready-to-eat sausages after exposure to a combination of pulsed light and nisin+[J]. Journal of Food Protection,2009,72(2):347−353. doi: 10.4315/0362-028X-72.2.347
    [45]
    Oms-Oliu G, Martín-Belloso O, Soliva-Fortuny R. Pulsed light treatments for food preservation. A review[J]. Food and Bioprocess Technology,2010,3(1):13−23. doi: 10.1007/s11947-008-0147-x
    [46]
    Lim W, Harrison M A. Effectiveness of UV light as a means to reduce salmonella contamination on tomatoes and food contact surfaces[J]. Food Control,2016,66:166−167. doi: 10.1016/j.foodcont.2016.01.043
    [47]
    Keklik N M, Demirci A, Puri V M, et al. Modeling the inactivation of Salmonella typhimurium, Listeria monocytogenes and Salmonella enteritidis on poultry products exposed to pulsed UV light[J]. Journal of Food Protection,2012,75(2):281−288. doi: 10.4315/0362-028X.JFP-11-298
    [48]
    Ringus D L, Moraru C I. Pulsed light inactivation of Listeria innocua on food packaging materials of different surface roughness and reflectivity[J]. Journal of Food Engineering,2013,114(3):31−37.
    [49]
    Woodling S E, Moraru C I. Influence of surface topography on the effectiveness of pulsed light treatment for the inactivation of Listeria innocua on stainless-steel surfaces[J]. Journal of Food Science,2005,70(7):345−351. doi: 10.1111/j.1365-2621.2005.tb11478.x
    [50]
    Chen B Y, Lung H M, Yang B B, et al. Pulsed light sterilization of packaging materials[J]. Food Packaging and Shelf Life,2015,5(5):1−9.
    [51]
    Tarek A R, Rasco B A, Sablani S S. Ultraviolet-C light inactivation kinetics of E. coli on bologna beef packaged in plastic films[J]. Food and Bioprocess Technology,2017,8(6):1−14.
    [52]
    Nicorescu B, Nguyen S, Chevalier, et al. Effects of pulsed light on the organoleptic properties and shelf-life extension of pork and salmon[J]. Food Control,2014,44:138−145. doi: 10.1016/j.foodcont.2014.03.052
    [53]
    Wambura P, Verghese M. Effect of pulsed ultraviolet light on quality of sliced ham[J]. LWT- Food Science and Technology,2011,44(10):2173−2179. doi: 10.1016/j.lwt.2011.05.016
    [54]
    Tomašević I. Intense light pulses upset the sensory quality of meat products[J]. Meat Technology,2015,56(1):1−7.
    [55]
    Tomašević I. The effect of intense light pulses on the sensory quality and instrumental color of meat from different animal breeds[J]. Biotechnology in Animal Husbandry,2015,31(2):273−281. doi: 10.2298/BAH1502273T
    [56]
    Roohinejad S, Koubaa M, Greiner R, et al. Effect of emerging processing methods on the food quality[M]. Springer Nature Switzerland AG, Switzerland, 2019.
  • Cited by

    Periodical cited type(12)

    1. 赵智慧,董建方,刘爱龙,马艳,党文宏,朱银龙,罗文华,王伟仁. 枸杞酒混菌酿造工艺的研究. 酿酒科技. 2025(01): 55-59 .
    2. 李银凤,刘昕,付伟,刘晓柱. 一株野生刺梨来源葡萄汁有孢汉逊酵母的鉴定及酿造学性能分析. 食品科技. 2024(07): 18-23 .
    3. 陆进舟,蒋贵兰,李银凤,黄名正,唐维媛,刘晓柱. 异常威克汉姆酵母发酵米酒品质特性分析. 贵州农机化. 2024(04): 25-27+31 .
    4. 李银凤,刘晓柱. 贵州刺梨生态食品开发现状调查研究. 食品工业. 2024(11): 261-265 .
    5. 马文瑞,孙志伟,石俊,张小娜,于佳俊,裴疆森,王德良,贾士儒,薛洁,钟成. 非酿酒酵母Nakazawaea ishiwadae GDMCC 60786产乙酸乙酯的诱变菌株筛选及其安全性评价. 食品科学. 2023(10): 165-172 .
    6. 李银凤,黎华,唐小玉,朱文丽,刘晓柱. 空心李酿酒酵母的酿造学性能分析. 食品研究与开发. 2023(18): 193-197 .
    7. 莫皓然,黄名正,张群,唐维媛,李婷婷,许存宾,刘晓柱,于志海,李鑫. 顶空固相微萃取结合溶剂辅助风味蒸发分析无籽刺梨挥发性成分及其呈香贡献. 食品工业科技. 2023(20): 289-297 . 本站查看
    8. 马冬,吕树萍,米兰芳,许赛冰,许佳琦,钟八莲. 赣脐4号脐橙果实挥发性组分分析. 赣南师范大学学报. 2023(03): 76-82 .
    9. 李银凤,刘晓柱. 海拔高度对刺梨根际土壤真菌与细菌多样性的影响. 河南农业科学. 2023(10): 82-91 .
    10. 郭志君,杨磊,骆红霞,周模美,房玉林. 苹果酸—乳酸发酵对刺梨酒香气的影响. 食品与机械. 2022(03): 197-204+233 .
    11. 荆丰雪,钟斌,万娅琼,樊洪泓,程江华,徐雅芫. 微生物源β-葡萄糖苷酶在发酵食品中的应用. 食品安全质量检测学报. 2022(24): 8041-8049 .
    12. 黄贺敏,吴丽香,邓梅忠,王雨晴,张雯,陈善义,张恩仁,詹仁锋,方璟,倪莉,李菁菁. 不同品质烟叶微生物群落与其挥发性成分的关联研究. 食品与生物技术学报. 2022(12): 85-95 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (256) PDF downloads (28) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return