Citation: | YANG Cong, GUO Liqiong, WAN Hua, et al. Research Advances on Transglutaminases and Their Applications in Food Industry[J]. Science and Technology of Food Industry, 2021, 42(10): 370−377. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306. 2020060302. |
[1] |
Gaspar A L, de Góes - Favoni S P. Action of microbial transglutaminase(MTGase) in the modification of food proteins: A review[J]. Food Chemistry,2015,171:315−322. doi: 10.1016/j.foodchem.2014.09.019
|
[2] |
石天臣, 黄学, 王学锋. 转谷氨酰胺酶改性蛋白质的研究进展[J]. 食品安全导刊,2018(36):162−164, 166.
|
[3] |
李洪波. 黏玉米谷氨酰胺转氨酶微生物异源表达及其酶学性质研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
|
[4] |
Hani I Aidaroos, Guocheng Du, Jian Chen. Microbial fed-batch production of transglu-taminase using ammonium sulphate and calcium chloride by Streptomyces hygro-scopicus[J]. Biotechnology, Bioinformatics and Bioengineering,2011,1:173−178.
|
[5] |
Chen K, Zhang D, Liu S, et al. Improvement of transglutaminase production by extending differentiation phase of Streptomyces hygroscopicus: Mechanism and application[J]. Applied Microbiology and Biotechnology,2013:97, 7711−7719.
|
[6] |
钱镭. 转谷氨酰胺酶交联晶体及聚丙烯微孔膜表面固定化研究[D]. 哈尔滨: 哈尔滨商业大学, 2013.
|
[7] |
Phong W N, Show P L, Chow Y H, et al. Recovery of biotechnological products using aqueous two phase systems[J]. Journal of Bioscience and Bioengineering,2018,126(3):273−281. doi: 10.1016/j.jbiosc.2018.03.005
|
[8] |
裴正培. 突变茂源链霉菌谷氨酰胺转胺酶的性质研究[D]. 上海: 华东师范大学, 2014.
|
[9] |
Kashiwagi T, Yokoyama K, Ishikawa K, et al. Crystal structure of microbial transglutaminase from Streptoverticillium mobaraense[J]. Journal of Biological Chemistry,2002,277:44252−44260. doi: 10.1074/jbc.M203933200
|
[10] |
Ando H, Adachi M, Umeda K, et al. Purification and characteristics of a novel transglutaminase derived from mi-croorganisms[J]. Agricultural and Biological Chemistry,1989,53:2613−2617.
|
[11] |
Doti N, Caporale A, Monti A, et al. A recent update on the use of microbial transglutaminase for the generation of biotherapeutics[J]. World Journal of Microbiology & Biotechnology,2020,36(4):53.
|
[12] |
Chan S K, Lim T S. Bioengineering of microbial transglutaminase for biomedical applications[J]. Applied Microbiology and Biotechnology,2019,103(7):2973−2984. doi: 10.1007/s00253-019-09669-3
|
[13] |
Shimba N, Yokoyama K, Suzuki E. NMR-based screening method for transglutaminases: Rapid analysis of their substrate specificities and reaction rates[J]. Journal of Agricultural and Food Chemistry,2002,50(6):1330−1334. doi: 10.1021/jf010995k
|
[14] |
Norbert E, Juettner et al. Structure of a glutamine donor mimicking inhibitory peptide shaped by the catalytic cleft of microbial transglutaminase[J]. The FEBS Journal,2018,285(24):4684−4694.
|
[15] |
Yang M T, Chang C H, Wang J M, et al. Crystal structure and inhibition studies of transglutaminase from Streptomyces mobaraense[J]. Journal of Biological Chemistry,2011,286(9):7301−7307. doi: 10.1074/jbc.M110.203315
|
[16] |
Ahhmed A M, Kuroda R, Kawahara S, et al. Dependence of microbial transglutaminase on meat type in myofibrillar proteins cross-linking[J]. Food Chemistry,2009,112(2):354−361. doi: 10.1016/j.foodchem.2008.05.078
|
[17] |
Uran H, Aksu F, Yilmaz İ, et al. Effect of transglutaminase on the quality properties of chicken breast patties[J]. Kafkas Universitesi Veteriner Fakultesi Dergisi,2013,19(2):331−335.
