JIN Hongwei, LIANG Hengyu, GUO Kun, et al. Effects of Saccharomyces cerevisiae Strains, F15 and CC17, Co-inoculation on Qualitative and Sensory Characteristics of Cabernet Sauvignon Wines[J]. Science and Technology of Food Industry, 2021, 42(8): 109−116. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020060351.
Citation: JIN Hongwei, LIANG Hengyu, GUO Kun, et al. Effects of Saccharomyces cerevisiae Strains, F15 and CC17, Co-inoculation on Qualitative and Sensory Characteristics of Cabernet Sauvignon Wines[J]. Science and Technology of Food Industry, 2021, 42(8): 109−116. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020060351.

Effects of Saccharomyces cerevisiae Strains, F15 and CC17, Co-inoculation on Qualitative and Sensory Characteristics of Cabernet Sauvignon Wines

More Information
  • Received Date: June 28, 2020
  • Available Online: February 03, 2021
  • Commercial Saccharomyces cerevisiae F15 and indigenous strain CC17 was applied as starter for mono- and co-inoculated (F15:CC17=1:1) fermentation with Cabernet Sauvignon grape must from Changli in Hebei Province, in order to solve the problem of wine quality homogenization caused by single commercial yeast fermentation. Changes of specific gravity, temperature, residual sugar, ethanol, total acid, pH, anthocyanin, tannin, total phenol, color intensity and hue were determined during alcoholic fermentation. At the end of fermentation, the aromatic compositions and sensory characters of wines were evaluated. The results of co-fermentation showed that the contents of anthocyanins, tannins and total phenols in Cabernet Sauvignon wines increased, the color intensity enhanced, and the hue of wines were trending red, compared with F15 pure inocula. The levels of residual sugar and total acid in co-inoculated wines were lower than CC17 mono-fermentations. In addition, the aroma profiles were modulated and the contents ethyl esters with saturated fatty acid were increased by co-inoculated fermentation. Sensory evaluation showed that the color, aroma and taste of co-inoculation wines were better than single F15 fermentation. In conclusion, co-culture of both commercial yeast and local strain is an effective method to improve wine quality and sensory characteristics.
  • [1]
    Fleet G H. Yeast interactions and wine flavour[J]. International Journal of Food Microbiology,2003,86(1−2):11−22. doi: 10.1016/S0168-1605(03)00245-9
    [2]
    Nikolaou E, Soufleros E H, Bouloumapasi E, et al. Selection of indigenous Saccharomyces cerevisiae strains according to their oenological characteristics and vinification results[J]. Food Microbiology,2006,23(2):205−211. doi: 10.1016/j.fm.2005.03.004
    [3]
    Alves Z, Melo A, Figueiredo A R, et al. Exploring the Saccharomyces cerevisiae volatile metabolome: Indigenous versus commercial strains[J]. Plos One,2015,10(11):1−10.
    [4]
    Drumondeneves J, Francoduarte R, Lima T, et al. Association between grape yeast communities and the vineyard ecosystems[J]. Plos One,2017,12(1):1−17.
    [5]
    Gustafsson F, Jiranek V, Neuner M, et al. The interaction of two Saccharomyces cerevisiae strains affects fermentation-derived compounds in wine[J]. Fermentation,2016,2(2):1−9.
    [6]
    Terrell E, Cliff M A, Van Vuuren H J J. Functional characterization of individual- and mixed-Burgundian Saccharomyces cerevisiae isolates for fermentation of Pinot Noir[J]. Molecules,2015,20(3):5112−5136. doi: 10.3390/molecules20035112
    [7]
    Liang H, Chen J, Reeves M J, et al. Aromatic and sensorial profiles of young Cabernet Sauvignon wines fermented by different Chinese autochthonous Saccharomyces cerevisiae strains[J]. Food Research International,2013,51(2):855−865. doi: 10.1016/j.foodres.2013.01.056
    [8]
    König H, Claus H. A future place for Saccharomyces mixtures and hybrids in wine making[J]. Fermentation,2018,4(3):67. doi: 10.3390/fermentation4030067
    [9]
    Saberi S, Cliff M A, Van Vuuren H J J. Comparison of genetic and enological characteristics of new and existing S. cerevisiae strains for Chardonnay wine fermentations[J]. Food Biotechnology,2014,28(3):195−215. doi: 10.1080/08905436.2014.931863
    [10]
    Ciani M, Capece A, Comitini F, et al. Yeast interactions in inoculated wine fermentation[J]. Frontiers in Microbiology,2016,7:555.
