ZHAN Wei, YUAN Chao, CUI Bo. Gelation Properties of κ -carrageenan Influenced by Resistant Dextrin[J]. Science and Technology of Food Industry, 2021, 42(9): 19−24. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070006.
Citation: ZHAN Wei, YUAN Chao, CUI Bo. Gelation Properties of κ -carrageenan Influenced by Resistant Dextrin[J]. Science and Technology of Food Industry, 2021, 42(9): 19−24. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070006.

Gelation Properties of κ-carrageenan Influenced by Resistant Dextrin

More Information
  • Received Date: July 01, 2020
  • Available Online: February 26, 2021
  • With the addition of different amounts of resistant dextrin, the freeze-thaw stability, thermal stability, compressive modulus and microstructure of κ-carrageenan gel were evaluated. The results suggested that the syneresis of κ-carrageenan gel was reduced when in presence of resistant dextrin, and had a positive correlation with the resistant dextrin concentration. According to the thermal stability analysis, the κ-carrageenan gel has the maximum thermal stability and activation energy when the concentration of resistant dextrin was 4% (257.86 ℃, 106.20 kJ/mol, respectively). In addition, the compressive modulus of κ-carrageenan gel reached the maximum value (43.83 kPa) when the concentration of resistant dextrin was 4%. Fourier transforms infrared spectroscopy results indicated that the more hydrogen-bonding was formed in the gel system when resistant dextrin existed. Scanning electron microscopy images revealed that the cellular structure of the κ-carrageenan gel became more compact and smooth with the addition of dextrin. However, excessive dextrin (5%) molecular would destroy the gel network. In general, the gel properties of κ-carrageenan were improved by adding resistant dextrin into the gel system, and the optimum concentration of resistant dextrin was 4%.
  • [1]
    Barclay T G, Day C M, Petrovsky N, et al. Review of polysaccharide particle-based functional drug delivery[J]. Carbohydrate Polymers,2019,221:94−112. doi: 10.1016/j.carbpol.2019.05.067
    [2]
    Campo V L, Kawano D F, Silva D B D, et al. Carrageenans: Biological properties, chemical modifications and structural analysis - A review[J]. Carbohydrate Polymers,2009,77(2):167−180. doi: 10.1016/j.carbpol.2009.01.020
    [3]
    Evingür G A, Pekcan Ö. Elasticity study of PAAm-κC composite prepared in various κC content and Measured at Several Temperatures[J]. Acta Physica Polonica A,2015,128(2):331−336. doi: 10.12693/APhysPolA.128.331
    [4]
    Chen H M, Yan X J, Wang F, et al. Assessment of the oxidative cellular toxicity of a κ-carrageenan oxidative degradation product towards Caco-2 cells[J]. Food Research International,2010,43(10):2390−2401. doi: 10.1016/j.foodres.2010.09.019
    [5]
    Chen J, Chen W, Duan F, et al. The synergistic gelation of okra polysaccharides with kappa-carrageenan and its influence on gel rheology, texture behaviour and microstructures[J]. Food Hydrocolloids,2019,87:425−435. doi: 10.1016/j.foodhyd.2018.08.003
    [6]
    Liu Z , Bhandari B , Prakash S , et al. Linking rheology and printability of a multicomponent gel system of carrageenan-xanthan-starch in extrusion based additive manufacturing[J]. Food Hydrocolloids,2019,.87:413−424. doi: 10.1016/j.foodhyd.2018.08.026
    [7]
    Li X, Xie Q, Zhu J, et al. Chitosan hydrochloride/ carboxymethyl starch complex nanogels as novel Pickering stabilizers: Physical stability and rheological properties[J]. Food Hydrocolloids,2019,93:215−225. doi: 10.1016/j.foodhyd.2019.02.021
    [8]
    Lascombes C, Agoda-Tandjawa G, Boulenguer P, et al. Starch-carrageenan interactions in aqueous media:Role of each polysaccharide chemical and macromolecular characteristics[J]. Food Hydrocolloids,2017,66:176−189. doi: 10.1016/j.foodhyd.2016.11.025