|
[18] |
Aaslyng M D, Vestergaard C, Koch A G. The effect of salt reduction on sensory quality and microbial growth in hotdog sausages, bacon, ham and salami[J]. Meat Sci,2014,96(1):47−55. doi: 10.1016/j.meatsci.2013.06.004
|
[19] |
Nielsen G S, Petersen B R, Møller A J. Impact of salt, phosphate and temperature on the effect of a transglutaminase (F XIIIa) on the texture of restructured meat[J]. Meat Science,1995,41(3):293−299. doi: 10.1016/0309-1740(94)00002-O
|
[20] |
Gharibzahedi S M T, Chronakis I S. Crosslinking of milk proteins by microbial transglutaminase: Utilization in functional yogurt products[J]. Food Chemistry,2018,245:620−632. doi: 10.1016/j.foodchem.2017.10.138
|
[21] |
Romeih E, Abdel-Hamid M, Awad A. The addition of buttermilk powder and transglutaminase improves textural and organoleptic properties of fat-free buffalo yogurt[J]. Dairy Science & Technology,2014,94:297−309.
|
[22] |
Da Silva T M, de Deus C, de Souza Fonseca B, et al. The effect of enzymatic crosslinking on the viability of probiotic bacteria (Lactobacillus acidophilus) encapsulated by complex coacervation[J]. Food Research International,2019,125:108577. doi: 10.1016/j.foodres.2019.108577
|
[23] |
Tsevdou M S, Eleftheriou E G, Taoukis P S. Transglutaminase treatment of thermally and high pressure processed milk: Effects on the properties and storage stability of set yoghurt[J]. Innovative Food Science and Emerging Technologies,2013,17:144−152. doi: 10.1016/j.ifset.2012.11.004
|
[24] |
Topcu A, Bulat T, Özer B. Process design for processed Kashar cheese (a- pasta-filata cheese) by means of microbial transglutaminase: Effect on physical properties, yield and proteolysis[J]. LWT - Food Science and Technology,2020,125:109226. doi: 10.1016/j.lwt.2020.109226
|
[25] |
Fotschki J, Wróblewska B, Fotschki B, et al. Microbial transglutaminase alters the immunogenic potential and cross-reactivity of horse and cow milk proteins[J]. Journal of Dairy Science,2020,103(3):2153−2166. doi: 10.3168/jds.2019-17264
|
[26] |
Luongo D, Maurano F, Bergamo P, et al. Microbial transglutaminase: A biotechnological tool to manage gluten intolerance[J]. Analytical Biochemistry,2020,592:113584. doi: 10.1016/j.ab.2020.113584
|
[27] |
Comunian T A, Gomez-Estaca J, Ferro-Furtado R, et al. Effect of different polysaccharides and crosslinks on echium oil microcapsules[J]. Elsevier Science,2016,150:319−29.
|
[28] |
Prata A S, Zaninb M H A, Re M I, et al. Release properties of chemical and enzymatic crosslinked gelatin-gum Arabic microparticles containing a fluorescent probe plus vetiver essential oil[J]. Colloids and Surfaces B: Biointerfaces,2008,67(2):171−178.
|
[29] |
Bastos L P H, Dos Santos C H C, de Carvalho M G, et al. Encapsulation of the black pepper (Piper nigrum L.) essential oil by lactoferrin-sodium alginate complex coacervates: Structural characterization and simulated gastrointestinal conditions[J]. Food Chemistry,2020,316:126345. doi: 10.1016/j.foodchem.2020.126345
|
[30] |
De Prisco, Gianluigi Mauriello. A Probiotication of foods a focus on microencapsulation tool[J]. Trends in Food Science & Technology,2015:924−2244.
|
[31] |
Ouwehand A C, Salminen S J. The health effects of cultured milk products with viable and non-viable bacteria[Z]. Elsevier Ltd, 1998: 8, 749−758.
|
[32] |
Shori A B. Microencapsulation improved probiotics survival during gastric transit[J]. HAYATI Journal of Biosciences,2017,24(1):1−5. doi: 10.1016/j.hjb.2016.12.008
|
[33] |
Cook M T, Tzortzis G, Charalampopoulos D, et al. Microencapsulation of probiotics for gastrointestinal delivery[J]. Journal of Controlled Release,2012,162(1):56−67. doi: 10.1016/j.jconrel.2012.06.003
|
[34] |
Xiao Y, Han C, Yang H, et al. Layer (whey protein isolate) -by-layer (xanthan gum) microencapsulation enhances survivability of L. bulgaricus and L. paracasei under simulated gastrointestinal juice and thermal conditions[J]. International Journal of Biological Macromolecules,2020:14417.
|
[35] |
Mora-Gutierrez A, Attaie R, Kirven J M, et al. Cross-linking of bovine and caprine caseins by microbial transglutaminase and their use as microencapsulating agents for n-3 fatty acids[J]. International Journal of Food Science and Technology,2014:49, 1530−1543.