    [11]
    Varela C, Borneman A R. Yeasts found in vineyards and wineries[J]. Yeast,2017,34(3):111−128. doi: 10.1002/yea.3219
    [12]
    Mateo J, Maicas S. Application of non-Saccharomyces yeasts to wine-making process[J]. Fermentation,2016,2(3):1−14.
    [13]
    Barrajón N, Capece A, Arévalo V M, et al. Co-inoculation of different Saccharomyces cerevisiae strains and influence on volatile composition of wines[J]. Food Microbiology,2011,28(5):1080−1086. doi: 10.1016/j.fm.2011.02.016
    [14]
    Cheraiti N, Guezenec S, Salmon J M. Redox interactions between Saccharomyces cerevisiae and Saccharomyces uvarum in mixed culture under enological conditions[J]. Applied and Environmental Microbiology,2005,71(1):255−260. doi: 10.1128/AEM.71.1.255-260.2005
    [15]
    King E S, Kievit R L, Curtin C, et al. The effect of multiple yeasts co-inoculations on Sauvignon Blanc wine aroma composition, sensory properties and consumer preference[J]. Food Chemistry,2010,122(3):618−626. doi: 10.1016/j.foodchem.2010.03.021
    [16]
    Vendraminia C, Beltranc G, Nadai C, et al. The role of nitrogen uptake on the competition ability of three vineyard Saccharomyces cerevisiae strains[J]. International Journal of Food Microbiology,2017,258(3):1−11.
    [17]
    Antoce A O, Cojocaru G A. Effects of blending and co-inoculation on the aromatic profile of wines[J]. Revista de Chimie,2015,66(10):1567−1572.
    [18]
    King E S, Swiegers J H, Travis B, et al. Coinoculated fermentations using Saccharomyces yeasts affect the volatile composition and sensory properties of Vitis vinifera L. cv. Sauvignon Blanc wines[J]. Journal of Agricultural and Food Chemistry,2008,56(22):10829−10837. doi: 10.1021/jf801695h
    [19]
    朱娟娟, 马海军, 李敏, 等. 不同酿酒酵母共发酵对干红葡萄酒理化特性和香气组分的影响[J]. 食品与发酵工业,2020,46(2):194−202.
    [20]
    Saberi S, Cliff M A, Van Vuuren H J J. Impact of mixed S. cerevisiae strains on the production of volatiles and estimated sensory profiles of Chardonnay wines[J]. Food Research International,2012,48(2):725−735. doi: 10.1016/j.foodres.2012.06.012
    [21]
    梁恒宇. 葡萄酒酿酒酵母酿造特性的研究与优良菌株的选育[D]. 北京: 中国农业大学, 2008: 72−87.
    [22]
    Liang H, Su N, Guo K. Effects of different Saccharomyces cerevisiae strains on chemical profiles of Cabernet sauvignon wines: based on the combined results of 1H NMR, HS-SPME/GC-MS and HPLC-DAD-ESI-MS/MS[J]. Current Topics in Nutraceutical Research,2020,18(2):115−131.
    [23]
    中华人民共和国国家技术监督局. GB/T 15038-2006中华人民共和国国家标准—葡萄酒、果酒通用分析方法[S]. 北京: 中国标准出版社, 2006.
    [24]
    秦含章. 葡萄酒分析化学[M]. 北京: 中国轻工业出版社, 1991: 726−780.
    [25]
    Cheynier V, Rigadu J, Souquet J M, et al. Effect of pomace contact and hyperoxidation on the phenolic composition and quality of Grenache and Chardonnay wines[J]. American Journal of Enology and Viticulture,1989,40(1):36−42.