    [9]
    Loret C, Ribelles P, Lundin L. Mechanical properties of κ-carrageenan in high concentration of sugar solutions[J]. Food Hydrocolloids,2009,23(3):823−832. doi: 10.1016/j.foodhyd.2008.04.012
    [10]
    Yang Z, Yang H, Yang H. Effects of sucrose addition on the rheology and microstructure of κ-carrageenan gel[J]. Food Hydrocolloids,2018,75:164−173. doi: 10.1016/j.foodhyd.2017.08.032
    [11]
    Yuan C, Sang L, Wang Y, et al. Influence of cyclodextrins on the gel properties of kappa-carrageenan[J]. Food Chemistry,2018,266:545−550. doi: 10.1016/j.foodchem.2018.06.060
    [12]
    Sugimoto T, Horaguchi K, Shoji H. Indigestible dextrin stimulates glucoamylase production in submerged culture of Aspergillus kawachii[J]. Journal of Industrial Microbiology & Biotechnology,2011,38(12):1985−1991.
    [13]
    Nagata J, Saito M. Effects of simultaneous intakes of indigestible dextrin and diacylglycerol on lipid profiles in rats fed cholesterol diets[J]. Nutrition,2006,22(4):395−400. doi: 10.1016/j.nut.2005.08.008
    [14]
    苏会波, 林海龙. 难消化糊精的研究进展[J]. 食品与生物技术学报,2014,33(1):1−7.
    [15]
    徐慧, 王珊珊, 田延军, 等. 响应面法优化抗性糊精制备工艺[J]. 中国酿造,2020,39(5):120−124. doi: 10.11882/j.issn.0254-5071.2020.05.023
    [16]
    Yuan C, Du L, Zhang G, et al. Influence of cyclodextrins on texture behavior and freeze-thaw stability of kappa-carrageenan gel[J]. Food Chemistry,2016,210:600−605. doi: 10.1016/j.foodchem.2016.05.014
    [17]
    黄政. 水溶性抗性糊精的性质及其对面粉加工品质的影响[D]. 广州: 华南理工大学, 2019.
    [18]
    李亚楠, 曲敏, 田野, 等. 胡萝卜冰结构蛋白的诱导及对淀粉凝胶冻融稳定性的影响[J]. 食品工业科技,2020,41(7):70−75, 81.
    [19]
    桑璐媛. 环糊精对κ-卡拉胶凝胶特性的影响及其应用研究[D]. 郑州: 河南工业大学, 2017.
    [20]
    崔丽伟, 展海军, 张佳佳, 等. 热重分析法测定大米中淀粉含量[J]. 中国粮油学报,2017,32(9):167−170. doi: 10.3969/j.issn.1003-0174.2017.09.027
    [21]
    Qi X, Wei W, Su T, et al. Fabrication of a new polysaccharide-based adsorbent for water purification[J]. Carbohydrate Polymers,2018,195:368−377. doi: 10.1016/j.carbpol.2018.04.112
    [22]
    Pettinelli N, Rodríguez-Llamazares S, Abella V, et al. Entrapment of chitosan, pectin or κ-carrageenan within methacrylate based hydrogels: Effect on swelling and mechanical properties[J]. Materials Science and Engineering: C,2019,96:583−590. doi: 10.1016/j.msec.2018.11.071
    [23]
    Wang Y, Yuan C, Liu Y, et al. The influence of a hydroxypropyl-beta-cyclodextrin composite on the gelation of kappa-carrageenan[J]. Food Hydrocolloids,2019,90:276−284. doi: 10.1016/j.foodhyd.2018.12.037
    [24]
    陈永, 李玲, 洪玉珍, 等. 椰壳纤维的热解动力学分析[J]. 材料导报,2011,25(2):107−111.
    [25]
    Zhao L, Zheng Q, Liu Y, et al. Enhanced strength and toughness of κ-carrageenan/polyacrylic acid physical double-network hydrogels by dual cross-linking of the first network[J]. European Polymer Journal,2020,124:109474. doi: 10.1016/j.eurpolymj.2020.109474
    [26]
    刘国军, 盛龙, 童群义. 普鲁兰多糖对κ-卡拉胶凝胶特性及流变学性质的影响[J]. 食品工业科技,2014,35(4):148−152.
    [27]
    Şen M, Erboz E N. Determination of critical gelation conditions of κ-carrageenan by viscosimetric and FT-IR analyses[J]. Food Research International,2010,43(5):1361−1364. doi: 10.1016/j.foodres.2010.03.021
    [28]
    Stenner R, Matubayasi N, Shimizu S. Gelation of carrageenan: effects of sugars and polyols[J]. Food Hydrocolloids,2016,54:284−292. doi: 10.1016/j.foodhyd.2015.10.007
  • Cited by

    Periodical cited type(4)

    1. 宁豫昌,高俊杰,袁艺萌. 复合酶处理对刺梨、苹果混合发酵果汁的影响. 食品与生物技术学报. 2023(08): 87-94 .
    2. 袁先铃,刘梓建,张谱予,万晓玉. 洋葱汁的不同澄清工艺优化及其对品质影响的对比研究. 中国调味品. 2022(06): 55-60 .
    3. 杜慧慧,汪开拓,王富敏,邱铃岚,张娟娟,黎春红. 基于高通量测序分析不同品种柠檬NFC果汁的微生物多样性. 食品科技. 2021(03): 302-307 .
    4. 李毅. 果胶酶在食品产业领域的应用技术研究. 科技广场. 2020(03): 50-56 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (350) PDF downloads (23) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return