LIU Liping, WANG Yazhen, YANG Lei, HE Ronghai, MA Haile, SUN Ling. Research Progress of Application and Mechanism of Ultrasonic Technology in Microbial Fermentation[J]. Science and Technology of Food Industry, 2021, 42(6): 357-362. DOI: 10.13386/j.issn1002-0306.2020060317
Citation: LIU Liping, WANG Yazhen, YANG Lei, HE Ronghai, MA Haile, SUN Ling. Research Progress of Application and Mechanism of Ultrasonic Technology in Microbial Fermentation[J]. Science and Technology of Food Industry, 2021, 42(6): 357-362. DOI: 10.13386/j.issn1002-0306.2020060317

Research Progress of Application and Mechanism of Ultrasonic Technology in Microbial Fermentation

More Information
  • Received Date: June 28, 2020
  • Available Online: March 15, 2021
  • With the development of microbial fermentation technology, microbial fermentation is widely used in food industry. As a new physical treatment method with low energy consumption, ultrasonic technology has been widely used in food industry, especially in fermentation engineering. The appropriate application of ultrasonic technology in fermentation engineering can improve the fermentation efficiency of microorganisms. The article summarizes the application of ultrasonic technology in microbial fermentation, including the application of non-destructive fermentation monitoring and ultrasound-assisted microbial fermentation. And the mechanism of ultrasound-assisted fermentation is explored, including the various responses of microorganisms to ultrasound and the changes of metabolites caused by ultrasound in cells. These studies provide theoretical basis for the application of ultrasonic technology in the field of food fermentation.
  • [1]
    张瑞婷,周涛,宋潇潇,等. 灵芝活性成分及其药理作用的研究进展[J]. 安徽农业科学,2018,46(3):18-19