|
[36] |
Mao L, Roos Y H, Miao S. Study on the rheological properties and volatile release of cold-set emulsion-filled protein gels[J]. Journal of Agricultural and Food Chemistry,2014,62(47):11420−11428. doi: 10.1021/jf503931y
|
[37] |
Ye A, Taylor S. Characterization of cold-set gels produced from heated emulsions stabilized by whey protein[J]. International Dairy Journal,2009,19(12):721−727. doi: 10.1016/j.idairyj.2009.06.003
|
[38] |
Liang X, Ma C, Yan X, et al. Structure, rheology and functionality of whey protein emulsion gels Effects of double[J]. Food Hydrocolloids,2019,102:105569.
|
[39] |
韩敏义. 肌原纤维蛋白结构与热诱导凝胶功能特性关系研究[D]. 南京: 南京农业大学, 2009.
|
[40] |
Eissa A S, Bisram S, Khan S A. Polymerization and gelation of whey protein isolates at low pH using transglutaminase enzyme[J]. Journal of Agricultural and Food Chemistry,2004,52(14):4456−4464. doi: 10.1021/jf0355304
|
[41] |
Zhang M, Yang Y, Acevedo N C. Effects of pre-heating soybean protein isolate and transglutaminase treatments on the properties of egg-soybean protein isolate composite gels[J]. Food Chemistry,2020,318:126421. doi: 10.1016/j.foodchem.2020.126421
|
[42] |
Farhad Alavi, Emam-Djomeh Z, Salami M, et al. Effect of microbial transglutaminase on the mechanical properties and microstructure of acid-induced gels and emulsion gels produced from thermal denatured egg white proteins[J]. International Journal of Biological Macromolecules,2020:14959.
|
[43] |
Reid A A, Vuillemard J C, Britten M, et al. Microentrapment of probiotic bacteria in a Ca2+-induced whey protein gel and effects on their viability in a dynamic gastro-intestinal model[J]. Journal of Microencapsulation,2005:22−26.
|
[44] |
徐幸莲, 程巧芬, 周光宏. 转谷氨酰胺酶对蛋白质凝胶性能的影响[J]. 食品科学,2003(10):38−43. doi: 10.3321/j.issn:1002-6630.2003.10.006
|
[45] |
Sabbah M, Altamimi M, Di Pierro P, et al. Black edible films from protein-containing defatted cake of nigella sativa seeds[J]. International Journal of Molecular Sciences,2020,21(3):832. doi: 10.3390/ijms21030832
|
[46] |
Wang Y, Liu A, Ye R, et al. Transglutaminase-induced crosslinking of gelatin–calcium carbonate composite films[J]. Food Chemistry,2015,166:414−422. doi: 10.1016/j.foodchem.2014.06.062
|
[47] |
Peng N, Gu L, Li J, et al. Films based on egg white protein and succinylated casein cross-linked with transglutaminase[J]. Food and Bioprocess Technology,2017,10(8):1422−1430. doi: 10.1007/s11947-017-1901-8
|
[48] |
Cheng S, Wang W, Li Y, et al. Cross-linking and film-forming properties of transglutaminase-modified collagen fibers tailored by denaturation temperature[J]. Food Chemistry,2019,271:527−535. doi: 10.1016/j.foodchem.2018.07.223
|
[49] |
Porta R, Di Pierro P, Sabbah M, et al. Blend films of pectin and bitter vetch (Vicia ervilia) proteins: Properties and effect of transglutaminase[J]. Innovative Food Science and Emerging Technologies,2016,36:245−251. doi: 10.1016/j.ifset.2016.07.001
|
[50] |
Zadeh E M, O'Keefe S E, Kim Y, et al. Evaluation of enzymatically modified soy protein isolate film forming solution and film at different manufacturing conditions[J]. J Food Sci,2018,83(4):946−955. doi: 10.1111/1750-3841.14018
|
[51] |
Kaewprachu P, Osako K, Tongdeesoontorn W, et al. The effects of microbial transglutaminase on the properties of fish myofibrillar protein film[J]. Food Packaging and Shelf Life,2017,12:91−99. doi: 10.1016/j.fpsl.2017.04.002
|
1. |
郭莉滨. “双碳”和“健康中国”背景下植物基肉制品的营养组分及健康功能性研究进展. 食品安全质量检测学报. 2025(03): 123-129 .
![]() | |
2. |
陈金换,安红周,孙嘉瑜,张皓冰,黄泽华. 植物蛋白的改性加工及热点应用领域研究进展. 粮油食品科技. 2025(02): 83-89 .
![]() | |
3. |
王庆沛,宇光海,廖爱美,潘龙,黄继红. 微生物合成血红蛋白的研究进展及其在食品中的应用. 中国调味品. 2024(01): 189-197 .
![]() | |
4. |
王彦丽,刘萌,朱来景,赵祥忠. 辣椒添加对植物蛋白肉感官特性的影响. 中国调味品. 2024(03): 28-32 .