    [26]
    Chira K, Jourdes M, Teissedre P L. Cabernet sauvignon red wine astringency quality control by tannin characterization and polymerization during storage[J]. European Food Research and Technology,2012,234(2):253−261. doi: 10.1007/s00217-011-1627-1
    [27]
    Liu N, Song Y Y, Qin Y, et al. Chromatic characteristics and anthocyanin compositions of cabernet sauvignon wines: Influence of indigenous Saccharomyces cerevisiae strains in Ningxia, China[J]. Food Science and Biotechnology,2015,24(6):1973−1978. doi: 10.1007/s10068-015-0260-3
    [28]
    Monagas M, Gómezcordovés C, Bartolomé B. Evaluation of different Saccharomyces cerevisiae strains for red winemaking. Influence on the anthocyanin, pyranoanthocyanin and non-anthocyanin phenolic content and colour characteristics of wines[J]. Food Chemistry,2007,104(2):814−823. doi: 10.1016/j.foodchem.2006.12.043
    [29]
    Rinaldi A, Blaiottal G, Aponte M, et al. Effect of yeast strain and some nutritional factors on tannin composition and potential astringency of model wines[J]. Food Microbiology,2016,53(Pt B):128−134.
  • Related Articles

    [1]PENG Xuyang, CHEN Junran, CUI Hanyuan, HU Liwu, ZHANG Zidi, ZHU Xingyu, CHEN Cunkun. Volatile Substances of Different Hosts of Cistanche deserticola in Xinjiang Based on GC-IMS[J]. Science and Technology of Food Industry, 2024, 45(9): 272-279. DOI: 10.13386/j.issn1002-0306.2023050230
    [2]KAN Jintao, WANG Yuanyuan, SONG Fei, ZHANG Jianguo, ZHANG Yufeng. Effect of Frozen Periods on Volatile Flavor Compounds of Coconut Water Based on GC-IMS and Chemometrics Analysis[J]. Science and Technology of Food Industry, 2023, 44(19): 329-335. DOI: 10.13386/j.issn1002-0306.2022110273
    [3]YAN Chen, ZHANG Yunbin, XU Qijie, ZHOU Xuxia, DING Yuting, WANG Wenjie. Effect of Storage Positions on the Volatile Flavor Compounds (VFCs) of Paddy Rice through Gas Chromatography-Ion Mobility Spectroscopy (GC-IMS) Analysis[J]. Science and Technology of Food Industry, 2023, 44(17): 375-382. DOI: 10.13386/j.issn1002-0306.2022120073
    [4]Bingkun YANG, Ning JU, Yuhong DING, Rong GUO, Mianhong GONG. Characterization of Volatile Flavors of Fermented Sea-buckthorn Yoghurt Using Gas Chromatography-Ion Mobility Spectroscopy[J]. Science and Technology of Food Industry, 2023, 44(13): 308-315. DOI: 10.13386/j.issn1002-0306.2022080120
    [5]LIU Lili, YANG Hui, JING Xiong, ZHANG Yafang, XU Chen, YAN Zongke, QI Yaohua. Analysis of Volatile Compounds in Aged Fengxiang Crude Baijiu Based on GC-MS and GC-IMS[J]. Science and Technology of Food Industry, 2022, 43(23): 318-327. DOI: 10.13386/j.issn1002-0306.2022040054
