ZHU Shanshan, LIAN Siyu, LI Lina, et al. Research Progress on Analysis of Benzimidazole Residues in Food Based on Chromatography-Mass Spectrometry[J]. Science and Technology of Food Industry, 2021, 42(10): 385−395. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020060308.
Citation: ZHU Shanshan, LIAN Siyu, LI Lina, et al. Research Progress on Analysis of Benzimidazole Residues in Food Based on Chromatography-Mass Spectrometry[J]. Science and Technology of Food Industry, 2021, 42(10): 385−395. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020060308.

Research Progress on Analysis of Benzimidazole Residues in Food Based on Chromatography-Mass Spectrometry

More Information
  • Received Date: June 23, 2020
  • Available Online: March 15, 2021
  • In recent years, benzimidazoles as insect repellents and fungicides have been widely used and related toxicity studies. Food safety problems caused by benzimidazole and its metabolites have received more and more attention. Liquid chromatography and liquid chromatography mass spectrometry are currently the most commonly used methods for the detection of benzimidazoles in food. Therefore, this article summarizes basic information about the main use objects, diseases and residual markers of benzimidazoles. In addition, this article discusses QuEChERS technology, solid phase extraction technology, liquid-liquid extraction technology and molecular imprinting technology, which are four of the most commonly used pretreatment methods for detecting benzimidazoles in food in recent years based on liquid chromatography and liquid chromatography mass spectrometry. The application of liquid chromatography and liquid chromatography mass spectrometry in the detection of benzimidazoles in foods is summarized. The miniaturization and automation of equipment, precise pre-processing of adsorbent materials, and the improvement of the mass spectrometry database to improve the detection level of benzimidazole substances are intended to provide a useful reference for in-depth research on the detection of benzimidazole substances in food.
  • [1]
    林海丹, 林峰, 张美金, 等. 高效液相色谱法同时测定动物组织中16种苯并咪唑类药物残留[J]. 食品科学,2011,32(2):231−236.
    [2]
    Bansal Y, Silakari O. The therapeutic journey of benzimidazoles: A review[J]. Bioorganic & Medicinal Chemistry,2012,20(21):6208−6236.
    [3]
    Zheng F, Xiao H M, Zhu Q F, et al. Profiling of benzimidazoles and related metabolites in pig serum based on SiO2@NiO solid-phase extraction combined precursor ion scan with high resolution orbitrap mass spectrometry[J]. Food Chemistry,2019,284:279−286. doi: 10.1016/j.foodchem.2019.01.071
    [4]
    Cai Y, He X, Cui P L, et al. Preparation of a chemiluminescence sensor for multi-detection of benzimidazoles in meat based on molecularly imprinted polymer[J]. Food Chemistry,2019,280:103−109. doi: 10.1016/j.foodchem.2018.12.052
    [5]
    Fu G D, Sun D W, Pu H B, et al. Fabrication of gold nanorods for SERS detection of thiabendazole in apple[J]. Talanta,2019,195:841−849. doi: 10.1016/j.talanta.2018.11.114
    [6]
    Derayea S M, Hamad A A, Nagy D M, et al. Improved spectrofluorimetric determination of mebendazole, a benzimidazole anthelmintic drug, through complex formation with lanthanum (III); Application to pharmaceutical preparations and human plasma[J]. Journal of Molecular Liquids,2018,272:337−343. doi: 10.1016/j.molliq.2018.09.098
    [7]
    Attia K, Nassar M W I, Eldosoky M, et al. Spectrophotometric methods for determination of mebendazole in presence of its alkaline induced degradation product in pure form and pharmaceutical preparation[J]. Ijppr. Human,2015,4(3):1−19.