    ,22.
    [2]
    曾昕. 小白链霉菌同步代谢葡萄糖和甘油合成ε-聚赖氨酸的生理机制研究[D]. 无锡:江南大学,2016.
    [3]
    蒋秋琪,吕雪芹,崔世修,等.代谢工程改造毕赤酵母发酵生产谷胱甘肽[J].食品与发酵工业,2020,46(17):9-14.
    [4]
    熊锋. 低强度超声波对酿酒酵母增殖和发酵效率影响的研究[D]. 镇江:江苏大学,2017.
    [5]
    Huang G P,Chen S W,Tang Y X,et al. Stimulation of low intensity ultrasound on fermentation of skim milk medium for yield of yoghurt peptides by Lactobacillus paracasei[J].Ultrasonics Sonochemistry,2019,51:315-324.
    [6]
    古丽加马力·艾萨,邢军,马龙,等.开菲尔发酵过程中风味物质动态变化[J].食品与发酵工业,2020,46(12):173-178.
    [7]
    Ojha K S,Mason T J,O'Donnell C P,et al. Ultrasound technology for food fermentation applications[J].Ultrasonics Sonochemistry,2017,34:410-417.
    [8]
    Huang G P,Tang Y X,Sun L,et al. Ultrasonic irradiation of low intensity with a mode of sweeping frequency enhances the membrane permeability and cell growth rate of Candida tropicalis[J].Ultrasonics Sonochemistry,2017,37:518-528.
    [9]
    Kwiatkowska B,Bennett J,Akunna J,et al. Stimulation of bioprocesses by ultrasound[J].Biotechnology Advances,2011,29(6):768-780.
    [10]
    Schläfer O,Sievers M,Klotzbücher H,et al. Improvement of biological activity by low energy ultrasound assisted bioreactors[J].Ultrasonics,2000,38(1-8):711-716.
    [11]
    Gani A,Baba W N,Ahmad M,et al. Effect of ultrasound treatment on physico-chemical,nutraceutical and microbial quality of strawberry[J].LWT-Food Science and Technology,2016,66:496-502.
    [12]
    Bermúdez-Aguirre D,Corradini M G,Mawson R,et al. Modeling the inactivation of Listeria innocua in raw whole milk treated under thermo-sonication[J].Innovative Food Science & Emerging Technologies,2009,10(2):172-178.
    [13]
    Novoa-Díaz D,Rodríguez-Nogales J M,Fernández-Fernández E,et al. Ultrasonic monitoring of malolactic fermentation in red wines[J].Ultrasonics,2014,54(6):1575-1580.
    [14]
    Dahroud B D,Mokarram R R,Khiabani M S,et al. Low intensity ultrasound increases the fermentation efficiency of Lactobacillus casei subsp.casei ATTC 39392[J].International Journal of Biological Macromolecules,2016,86:462-467.
    [15]
    Resa P,Elvira L,Montero de Espinosa F,et al. Ultrasonic velocity in water-ethanol-sucrose mixtures during alcoholic fermentation[J].Ultrasonics,2005,43(4):247-252.
    [16]
    Wang F,Ma A Z,Guo C,et al. Ultrasound-intensified laccase production from Trametes versicolor[J].Ultrasonics Sonochemistry,2013,20(1):118-124.
    [17]
    Dai C H,Xiong F,He R H,et al. Effects of low-intensity ultrasound on the growth,cell membrane permeability and ethanol tolerance of Saccharomyces cerevisiae[J].Ultrasonics Sonochemistry,2017,36:191-197.
    [18]
    Tizazu B Z,Roy K,Moholkar V S.Mechanistic investigations in ultrasound-assisted xylitol fermentation[J].Ultrasonics Sonochemistry,2018,48:321-328.
    [19]
    罗娟. 超声波对枯草芽孢杆菌液态发酵豆粕及其产物功能特性的影响[D]. 镇江:江苏大学,2016.
    [20]
    张赫男. 桑黄菌的物理诱变及其超声辅助发酵研究[D]. 镇江:江苏大学,2014.
    [21]
    田勤娟. 以酿酒酵母为模式真菌的白藜芦醇抗氧化研究[D]. 天津:天津大学,2018.
    [22]
    Kudo N,Okada K,Yamamoto K.Sonoporation by single-shot pulsed ultrasound with microbubbles adjacent to cells[J]. Biophysical Journal,2009,96(12):4866-4876.
    [23]
    Tzu-Yin W,Wilson K E,Machtaler S,et al. Ultrasound and microbubble guided drug delivery:Mechanistic understanding and clinical implications[J].Current Pharmaceutical Biotechnology,2013,14(8):743-752.
    [24]
    Deng C X.Targeted drug delivery across the blood-brain barrier using ultrasound technique[J].Therapeutic Delivery,2010,1(6):819-848.
    [25]
    Fujii H,Matkar P,Liao C,et al. Optimization of ultrasound-mediated anti-angiogenic cancer gene therapy[J].Molecular Therapy-Nucleic Acids,2013,2:e94.
    [26]
    Lentacker I,De Cock I,Deckers R,et al. Understanding ultrasound induced sonoporation:Definitions and underlying mechanisms[J].Advanced Drug Delivery Reviews,2014,72:49-64.
    [27]
    Delalande A,Kotopoulis S,Postema M,et al. Sonoporation:Mechanistic insights and ongoing challenges for gene transfer[J]. Gene,2013,525(2):191-199.
    [28]
