WEN Zhang, HE Chaojiu, CHEN Cai, et al. Production of Bacterial Cellulose Using “Yellow Water”as Medium[J]. Science and Technology of Food Industry, 2021, 42(9): 100−107. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070020.
Citation: WEN Zhang, HE Chaojiu, CHEN Cai, et al. Production of Bacterial Cellulose Using “Yellow Water”as Medium[J]. Science and Technology of Food Industry, 2021, 42(9): 100−107. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070020.

Production of Bacterial Cellulose Using “Yellow Water”as Medium

More Information
  • Received Date: July 02, 2020
  • Available Online: February 28, 2021
  • “Yellow water”, as a by-product of Bai jiu, contains abundant nutrients and has great utilization value. The “yellow water” was diluted in different proportions to make diluted “yellow water” medium (“yellow water” was the only nutrient source, without any exogenous nutrients added). In the “yellow water” medium with different dilution ratios, statically fermentation with Gluconobacter was carried out to produce BC, and physicochemical indexes such as BC output and BC yield were determined in the fermentation broth during static culture fermentation at 30 ℃ for 14 d.The results showed that the optimal dilution ratio of “yellow water” was 2:8. Under this condition, the BC output reached the highest value (2.42 g/L), which was 53.2% higher than that of HS medium (1.58 g/L). The BC yield was 93.77%, increased by 813.05% compared with HS medium. Further the changes in BC production and physicochemical indexes of Gluconobacter during the fermentation process were detected, the reducing sugar consumption rate and remaining reducing sugar content of the 2:8 dilution ratio yellow water medium after fermentation were 64.84% and 1.36 g/L, respectively, lower than the control group of the same period. Among the mediums with different sterilization methods, the BC output in the filter sterilization medium was 3.19 g/L, and the BC yield was 107.56%. Compared with the high-pressure humid heat sterilization, they also increased significantly. Therefore, using “yellow water” as the sole source of nutrients not only improves BC output and reduces BC production costs, but also provides a new way to utilize yellow water and product BC.
  • [1]
    Ma L N, Bi Z J, Xue Y, et al. Bacterial cellulose: An encouraging eco-friendly nano-candidate for energy storage and energy conversion[J]. Journal of Materials Chemistry A,2020,8(12):5812−5842. doi: 10.1039/C9TA12536A
    [2]
    李国辉. 细菌纤维素纤维复合材料的制备及其应用研究[D]. 无锡:江南大学, 2017.
    [3]
    Choi S M, Shin E J. The nanofication and functionalization of bacterial cellulose and its applications[J]. Nanomaterials,2020,10(3):406. doi: 10.3390/nano10030406
    [4]
    Wu Z Y, Liang H W, Chen L F, et al. Bacterial cellulose: A robust platform for design of three dimensional carbon-based functional nanomaterials[J]. Accounts of Chemical Research,2016,49(1):96−105. doi: 10.1021/acs.accounts.5b00380
    [5]
    夏文, 李政, 徐银莉, 等. 发酵原料对细菌纤维素产量的影响研究进展[J]. 食品工业科技,2017,38(2):358−363.
    [6]
    Ye J B, Zheng S S, Zhang Z, et al. Bacterial cellulose production by Acetobacter xylinum ATCC 23767 using tobacco waste extract as culture medium[J]. Bioresource Technology,2019,274:518−524. doi: 10.1016/j.biortech.2018.12.028
    [7]
    Mahdieh S, Mahmood S K, Reza R M, et al. Preparation and characterization of cellulose nanocrystals from bacterial cellulose produced in sugar beet molasses and cheese whey media[J]. International Journal of Biological Macromolecules,2019,122:280−288. doi: 10.1016/j.ijbiomac.2018.10.136
    [8]
    Jahan F, Kumar V, Saxena R K, et al. Distillery effluent as a potential medium for bacterial cellulose production: A biopolymer of great commercial importance[J]. Bioresource Technology,2018,250:922−926. doi: 10.1016/j.biortech.2017.09.094
    [9]
    Costa A F S, Almeida F C G, Vinhas G M, et al. Production of bacterial cellulose by Gluconacetobacter hansenii using corn steep liquor as nutrient sources[J]. Frontiers in Microbiology,2017,8:207.
    [10]
    Akihiro K, Chizuru S, Yuya Y, et al. Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693[J]. Carbohydrate Polymers,2009,76(2):333−335. doi: 10.1016/j.carbpol.2008.11.009
    [11]
    Cheng Z, Yang R, Liu X, Liu X, et al. Green synthesis of bacterial cellulose via acetic acid prehydrolysis liquor of agricultural corn stalk used as carbon source[J]. Bioresour Technol,2017,234:8−14. doi: 10.1016/j.biortech.2017.02.131
    [12]
    Yang X Y, Huang C, Guo H J, et al. Bacterial cellulose production from the litchi extract by Gluconacetobacter xylinus[J]. Prep Biochem Biotechnol,2016,46:39−43. doi: 10.1080/10826068.2014.958163
    [13]
    Fan X, Gao Y, He W, et al. Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus[J]. Carbohydr Polym,2016,151:1068−1072. doi: 10.1016/j.carbpol.2016.06.062
    [14]
