Citation: | WEN Zhang, HE Chaojiu, CHEN Cai, et al. Production of Bacterial Cellulose Using “Yellow Water”as Medium[J]. Science and Technology of Food Industry, 2021, 42(9): 100−107. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070020. |
[1] |
Ma L N, Bi Z J, Xue Y, et al. Bacterial cellulose: An encouraging eco-friendly nano-candidate for energy storage and energy conversion[J]. Journal of Materials Chemistry A,2020,8(12):5812−5842. doi: 10.1039/C9TA12536A
|
[2] |
李国辉. 细菌纤维素纤维复合材料的制备及其应用研究[D]. 无锡:江南大学, 2017.
|
[3] |
Choi S M, Shin E J. The nanofication and functionalization of bacterial cellulose and its applications[J]. Nanomaterials,2020,10(3):406. doi: 10.3390/nano10030406
|
[4] |
Wu Z Y, Liang H W, Chen L F, et al. Bacterial cellulose: A robust platform for design of three dimensional carbon-based functional nanomaterials[J]. Accounts of Chemical Research,2016,49(1):96−105. doi: 10.1021/acs.accounts.5b00380
|
[5] |
夏文, 李政, 徐银莉, 等. 发酵原料对细菌纤维素产量的影响研究进展[J]. 食品工业科技,2017,38(2):358−363.
|
[6] |
Ye J B, Zheng S S, Zhang Z, et al. Bacterial cellulose production by Acetobacter xylinum ATCC 23767 using tobacco waste extract as culture medium[J]. Bioresource Technology,2019,274:518−524. doi: 10.1016/j.biortech.2018.12.028
|
[7] |
Mahdieh S, Mahmood S K, Reza R M, et al. Preparation and characterization of cellulose nanocrystals from bacterial cellulose produced in sugar beet molasses and cheese whey media[J]. International Journal of Biological Macromolecules,2019,122:280−288. doi: 10.1016/j.ijbiomac.2018.10.136
|
[8] |
Jahan F, Kumar V, Saxena R K, et al. Distillery effluent as a potential medium for bacterial cellulose production: A biopolymer of great commercial importance[J]. Bioresource Technology,2018,250:922−926. doi: 10.1016/j.biortech.2017.09.094
|
[9] |
Costa A F S, Almeida F C G, Vinhas G M, et al. Production of bacterial cellulose by Gluconacetobacter hansenii using corn steep liquor as nutrient sources[J]. Frontiers in Microbiology,2017,8:207.
|
[10] |
Akihiro K, Chizuru S, Yuya Y, et al. Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693[J]. Carbohydrate Polymers,2009,76(2):333−335. doi: 10.1016/j.carbpol.2008.11.009
|
[11] |
Cheng Z, Yang R, Liu X, Liu X, et al. Green synthesis of bacterial cellulose via acetic acid prehydrolysis liquor of agricultural corn stalk used as carbon source[J]. Bioresour Technol,2017,234:8−14. doi: 10.1016/j.biortech.2017.02.131
|
[12] |
Yang X Y, Huang C, Guo H J, et al. Bacterial cellulose production from the litchi extract by Gluconacetobacter xylinus[J]. Prep Biochem Biotechnol,2016,46:39−43. doi: 10.1080/10826068.2014.958163
|
[13] |
Fan X, Gao Y, He W, et al. Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus[J]. Carbohydr Polym,2016,151:1068−1072. doi: 10.1016/j.carbpol.2016.06.062
|
[14] |
Huang C, Yang X, Xiong L, et al. Utilization of corncob acid hydrolysate for bacterial cellulose production by Gluconacetobacter xylinus[J]. Appl Biochem Biotechnol,2015,75(1):1678−1688.
|
[15] |
马霞, 董炎炎, 于海燕. 酒糟浸出液发酵产细菌纤维素工艺优化[J]. 农业工程学报,2015,31(8):302−307.
|
[16] |
贺富强, 杨慧敏, 李周, 等. 酒糟酶解液及不同效应因子对发酵产细菌纤维素的影响[J]. 中国酿造,2019,38(1):66−70. doi: 10.11882/j.issn.0254-5071.2019.01.013
|
[17] |
Lin D, Lopez S P, Li R, et al. Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source[J]. Bioresour. Technol.,2014,151:113−119. doi: 10.1016/j.biortech.2013.10.052
|
[18] |
Molina-Ramírez C, Enciso C, Torres-Taborda M, et al. Effects of alternative energy sources on bacterial cellulose characteristics produced by Komagataeibacter medellinensis[J]. Int J Biol Macromol,2018,117:735−741. doi: 10.1016/j.ijbiomac.2018.05.195
|
[19] |
冯兴垚, 邓杰, 谢军, 等. 白酒酿造副产物黄水综合利用现状浅析[J]. 中国酿造,2017,36(2):6−9.