    [8]
    Xu L N, Luan F, Wang L J, et al. Development of a capillary zone electrophoresis method for determination of mebendazole and levamisole hydrochloride in a combined tablet and a comparison with a LC method[J]. Journal of AOAC International,2014,97(1):128−132. doi: 10.5740/jaoacint.12-268
    [9]
    张彩芹, 张勋, 李洁, 等. 胶体金试纸条同时检测鲤鱼中7种苯并咪唑类药物残留[J/OL]. 现代食品科技, 2020-02-14[2020-03-26]. http://kns.cnki.net/kcms/detail/44.1620.TS.20200214.0854.002.html.
    [10]
    Danaher M, De R H, Crooks S R H, et al. Review of methodology for the determination of benzimidazole residues in biological matrices[J]. Journal of Chromatography B,2007,845(1):1−37. doi: 10.1016/j.jchromb.2006.07.046
    [11]
    Main D C, Vass D E. Cambendazole toxicity in calves[J]. Australian Veterinary Journal,1980,56(5):237−238. doi: 10.1111/j.1751-0813.1980.tb15982.x
    [12]
    Kikuchi H, Sakai T, Okura T, et al. Total determination of triclabendazole and its metabolites in bovine tissues using liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography B,2019,1109:54−59. doi: 10.1016/j.jchromb.2019.01.021
    [13]
    De R H, Daeseleire E, De R H, et al. Liquid chromatographic-electrospray tandem mass spectrometric method for the determination of mebendazole and its hydrolysed and reduced metabolites in sheep muscle[J]. Analytica Chimica Acta,2003,483(1−2):111−123. doi: 10.1016/S0003-2670(02)01018-8
    [14]
    Ferreira J A, Ferreira J M S, Talamini V, et al. Determination of pesticides in coconut (Cocos nucifera Linn.) water and pulp using modified QuEChERS and LC–MS/MS[J]. Food Chemistry,2016,213:616−624. doi: 10.1016/j.foodchem.2016.06.114
    [15]
    王纪晶, 苗虹. 食品中苯并咪唑类农药残留检测方法研究进展[J]. 食品安全质量检测学报,2013,4(3):636−644.
    [16]
    Lee H S, Rahman M M, Chung H S, et al. An effective methodology for simultaneous quantification of thiophanate-methyl, and its metabolite carbendazim in pear, using LC-MS/MS[J]. Journal of Chromatography B,2018,1095:1−7. doi: 10.1016/j.jchromb.2018.07.010
    [17]
    Gonzalez C M Á, Socas R B, Herrera H A V, et al. Evolution and applications of the QuEChERS method[J]. TrAC Trends in Analytical Chemistry,2015,71:169−185. doi: 10.1016/j.trac.2015.04.012
    [18]
    Perestrelo R, Silva P, Porto F P, et al. QuEChERS-Fundamentals, relevant improvements, applications and future trends[J]. Analytica Chimica Acta,2019,1070:1−28. doi: 10.1016/j.aca.2019.02.036
    [19]
    Zhang Y Q, Liu X M, Li X, et al. Rapid screening and quantification of multi-class multi-residue veterinary drugs in royal jelly by ultra performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry[J]. Food Control,2016,60:667−676. doi: 10.1016/j.foodcont.2015.09.010
    [20]
    Jean L D O A, Antunielle S, Jahir A B A, et al. Chitosan from shrimp shells: A renewable sorbent applied to the clean-up step of the QuEChERS method in order to determine multi-residues of veterinary drugs in different types of milk[J]. Food Chemistry,2018,240:1243−1253. doi: 10.1016/j.foodchem.2017.08.041
    [21]