    Huang C, Yang X, Xiong L, et al. Utilization of corncob acid hydrolysate for bacterial cellulose production by Gluconacetobacter xylinus[J]. Appl Biochem Biotechnol,2015,75(1):1678−1688.
    [15]
    马霞, 董炎炎, 于海燕. 酒糟浸出液发酵产细菌纤维素工艺优化[J]. 农业工程学报,2015,31(8):302−307.
    [16]
    贺富强, 杨慧敏, 李周, 等. 酒糟酶解液及不同效应因子对发酵产细菌纤维素的影响[J]. 中国酿造,2019,38(1):66−70. doi: 10.11882/j.issn.0254-5071.2019.01.013
    [17]
    Lin D, Lopez S P, Li R, et al. Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source[J]. Bioresour. Technol.,2014,151:113−119. doi: 10.1016/j.biortech.2013.10.052
    [18]
    Molina-Ramírez C, Enciso C, Torres-Taborda M, et al. Effects of alternative energy sources on bacterial cellulose characteristics produced by Komagataeibacter medellinensis[J]. Int J Biol Macromol,2018,117:735−741. doi: 10.1016/j.ijbiomac.2018.05.195
    [19]
    冯兴垚, 邓杰, 谢军, 等. 白酒酿造副产物黄水综合利用现状浅析[J]. 中国酿造,2017,36(2):6−9.
    [20]
    Lu H, Jia Q, Chen L, et al. Effect of organic acids on bacterial cellulose produced by Acetobacter xylinum[J]. Microbiol. Biotechnol,2016,5:1−6.
    [21]
    李周, 贺富强, 杨惠敏, 等. 葡糖醋杆菌利用黄水发酵生产细菌纤维素[J]. 中国酿造,2018,37(1):54−58. doi: 10.11882/j.issn.0254-5071.2018.01.012
    [22]
    Schamm M, Hestrin S. Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum[J]. J Gen Microbiol,1954,11(1):123−129. doi: 10.1099/00221287-11-1-123
    [23]
    Lever M. Carbohydrate determination with 4-hydroxybenzoic acid hydrazide (PAHBAH): Effect of bismuth on the reaction[J]. Anal Biochem,1977,81(1):21−27. doi: 10.1016/0003-2697(77)90594-2
    [24]
    王传荣, 沈洪涛. 黄水在新型白酒生产中的应用[J]. 中国酿造,2005,24(2):26−28. doi: 10.3969/j.issn.0254-5071.2005.02.009
    [25]
    马霞, 王瑞明, 关凤梅, 等. 糖源对细菌纤维素产量的影响[J]. 纤维素科学与技术,2002,10(3):31−34. doi: 10.3969/j.issn.1004-8405.2002.03.005
    [26]
    马霞, 王瑞明, 关凤梅, 等. 非碳水化合物对木醋杆菌合成细菌纤维素影响规律的初探[J]. 中国酿造,2003,22(4):15−17. doi: 10.3969/j.issn.0254-5071.2003.04.006
    [27]
    张丽平, 卢红梅, 戴锐, 等. 乙醇及有机酸对木醋杆菌合成细菌纤维素的影响[J]. 食品工业科技,2014,35(4):161−165.
    [28]
    Truong V K, Bhadra C M, Christofferson A J, et al. Three-dimensional organization of self-encapsulating Gluconobacter oxydans bacterial cells[J]. ACS Omega,2017,2(11):8099−8107. doi: 10.1021/acsomega.7b01282
    [29]
    Cavalheiro J M B T, Da Almeida M C M D, Grandfifils C, et al. Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol[J]. Process Biochem,2009,44:509−515. doi: 10.1016/j.procbio.2009.01.008
    [30]
    Pedro C, Joana A S M, Eliane Ti, et al. Utilization of residues from agro-forest industries in the production of high value bacterial cellulose[J]. Bioresource Technology,2011,102(15):7354−7360. doi: 10.1016/j.biortech.2011.04.081
    [31]
    Kuo C H, Chen J H, Liou B K, et al. Utilization of acetate buffer to improve bacterial cellulose production by Gluconacetobacter xylinus[J]. Food Hydrocolloids,2016,53:98−103. doi: 10.1016/j.foodhyd.2014.12.034
    [32]
    Gorgieva S, Trcek J. Bacterial cellulose: Production, modification and perspectives in biomedical applications[J]. Nanomaterials,2019,9:1352. doi: 10.3390/nano9101352
    [33]
    Keshk S M. Vitamin C enhances bacterial cellulose production in Gluconacetobacter xylinus[J]. Carbohyd Polym,2014,99(1):98−100.
    [34]
    Hollenbeck E C, Antonoplis A, Chai C, et al. Phosphoethanolamine cellulose enhances curli-mediated adhesion of uropathogenic Escherichia coli to bladder epithelial cells[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(40):10106−10111. doi: 10.1073/pnas.1801564115
    [35]
    Gullo M, La China S, Petroni G, et al. Exploring K2G30 genome: A high bacterial cellulose producing strain in glucose and mannitol based media[J]. Frontiers in Microbiology,2019,10:58−63. doi: 10.3389/fmicb.2019.00058
    [36]
    毕继才, 刘四新, 李从发. 细菌纤维素生物合成调控及在食品领域的应用研究进展[J]. 食品工业科技,2020,41(23):340−344,353.
    [37]
    Mohammadkazemi F, Azin M, Ashori A. Production of bacterial cellulose using different carbon sources and culture media[J]. Carbohydrate Polymers,2015,117:518−523. doi: 10.1016/j.carbpol.2014.10.008
    [38]
    Yang X Y, Huang C, Guo H J, et al. Beneficial effect of acetic acid on the xylose utilization and bacterial cellulose production by Gluconacetobacter xylinus[J]. Indian Journal of Microbiology,2014,54(3):268−273. doi: 10.1007/s12088-014-0450-3
    [39]
    Li Y J, Tian C J, Tian H, et al. Improvement of bacterial cellulose production by manipulating the metabolic pathways in which ethanol and sodium citrate involved[J]. Applied Microbiology and Biotechnology,2012,96(6):1479−1487. doi: 10.1007/s00253-012-4242-6
    [40]
    Saukrai K, Arai H, Ishii M, et al. Changes in the gene expression profile of Acetobacter aceti during growth on ethanol[J]. Journal of Bioscience and Bioengineering,2012,113(3):343−348. doi: 10.1016/j.jbiosc.2011.11.005
    [41]
    Hyun J Y, Mahanty B, Kim C G. Utilization of makgeolli sludge filtrate (MSF) as low-cost substrate for bacterial cellulose production by Gluconacetobacter xylinus[J]. Applied Biochemistry and Biotechnology,2014,172(8):3748−3760. doi: 10.1007/s12010-014-0810-9
  • Related Articles