|
[20] |
Lu H, Jia Q, Chen L, et al. Effect of organic acids on bacterial cellulose produced by Acetobacter xylinum[J]. Microbiol. Biotechnol,2016,5:1−6.
|
[21] |
李周, 贺富强, 杨惠敏, 等. 葡糖醋杆菌利用黄水发酵生产细菌纤维素[J]. 中国酿造,2018,37(1):54−58. doi: 10.11882/j.issn.0254-5071.2018.01.012
|
[22] |
Schamm M, Hestrin S. Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum[J]. J Gen Microbiol,1954,11(1):123−129. doi: 10.1099/00221287-11-1-123
|
[23] |
Lever M. Carbohydrate determination with 4-hydroxybenzoic acid hydrazide (PAHBAH): Effect of bismuth on the reaction[J]. Anal Biochem,1977,81(1):21−27. doi: 10.1016/0003-2697(77)90594-2
|
[24] |
王传荣, 沈洪涛. 黄水在新型白酒生产中的应用[J]. 中国酿造,2005,24(2):26−28. doi: 10.3969/j.issn.0254-5071.2005.02.009
|
[25] |
马霞, 王瑞明, 关凤梅, 等. 糖源对细菌纤维素产量的影响[J]. 纤维素科学与技术,2002,10(3):31−34. doi: 10.3969/j.issn.1004-8405.2002.03.005
|
[26] |
马霞, 王瑞明, 关凤梅, 等. 非碳水化合物对木醋杆菌合成细菌纤维素影响规律的初探[J]. 中国酿造,2003,22(4):15−17. doi: 10.3969/j.issn.0254-5071.2003.04.006
|
[27] |
张丽平, 卢红梅, 戴锐, 等. 乙醇及有机酸对木醋杆菌合成细菌纤维素的影响[J]. 食品工业科技,2014,35(4):161−165.
|
[28] |
Truong V K, Bhadra C M, Christofferson A J, et al. Three-dimensional organization of self-encapsulating Gluconobacter oxydans bacterial cells[J]. ACS Omega,2017,2(11):8099−8107. doi: 10.1021/acsomega.7b01282
|
[29] |
Cavalheiro J M B T, Da Almeida M C M D, Grandfifils C, et al. Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol[J]. Process Biochem,2009,44:509−515. doi: 10.1016/j.procbio.2009.01.008
|
[30] |
Pedro C, Joana A S M, Eliane Ti, et al. Utilization of residues from agro-forest industries in the production of high value bacterial cellulose[J]. Bioresource Technology,2011,102(15):7354−7360. doi: 10.1016/j.biortech.2011.04.081
|
[31] |
Kuo C H, Chen J H, Liou B K, et al. Utilization of acetate buffer to improve bacterial cellulose production by Gluconacetobacter xylinus[J]. Food Hydrocolloids,2016,53:98−103. doi: 10.1016/j.foodhyd.2014.12.034
|
[32] |
Gorgieva S, Trcek J. Bacterial cellulose: Production, modification and perspectives in biomedical applications[J]. Nanomaterials,2019,9:1352. doi: 10.3390/nano9101352
|
[33] |
Keshk S M. Vitamin C enhances bacterial cellulose production in Gluconacetobacter xylinus[J]. Carbohyd Polym,2014,99(1):98−100.
|
[34] |
Hollenbeck E C, Antonoplis A, Chai C, et al. Phosphoethanolamine cellulose enhances curli-mediated adhesion of uropathogenic Escherichia coli to bladder epithelial cells[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(40):10106−10111. doi: 10.1073/pnas.1801564115
|
[35] |
Gullo M, La China S, Petroni G, et al. Exploring K2G30 genome: A high bacterial cellulose producing strain in glucose and mannitol based media[J]. Frontiers in Microbiology,2019,10:58−63. doi: 10.3389/fmicb.2019.00058
|
[36] |
毕继才, 刘四新, 李从发. 细菌纤维素生物合成调控及在食品领域的应用研究进展[J]. 食品工业科技,2020,41(23):340−344,353.