    Petrarca M H, Fernandes J O, Godoy H T, et al. Multiclass pesticide analysis in fruit-based baby food: A comparative study of sample preparation techniques previous to gas chromatography-mass spectrometry[J]. Food Chemistry,2016,212:528−536. doi: 10.1016/j.foodchem.2016.06.010
    [22]
    Hashemi B, Zohrabi P, Shamsipur M. Recent developments and applications of different sorbents for SPE and SPME from biological samples[J]. Talanta,2018,187:337−347. doi: 10.1016/j.talanta.2018.05.053
    [23]
    Justyna P W, Natalia S, Miguel D L G, et al. Miniaturized solid-phase extraction techniques[J]. TrAC Trends in Analytical Chemistry,2015,73:19−38. doi: 10.1016/j.trac.2015.04.026
    [24]
    Wierucka M, Biziuk M. Application of magnetic nanoparticles for magnetic solid-phase extraction in preparing biological, environmental and food samples[J]. TrAC Trends in Analytical Chemistry,2014,59:50−58. doi: 10.1016/j.trac.2014.04.007
    [25]
    Andrade E A, Moises C, Valerie L C, et al. Solid-phase extraction of organic compounds: A critical review (Part I)[J]. TrAC Trends in Analytical Chemistry,2016,80:641−654. doi: 10.1016/j.trac.2015.08.015
    [26]
    Wang L L, Zhang M H, Zhang D F, et al. New approach for the simultaneous determination fungicide residues in food samples by using carbon nanofiber packed microcolumn coupled with HPLC[J]. Food Control,2016,60:1−6. doi: 10.1016/j.foodcont.2015.07.024
    [27]
    Hamdan A E. Determination of some benzimidazole fungicides in tomato puree by high performance liquid chromatography with SampliQ polymer SCX solid phase extraction[J]. Arabian Journal of Chemistry,2011,4(1):115−117. doi: 10.1016/j.arabjc.2010.06.027
    [28]
    Zhao W J, Wang X Y, Guo J H, et al. Evaluation of sulfonic acid functionalized covalent triazine framework as a hydrophilic-lipophilic balance/cation-exchange mixed-mode sorbent for extraction of benzimidazole fungicides in vegetables, fruits and juices[J]. Journal of Chromatography A,2020:460847.
    [29]
    Zhu W X, Yang J Z, Wang Z X, et al. Rapid determination of 88 veterinary drug residues in milk using automated TurborFlow online clean-up mode coupled to liquid chromatography-tandem mass spectrometry[J]. Talanta,2016,148:401−411. doi: 10.1016/j.talanta.2015.10.037
    [30]
    吴韵, 王苑, 王兴益, 等. 巯基聚合整体柱固相微萃取-超高效液相色谱/串联质谱检测食品中苯并咪唑[J]. 分析试验室,2018,37(8):874−879.
    [31]
    Rizzetti T M, Desouza M P, Prestes O D, et al. Optimization of sample preparation by central composite design for multi-class determination of veterinary drugs in bovine muscle, kidney and liver by ultra-high-performance liquid chromatographic-tandem mass spectrometry[J]. Food Chemistry,2018,246:404−413. doi: 10.1016/j.foodchem.2017.11.049
    [32]
    Niu Z L, Zhang W W, Yu C W, et al. Recent advances in biological sample preparation methods coupled with chromatography, spectrometry and electrochemistry analysis techniques[J]. TrAC Trends in Analytical Chemistry,2018,102:123−146. doi: 10.1016/j.trac.2018.02.005
    [33]
    Farajzadeh M A, Mohebbi A, Pazhohan A, et al. Air–assisted liquid–liquid microextraction; principles and applications with analytical instruments[J]. TrAC Trends in Analytical Chemistry,2019,122:115734.