    [1]GAO Xiangxin, CHEN Yongfu, Wusigale. Research Progress of Preparation and Application of Probiotic Microencapsulation in Food[J]. Science and Technology of Food Industry, 2023, 44(3): 19-28. DOI: 10.13386/j.issn1002-0306.2022090256
    [2]JIANG Zhe-hui, BAO Yi-hong, JIANG Shi-long. Active Factors and Its Food Status Against Sarcopenia[J]. Science and Technology of Food Industry, 2020, 41(2): 317-323. DOI: 10.13386/j.issn1002-0306.2020.02.051
    [3]ZHAO Jing, SHI Dong-jie, QU Yan-feng, WANG Hong-mei, LI Jing-hai. Research Progress of Potato Whole Meal Food[J]. Science and Technology of Food Industry, 2019, 40(20): 363-367. DOI: 10.13386/j.issn1002-0306.2019.20.058
    [4]LI Jun, DONG Lei, JIANG Fa-tang, XIAO Man. Development of Devices for Measuring the Moisture Contents in Foods[J]. Science and Technology of Food Industry, 2019, 40(8): 297-303. DOI: 10.13386/j.issn1002-0306.2019.08.050
    [5]WANG Ya-nan, WANG Xiao-fei, NIU Lin-lin, LEI Zhuang, ZHANG Hai-tang, WANG Zi-liang. Advance in immunoassay of total aflatoxins in food[J]. Science and Technology of Food Industry, 2017, (13): 344-351. DOI: 10.13386/j.issn1002-0306.2017.13.065
    [6]LIU Yi-jun, LIU Na, ZHANG Yu-meng. Research progress of food authentication technology[J]. Science and Technology of Food Industry, 2016, (22): 374-383. DOI: 10.13386/j.issn1002-0306.2016.22.065
    [7]YIN Yan, ZHANG Wan-gang, ZHOU Guang-hong, XU Xing-lian. Physiological functions of rosemary and its application in food[J]. Science and Technology of Food Industry, 2014, (22): 364-370. DOI: 10.13386/j.issn1002-0306.2014.22.072
    [8]LIU Xiao-yi. Risk control standards analysis on food production and processing[J]. Science and Technology of Food Industry, 2014, (06): 49-51. DOI: 10.13386/j.issn1002-0306.2014.06.015
    [9]NIU Gai-gai, DENG Jian-chao, LI Lai-hao, YANG Xian-qing, QI Bo, CEN Jian-wei. Accelerated Solvent Extraction and its applications in food analysis[J]. Science and Technology of Food Industry, 2014, (01): 375-380. DOI: 10.13386/j.issn1002-0306.2014.01.048
    [10]JIN Hong-guo, LIU Hua-lin, ZHANG Rui, ZHENG Zhi-ming, PENG Zeng-qi, ZHANG Xin-ling, LI Le. Review of analytical methods for the determination of formaldehyde in food[J]. Science and Technology of Food Industry, 2013, (19): 373-377. DOI: 10.13386/j.issn1002-0306.2013.19.058

Catalog

    Article Metrics

    Article views (295) PDF downloads (26) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return