|
[37] |
Mohammadkazemi F, Azin M, Ashori A. Production of bacterial cellulose using different carbon sources and culture media[J]. Carbohydrate Polymers,2015,117:518−523. doi: 10.1016/j.carbpol.2014.10.008
|
[38] |
Yang X Y, Huang C, Guo H J, et al. Beneficial effect of acetic acid on the xylose utilization and bacterial cellulose production by Gluconacetobacter xylinus[J]. Indian Journal of Microbiology,2014,54(3):268−273. doi: 10.1007/s12088-014-0450-3
|
[39] |
Li Y J, Tian C J, Tian H, et al. Improvement of bacterial cellulose production by manipulating the metabolic pathways in which ethanol and sodium citrate involved[J]. Applied Microbiology and Biotechnology,2012,96(6):1479−1487. doi: 10.1007/s00253-012-4242-6
|
[40] |
Saukrai K, Arai H, Ishii M, et al. Changes in the gene expression profile of Acetobacter aceti during growth on ethanol[J]. Journal of Bioscience and Bioengineering,2012,113(3):343−348. doi: 10.1016/j.jbiosc.2011.11.005
|
[41] |
Hyun J Y, Mahanty B, Kim C G. Utilization of makgeolli sludge filtrate (MSF) as low-cost substrate for bacterial cellulose production by Gluconacetobacter xylinus[J]. Applied Biochemistry and Biotechnology,2014,172(8):3748−3760. doi: 10.1007/s12010-014-0810-9
|
[1] | GAO Xiangxin, CHEN Yongfu, Wusigale. Research Progress of Preparation and Application of Probiotic Microencapsulation in Food[J]. Science and Technology of Food Industry, 2023, 44(3): 19-28. DOI: 10.13386/j.issn1002-0306.2022090256 |
[2] | JIANG Zhe-hui, BAO Yi-hong, JIANG Shi-long. Active Factors and Its Food Status Against Sarcopenia[J]. Science and Technology of Food Industry, 2020, 41(2): 317-323. DOI: 10.13386/j.issn1002-0306.2020.02.051 |
[3] | ZHAO Jing, SHI Dong-jie, QU Yan-feng, WANG Hong-mei, LI Jing-hai. Research Progress of Potato Whole Meal Food[J]. Science and Technology of Food Industry, 2019, 40(20): 363-367. DOI: 10.13386/j.issn1002-0306.2019.20.058 |
[4] | LI Jun, DONG Lei, JIANG Fa-tang, XIAO Man. Development of Devices for Measuring the Moisture Contents in Foods[J]. Science and Technology of Food Industry, 2019, 40(8): 297-303. DOI: 10.13386/j.issn1002-0306.2019.08.050 |
[5] | WANG Ya-nan, WANG Xiao-fei, NIU Lin-lin, LEI Zhuang, ZHANG Hai-tang, WANG Zi-liang. Advance in immunoassay of total aflatoxins in food[J]. Science and Technology of Food Industry, 2017, (13): 344-351. DOI: 10.13386/j.issn1002-0306.2017.13.065 |
[6] | LIU Yi-jun, LIU Na, ZHANG Yu-meng. Research progress of food authentication technology[J]. Science and Technology of Food Industry, 2016, (22): 374-383. DOI: 10.13386/j.issn1002-0306.2016.22.065 |
[7] | YIN Yan, ZHANG Wan-gang, ZHOU Guang-hong, XU Xing-lian. Physiological functions of rosemary and its application in food[J]. Science and Technology of Food Industry, 2014, (22): 364-370. DOI: 10.13386/j.issn1002-0306.2014.22.072 |
[8] | LIU Xiao-yi. Risk control standards analysis on food production and processing[J]. Science and Technology of Food Industry, 2014, (06): 49-51. DOI: 10.13386/j.issn1002-0306.2014.06.015 |
[9] | NIU Gai-gai, DENG Jian-chao, LI Lai-hao, YANG Xian-qing, QI Bo, CEN Jian-wei. Accelerated Solvent Extraction and its applications in food analysis[J]. Science and Technology of Food Industry, 2014, (01): 375-380. DOI: 10.13386/j.issn1002-0306.2014.01.048 |
[10] | JIN Hong-guo, LIU Hua-lin, ZHANG Rui, ZHENG Zhi-ming, PENG Zeng-qi, ZHANG Xin-ling, LI Le. Review of analytical methods for the determination of formaldehyde in food[J]. Science and Technology of Food Industry, 2013, (19): 373-377. DOI: 10.13386/j.issn1002-0306.2013.19.058 |