    Delalande A,Kotopoulis S,Rovers T,et al. Sonoporation at a low mechanical index[J].Bubble Science,Engineering & Technology,2011,3(1):3-12.
    [29]
    Pitt W G,Ross S A.Ultrasound increases the rate of bacterial cell growth[J].Biotechnology Progress,2003,19(3):1038-1044.
    [30]
    Zhou Y,Kumon R E,Cui J M,et al. The size of sonoporation pores on the cell membrane[J].Ultrasound in Medicine & Biology,2009,35(10):1756-1760.
    [31]
    Liu R,Zhang X,Ren A,et al. Heat stress-induced reactive oxygen species participate in the regulation of HSP expression,hyphal branching and ganoderic acid biosynthesis in Ganoderma lucidum[J].Microbiological Research,2018,209:43-54.
    [32]
    Lu Z L,Kong X X,Lu Z M,et al. Para-aminobenzoic acid(PABA)synthase enhances thermotolerance of mushroom Agaricus bisporus[J].PLoS One,2014,9(3):e91298.
    [33]
    Kong W W,Huang C Y,Chen Q,et al. Nitric oxide is involved in the regulation of trehalose accumulation under heat stress in Pleurotus eryngii var.tuoliensis[J].Biotechnology Letters,2012,34(10):1915-1919.
    [34]
    Leach M D,Budge S,Walker L,et al. Hsp90 orchestrates transcriptional regulation by Hsf1 and cell wall remodelling by MAPK signalling during thermal adaptation in a pathogenic yeast[J].PLoS Pathogens,2012,8(12):e1003069.
    [35]
    Song C,Chen Q,Wu X L,et al. Heat stress induces apoptotic-like cell death in two Pleurotus species[J].Current Microbiology,2014,69(5):611-616.
    [36]
    Liu Y N,Zhang T J,Lu X X,et al. Membrane fluidity is involved in the regulation of heat stress induced secondary metabolism in Ganoderma lucidum[J].Environmental Microbiology,2017,19(4):1653-1668.
    [37]
    滕中秋,付卉青,贾少华,等.植物应答非生物胁迫的代谢组学研究进展[J].植物生态学报,2011,35(1):110-118.
    [38]
    管仁伟,林慧彬,林建强.干旱及盐胁迫对黄芩种子萌发和黄酮合成关键酶活性的影响[J].中药材,2020,43(1):9-14.
    [39]
    杨松. 铈诱导子强化红豆杉细胞次生代谢产物生产的信号机制研究[D]. 天津:天津大学,2007.
    [40]
    Guo J F,Qi J F,He K L,et al. The Asian corn borer Ostrinia furnacalis feeding increases the direct and indirect defence of mid-whorl stage commercial maize in the field[J].Plant Biotechnology Journal,2019,17(1):88-102.
    [41]
    Liu M M,Feng M X,Yang K,et al. Transcriptomic and metabolomic analyses reveal antibacterial mechanism of astringent persimmon tannin against Methicillin-resistant Staphylococcus aureus isolated from pork[J].Food Chemistry,2020,309:125692.
    [42]
    向杰,陈敬师,夏鑫鑫,等.基于转录-代谢联合分析哈茨木霉ACCC32527对NaCl胁迫的分子调节[J].中国农业科学,2019,52(12):2079-2091.
    [43]
    Zhang Z L,Xiong F,Wang Y,et al. Fermentation of Saccharomyces cerevisiae in a one liter flask coupled with an external circulation ultrasonic irradiation slot:Influence of ultrasonic mode and frequency on the bacterial growth and metabolism yield[J].Ultrasonics Sonochemistry,2019,54:39-47.
    [44]
    Chang Y W,Zhang X X,Lu M X,et al. Transcriptome analysis of Liriomyza trifolii(Diptera:Agromyzidae)in response to temperature stress[J].Comparative Biochemistry and Physiology.Part D,Genomics & Proteomics,2020,34:100677.
    [45]
    Chen J F,Tsai Y T,Lai Y H,et al. Proteomic analysis of Antrodia Cinnamomea-induced ER stress in liver cancer cells[J].Journal of Pharmaceutical and Biomedical Analysis,2020,187:113142.
    [46]
    Lu Y H,Lam H,Pi E X,et al. Comparative metabolomics in Glycine max and Glycine soja under salt stress to reveal the phenotypes of their offspring[J].Journal of Agricultural and Food Chemistry,2013,61(36):8711-8721.
    [47]
    Ren X F,Zhang X,Liang Q F,et al. Effects of different working modes of ultrasound on structural characteristics of zein and ACE inhibitory activity of hydrolysates[J].Journal of Food Quality,2017,2017:1-8.
    [48]
    Huang L R,Ding X N,Dai C H,et al. Changes in the structure and dissociation of soybean protein isolate induced by ultrasound-assisted acid pretreatment[J].Food Chemistry,2017,232:727-732.
  • Cited by

    Periodical cited type(1)

    1. 汪芸萱,应勇,黄丽,满念薇,徐玉玲,张军涛,许承志. 蚕丝蛋白的体外自组装动力学行为研究. 广州化工. 2024(23): 25-27+41 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (346) PDF downloads (54) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return