    [6]LUO Yang, FENG Tao, WANG Kai, LI Dejun, MENG Xianle, SHI Mingliang, WANG Liang. Analysis of Difference Volatile Organic Compounds in Passion Fruit with Different Maturity via GC-IMS[J]. Science and Technology of Food Industry, 2022, 43(15): 321-328. DOI: 10.13386/j.issn1002-0306.2021120148
    [7]ZHANG Minmin, LU Yanxiang, ZHAO Zhiguo, CUI Li, YAN Huijiao, WANG Xiao, ZHAO Hengqiang. Rapid Discrimination of Different Years of Brewing Liquor by Gas Chromatography-Ion Mobility Spectroscopy Combined with Chemometrics Method[J]. Science and Technology of Food Industry, 2021, 42(14): 226-232. DOI: 10.13386/j.issn1002-0306.2020080205
    [8]Hang YIN, Wenhong ZHOU, Yunxia BAI, Xiaoling LIU. Analysis of the Flavor of Guangxi Luosi-Noodle and Luosi-Hot-Pot by Electronic Nose and Gas Chromatography-Ion Mobility Spectrometry (GC-IMS)[J]. Science and Technology of Food Industry, 2021, 42(9): 281-288. DOI: 10.13386/j.issn1002-0306.2020070197
    [9]Wensheng YAO, Shuangyu MA, Yingxuan CAI, Dengyong LIU, Mingcheng ZHANG, Hao ZHANG. Analysis of Volatile Flavor Substances in Mutton Shashlik Based on GC-IMS Technology[J]. Science and Technology of Food Industry, 2021, 42(8): 256-263. DOI: 10.13386/j.issn1002-0306.2020060339
    [10]GUO Mei-juan, CHAI Chun-xiang, LU Xiao-xiang, WANG Tian, FAN Hou-qin. Development and applications of HS-SPME-GC-MS technology on detection of volatile flavor components in aquatic product[J]. Science and Technology of Food Industry, 2014, (09): 368-371. DOI: 10.13386/j.issn1002-0306.2014.09.072
  • Cited by

    Periodical cited type(13)

    1. 陈品文,杨贵先,蒲成伟,周立,杨贵川,唐明双,刘建中,祝正林. 南充辣木主要病虫害发生规律及其防控措施. 农技服务. 2024(03): 68-71 .
    2. 雷福红,龙继明,张祖兵,段波,马志亮,李海泉,赵春攀. 辣木茎叶、籽、果荚营养成分及提取物抗氧化活性研究. 中国食品添加剂. 2024(07): 40-45 .
    3. 张玲玲,黄幼霞,林水花,张文州,吴新泉. 辣木叶干粉制备工艺中添加载体及干燥技术研究. 东南园艺. 2024(06): 505-511 .
    4. 杨卓凡,宣攒威,罗浩鑫,郑智彬,朱锦鸿,周红祖,黄庆宝,余惠旻. 辣木叶及其有效成分抗高脂血症药理作用研究进展. 药物评价研究. 2023(04): 911-916 .
    5. 何至杭,刘丽,彭钟通,陈轶群,王艺颖,刘悦,曾曙才,莫其锋. 水氮耦合对辣木幼苗根系形态特征的影响. 广西植物. 2023(05): 936-946 .
    6. 张玉雯,蔡明,王福军,刘彦培,刘建勇,黄必志. 辣木作为蛋白饲料在家养动物饲喂上的应用进展. 草学. 2023(02): 66-77 .
    7. 陈冰冰,欧颖仪,叶灏铎,金昶言,梁兴唐,尹艳镇,郑韵英,曹庸,苗建银. 富硒辣木叶蛋白ACE抑制肽的酶解工艺优化及活性研究. 食品工业科技. 2022(03): 1-9 . 本站查看
    8. 余芳,汪洪涛,郑梦瑶,朱龙龙. 辣木茶多酚提取工艺优化及其体外抗氧化活性. 农产品加工. 2022(07): 24-28+34 .
    9. 张明晓,李化,陈娜,向俊洁,林路洁,李志勇,杨滨. 一测多评法同时测定辣木叶中硫苷及黄酮类成分的含量. 中国中药杂志. 2022(12): 3285-3294 .
    10. 张欣,周天天,孔祥辉,姜威,候杨. 黑木耳辣木叶复合压片糖果生产工艺研究. 中国食物与营养. 2022(11): 15-18 .
    11. 付饶,张明烁,彭华胜,张子隽,李皓月,宋坪,黄秀兰,李志勇. 柬埔寨常用药用植物资源的整理与研究. 中国现代中药. 2022(12): 2322-2334 .
    12. 岑忠用,苏江,高丽霞,吕丽娥,黄喜苗. 响应面优化辣木叶游离氨基酸的提取工艺. 饲料研究. 2021(11): 85-89 .
    13. Chidvilaphone Saythong,李家明,张玉鹏,唐燕飞,韦宗海,刘举祥,杨膺白,李梦梅. 发酵辣木叶对广西麻鸡生长性能、屠宰性能和肉品质的影响. 饲料研究. 2021(16): 20-24 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (302) PDF downloads (16) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return