    [34]
    Piatkowska M, Jedziniak P, Zmudzki J. Multiresidue method for the simultaneous determination of veterinary medicinal products, feed additives and illegal dyes in eggs using liquid chromatography-tandem mass spectrometry[J]. Food Chemistry,2016,197:571−580. doi: 10.1016/j.foodchem.2015.10.076
    [35]
    Maria A R, Lidia M R P, Miguel Á G C, et al. Liquid phase microextraction applications in food analysis[J]. Journal of Chromatography A,2011,1218(42):7415−7437. doi: 10.1016/j.chroma.2011.05.096
    [36]
    Carmen T C, Monsalud D O I, Ana M, et al. Green and simple analytical method to determine benzimidazoles in milk samples by using salting-out assisted liquid-liquid extraction and capillary liquid chromatography[J]. Journal of Chromatography B,2018,1091:46−52. doi: 10.1016/j.jchromb.2018.05.024
    [37]
    Teglia C M, Gonzalo L, Culzoni M J, et al. Determination of six veterinary pharmaceuticals in egg by liquid chromatography: Chemometric optimization of a novel air assisted-dispersive liquid-liquid microextraction by solid floating organic drop[J]. Food Chemistry,2019,273:194−202. doi: 10.1016/j.foodchem.2017.08.034
    [38]
    Asadi M, Dadfarnia S, Shabani A M H. Simultaneous extraction and determination of albendazole and triclabendazole by a novel syringe to syringe dispersive liquid phase microextraction-solidified floating organic drop combined with high performance liquid chromatography[J]. Analytica Chimica Acta,2016,932:22−28. doi: 10.1016/j.aca.2016.05.014
    [39]
    Zhang Y, Huang X J, Yuan D X. Determination of benzimidazole anthelmintics in milk and honey by monolithic fiber-based solid-phase microextraction combined with high-performance liquid chromatography–diode array detection[J]. Analytical and Bioanalytical Chemistry,2015,407(2):557−567. doi: 10.1007/s00216-014-8284-8
    [40]
    Ansari S, Karimi M. Novel developments and trends of analytical methods for drug analysis in biological and environmental samples by molecularly imprinted polymers[J]. TrAC Trends in Analytical Chemistry,2017,89:146−162. doi: 10.1016/j.trac.2017.02.002
    [41]
    Zhou T Y, Ding L, Che G B, et al. Recent advances and trends of molecularly imprinted polymers for specific recognition in aqueous matrix: preparation and application in sample pretreatment[J]. TrAC Trends in Analytical Chemistry,2019,114:11−28. doi: 10.1016/j.trac.2019.02.028
    [42]
    Ansari S. Application of magnetic molecularly imprinted polymer as a versatile and highly selective tool in food and environmental analysis: recent developments and trends[J]. TrAC Trends in Analytical Chemistry,2017,90:89−106. doi: 10.1016/j.trac.2017.03.001
    [43]
    Chen F F, Wang J Y, Chen H R, et al. Microwave-assisted RAFT polymerization of well-constructed magnetic surface molecularly imprinted polymers for specific recognition of benzimidazole residues[J]. Applied Surface Science,2018,435:247−255. doi: 10.1016/j.apsusc.2017.11.061
    [44]
    Liang G H, Guo X J, Tan X C, et al. Molecularly imprinted monolithic column based on functionalized β-cyclodextrin and multi-walled carbon nanotubes for selective recognition of benzimidazole residues in citrus samples[J]. Microchemical Journal,2019,146:1285−1294. doi: 10.1016/j.microc.2019.02.064
    [45]
    Masia A, Suarezvarela M M, Llopisgonzalez A, et al. Determination of pesticides and veterinary drug residues in food by liquid chromatography-mass spectrometry: A review[J]. Analytica Chimica Acta,2016,936:40−61. doi: 10.1016/j.aca.2016.07.023
    [46]
    Vousdouka V I, PapapanagiotouA E P, Angelidis A S, et al. Rapid ion-pair liquid chromatographic method for the determination of fenbendazole marker residue in fermented dairy products[J]. Food Chemistry,2017,221:884−890. doi: 10.1016/j.foodchem.2016.11.080
    [47]
    Van N A L N, Tarcomnicu I, Covaci A. Application of hydrophilic interaction chromatography for the analysis of polar contaminants in food and environmental samples[J]. Journal of Chromatography A,2011,1218(35):5964−5974. doi: 10.1016/j.chroma.2011.01.075
    [48]
    谌叶. 新型亲水性有机聚合物整体柱的制备及应用[D]. 长沙: 湖南师范大学, 2018.