![]() | |
5. |
刘静,金娜,石春芹,李永双,邓清升,罗旋飞,刘艳,杨宝君,聂龙. 响应面法优化豌豆蛋白植物肉配方及其体外消化分析. 食品工业科技. 2024(08): 216-226 .
![]() | |
6. |
芦鑫,路风银,孙强,宋国辉,黄纪念. 植物蛋白肉感官品质与营养安全研究进展. 粮食与油脂. 2024(06): 6-10 .
![]() | |
7. |
俎新宇,赵亚男,王新新,杨进洁,边文洁,赵祥忠,梁艳. DHA藻油微胶囊粉对植物蛋白肉品质特性的影响. 食品研究与开发. 2024(14): 23-29 .
![]() | |
8. |
周鑫,马宁,王鑫,王恰,刘业学,田晓静,王稳航. 大豆组织蛋白发酵产品的体外消化特性. 食品研究与开发. 2024(17): 59-65 .
![]() | |
9. |
麻梦寒,冯朵,李梦洁,李琥,郭丽萍,王靖. 植物基食品加工技术、营养成分及其对不同人群的影响研究进展. 食品安全质量检测学报. 2024(18): 123-130 .
![]() | |
10. |
郭志伟,杨进洁,边文洁,赵祥忠,王晨莹. 酵母抽提物对植物蛋白肉品质的影响. 食品研究与开发. 2024(22): 9-14 .
![]() | |
11. |
葛志优,王羽,高艳娥,蔡维. 植物蛋白肉超声振动3D打印方法与试验. 农业工程学报. 2024(20): 259-268 .
![]() | |
12. |
王谊,陈志娜,尹琳琳,卞楠月,叶韬,陆剑锋. 豌豆蛋白粉添加量对低规格克氏原螯虾肉糜凝胶品质的影响. 廊坊师范学院学报(自然科学版). 2024(04): 56-62 .
![]() | |
13. |
刘萌,王聪睿,刘波,赵祥忠. 豇豆血红蛋白Lb Ⅱ在大肠杆菌中的重组表达条件优化、纯化与鉴定. 食品工业科技. 2023(04): 163-170 .
![]() | |
14. |
樊炯,马骏骅,颜金鑫,张慧恩,杨华. 冷藏温度对植物基培根品质的影响. 食品与机械. 2023(05): 115-118+131 .
![]() | |
15. |
孙莹,王龙,朱秀清,江连洲. 植物基蛋白肉的研究现状与挑战. 食品工业科技. 2023(17): 438-446 .
![]() | |
16. |
蔡维,王羽,高艳娥,李丽. 植物蛋白肉3D打印工艺参数优化. 农业工程学报. 2023(12): 254-264 .
![]() | |
17. |
刘浩栋,张金闯,陈琼玲,张玉洁,李同庆,王强. 植物基肉制品营养品质研究现状. 中国食品学报. 2023(08): 428-439 .
![]() | |
18. |
李振,相海,赵有斌,宋健宇,张德程,梁昊,张艺潇. 植物蛋白螺杆挤压组织化技术的研究进展. 中国油脂. 2023(09): 67-74 .
![]() | |
19. |
陶相锦,黄立强,王冬玲,马文平,马世岷. 植物蛋白肉生产的关键因素分析. 食品安全导刊. 2023(30): 160-162 .
![]() | |
20. |
佟宗航,李亚敏,高昂,谢赫然,高子凡,邢竹青. 植物蛋白肉产品品质评价及过敏原分析. 食品工业科技. 2022(04): 387-395 .
![]() | |
21. |
臧学丽,黄志远,叶春民. 高斯软件模拟转谷氨酰胺酶交联大豆分离蛋白机理的研究. 高分子通报. 2022(10): 108-119 .
![]() | |
22. |
袁丽,孔云菲,贾世亮,石彤,励建荣,包玉龙,高瑞昌. 植物蛋白在动物肉糜类制品中的应用现状及研究进展. 肉类研究. 2022(10): 43-50 .
![]() | |
23. |
豆康宁,赵永敢,金少举,李超敏,邓同兴,赵志军. 植物基肉制品的研究进展. 食品与机械. 2022(11): 230-235 .
![]() | |
24. |
李家磊,管立军,高扬,严松,王崑仑,王春丽,李晓娟,卢淑雯,李波,周野. 液熏高水分挤压组织化植物蛋白加工工艺优化. 中国食品学报. 2022(11): 214-227 .
![]() | |
25. |
高智利,杨军飞. 植物蛋白肉的研究进展与发展趋势. 食品安全导刊. 2021(12): 184-186 .
![]() | |
26. |
周亚楠,王淑敏,马小清,缪松,卢旭. 植物基人造肉的营养特性与食用安全性. 食品安全质量检测学报. 2021(11): 4402-4410 .
![]() |