    [49]
    Dasenaki M E, Michali C S, Thomaidis N S. Analysis of 76 veterinary pharmaceuticals from 13 classes including aminoglycosides in bovine muscle by hydrophilic interaction liquid chromatography–tandem mass spectrometry[J]. Journal of Chromatography A,2016,1452:67−80. doi: 10.1016/j.chroma.2016.05.031
    [50]
    邹游, 邵琳智, 吴映璇. 高效液相色谱法测定鸡组织中苯并咪唑类药物残留标志物[J]. 色谱,2019,37(10):1112−1117.
    [51]
    Xu N, Dong J, Yang Y B, et al. Development of a liquid chromatography–tandem mass spectrometry method with modified QuEChERS extraction for the quantification of mebendazole and its metabolites, albendazole and its metabolites, and levamisole in edible tissues of aquatic animals[J]. Food Chemistry,2018,269:442−449. doi: 10.1016/j.foodchem.2018.07.017
    [52]
    Oyedeji A O, Msagati T A M, Williams A B, et al. Determination of antibiotic residues in frozen poultry by a solid-phase dispersion method using liquid chromatography-triple quadrupole mass spectrometry[J]. Toxicology Reports,2019,6:951−956. doi: 10.1016/j.toxrep.2019.09.005
    [53]
    Tette P A S, Da S O F A, Pereira E N C, et al. Multiclass method for pesticides quantification in honey by means of modified QuEChERS and UHPLC–MS/MS[J]. Food Chemistry,2016,211:130−139. doi: 10.1016/j.foodchem.2016.05.036
    [54]
    Guilherme R D S, Josefa A L, Leonardo F D S, et al. Multiresidue method for identification and quantification of avermectins, benzimidazoles and nitroimidazoles residues in bovine muscle tissue by ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) using a QuEChERS approach[J]. Talanta,2017,171:307−320. doi: 10.1016/j.talanta.2017.05.012
    [55]
    Yoshikawa S, Nagano C, Kanda M, et al. Simultaneous determination of multi-class veterinary drugs in chicken processed foods and muscle using solid-supported liquid extraction clean-up[J]. Journal of Chromatography B,2017,1057:15−23. doi: 10.1016/j.jchromb.2017.04.041
    [56]
    Wang Y Y, Li X W, Zhang Z W, et al. Simultaneous determination of nitroimidazoles, benzimidazoles, and chloramphenicol components in bovine milk by ultra-high performance liquid chromatography–tandem mass spectrometry[J]. Food Chemistry,2016,192:280−287. doi: 10.1016/j.foodchem.2015.07.033
    [57]
    Lopez S H, Lozano A, Sosa A, et al. Screening of pesticide residues in honeybee wax comb by LC-ESI-MS/MS. A pilot study[J]. Chemosphere,2016,163:44−53. doi: 10.1016/j.chemosphere.2016.07.008
    [58]
    Zhan J, Shi X Z, Xu X W, et al. Generic and rapid determination of low molecular weight organic chemical contaminants in protein powder by using ultra-performance liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography B,2020,1138:121967. doi: 10.1016/j.jchromb.2020.121967
    [59]
    Helena D C M E, Collins C H, Cristina S F J I. Pesticide determination in sweet peppers using QuEChERS and LC–MS/MS[J]. Food Chemistry,2018,249:77−83. doi: 10.1016/j.foodchem.2017.12.092
    [60]
    Dong B Z, Yang Y P, Pang N N, et al. Residue dissipation and risk assessment of tebuconazole, thiophanate-methyl and its metabolite in table grape by liquid chromatography-tandem mass spectrometry[J]. Food Chemistry,2018,260:66−72. doi: 10.1016/j.foodchem.2018.03.062
    [61]
    王卉, 刘庆菊, 韩平. 基于液相色谱串联高分辨质谱的动物源农产品兽药残留检测研究综述[J/OL]. 江苏农业科学, 2020, 48(2): 57−64.
    [62]
    Rosalia L R, Roberto R G, Antonia G F. Ultrahigh-pressure liquid chromatography-mass spectrometry: An overview of the last decade[J]. TrAC Trends in Analytical Chemistry,2019,118:170−181. doi: 10.1016/j.trac.2019.05.044
    [63]
    Pico Y, Elsheikh M A, Alfarhan A H, et al. Target vs non-target analysis to determine pesticide residues in fruits from Saudi Arabia and influence in potential risk associated with exposure[J]. Food and Chemical Toxicology,2018,111:53−63. doi: 10.1016/j.fct.2017.10.060
    [64]
    Pang G F, Fan C L, Chang Q Y, et al. Screening of 485 pesticide residues in fruits and vegetables by liquid chromatography-quadrupole-time-of-flight mass spectrometry based on TOF accurate mass database and QTOF spectrum library[J]. Journal of AOAC International,2018,101(4):1156−1182. doi: 10.5740/jaoacint.17-0125
    [65]
    Wang J, Chow W, Leung D. Applications of LC/ESI-MS/MS and UHPLC/Qq-TOF-MS for the determination of 141 pesticides in tea[J]. Journal of AOAC International,2011,94(6):1685−1714. doi: 10.5740/jaoacint.SGEWang
    [66]
    Kaufmann A, Dvorak V, Cruzer C, et al. Study of high-resolution mass spectrometry technology as a replacement for tandem mass spectrometry in the field of quantitative pesticide residue analysis[J]. Journal of AOAC International,2012,95(2):528−548. doi: 10.5740/jaoacint.11-074
    [67]
    Pugajeva I, Ikkere L E, Judjallo E, et al. Determination of residues and metabolites of more than 140 pharmacologically active substances in meat by liquid chromatography coupled to high resolution Orbitrap mass spectrometry[J]. Journal of Pharmaceutical and Biomedical Analysis,2019,166:252−263. doi: 10.1016/j.jpba.2019.01.024
    [68]
    Yu Q W, Liu S J, Zheng F, et al. Identification and quantification of benzimidazole metabolites of thiophonate-methyl sprayed on celery cabbage using SiO2@NiO solid-phase extraction in combination with HPLC-MS/MS[J]. Chinese Chemical Letters,2020,31(2):482−486. doi: 10.1016/j.cclet.2019.07.065
    [69]
    Zhao F, Gao X, Tang Z X, et al. Development of a simple multi-residue determination method of 80 veterinary drugs in Oplegnathus punctatus by liquid chromatography coupled to quadrupole Orbitrap mass spectrometry[J]. Journal of Chromatography B,2017,1065:20−28.
    [70]
    Maciel E V S, De T A L, Sobieski E, et al. Miniaturized liquid chromatography focusing on analytical columns and mass spectrometry: A review[J]. Analytica Chimica Acta,2019,1103:11−31.
  • Cited by

    Periodical cited type(5)

    1. 庞文倩,于蕊,李大婧,刘春菊,白冰. 紫玉米花色苷辅色配方优化及其对紫玉米品质的影响. 食品与机械. 2024(03): 196-202+216 .
    2. 邱晓坤,宿珈嘉,聂江力,李喜宏,裴毅. 黑加仑果胶酶酶解榨汁工艺优化. 食品研究与开发. 2024(15): 117-123 .
    3. 郑杰,杨敏,王楠,甄晨波. 天然大分子对花色苷的负载研究进展. 食品与发酵工业. 2022(10): 290-298 .
    4. 赵佳伟,袁杰彬,安明哲,李茂,张伟建,陆培. 黄酮类化合物对肠道微生物的影响及其机制研究进展. 酿酒科技. 2021(04): 89-95 .
    5. 曾德玉,龙安金,曾珍,黄锐,叶阳. 膨化玉米粉配方优化及冲调性分析. 食品工业. 2021(12): 147-151 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (409) PDF downloads (40) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return