YANG Cong, GUO Liqiong, WAN Hua, et al. Research Advances on Transglutaminases and Their Applications in Food Industry[J]. Science and Technology of Food Industry, 2021, 42(10): 370−377. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306. 2020060302.
Citation: YANG Cong, GUO Liqiong, WAN Hua, et al. Research Advances on Transglutaminases and Their Applications in Food Industry[J]. Science and Technology of Food Industry, 2021, 42(10): 370−377. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306. 2020060302.

Research Advances on Transglutaminases and Their Applications in Food Industry

More Information
  • Received Date: June 23, 2020
  • Available Online: March 15, 2021
  • Transglutaminase (TGase), one of the natural food cross-linking agents with strong cross-linking function, form network structures among proteins via ε- (γ-glutamyl) -lysine (G-L) bonds.TGase can catalyze the crosslinking, deamidation and glycosylation of proteins, which exhibites great potential in food application, such as improving the hardness, viscosity, elasticity and water retention of food. Its cross-linking ability can be applied in dairy products production, such as cheese, meat products processing, production of edible films and microcapsules, etc. For the purpose of providing and effective reference for the research of TGase improving protein functional properties and enhancing food quality, this article aummarized, the molecular structure and action mechanism of TGase and the recent research progress in the use of it for food quality improvement.
  • [1]
    Gaspar A L, de Góes - Favoni S P. Action of microbial transglutaminase(MTGase) in the modification of food proteins: A review[J]. Food Chemistry,2015,171:315−322. doi: 10.1016/j.foodchem.2014.09.019
    [2]
    石天臣, 黄学, 王学锋. 转谷氨酰胺酶改性蛋白质的研究进展[J]. 食品安全导刊,2018(36):162−164, 166.
    [3]
    李洪波. 黏玉米谷氨酰胺转氨酶微生物异源表达及其酶学性质研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
    [4]
    Hani I Aidaroos, Guocheng Du, Jian Chen. Microbial fed-batch production of transglu-taminase using ammonium sulphate and calcium chloride by Streptomyces hygro-scopicus[J]. Biotechnology, Bioinformatics and Bioengineering,2011,1:173−178.
    [5]
    Chen K, Zhang D, Liu S, et al. Improvement of transglutaminase production by extending differentiation phase of Streptomyces hygroscopicus: Mechanism and application[J]. Applied Microbiology and Biotechnology,2013:97, 7711−7719.
    [6]
    钱镭. 转谷氨酰胺酶交联晶体及聚丙烯微孔膜表面固定化研究[D]. 哈尔滨: 哈尔滨商业大学, 2013.
    [7]
    Phong W N, Show P L, Chow Y H, et al. Recovery of biotechnological products using aqueous two phase systems[J]. Journal of Bioscience and Bioengineering,2018,126(3):273−281. doi: 10.1016/j.jbiosc.2018.03.005
    [8]
    裴正培. 突变茂源链霉菌谷氨酰胺转胺酶的性质研究[D]. 上海: 华东师范大学, 2014.
    [9]
    Kashiwagi T, Yokoyama K, Ishikawa K, et al. Crystal structure of microbial transglutaminase from Streptoverticillium mobaraense[J]. Journal of Biological Chemistry,2002,277:44252−44260. doi: 10.1074/jbc.M203933200
    [10]
    Ando H, Adachi M, Umeda K, et al. Purification and characteristics of a novel transglutaminase derived from mi-croorganisms[J]. Agricultural and Biological Chemistry,1989,53:2613−2617.
    [11]
    Doti N, Caporale A, Monti A, et al. A recent update on the use of microbial transglutaminase for the generation of biotherapeutics[J]. World Journal of Microbiology & Biotechnology,2020,36(4):53.
    [12]
    Chan S K, Lim T S. Bioengineering of microbial transglutaminase for biomedical applications[J]. Applied Microbiology and Biotechnology,2019,103(7):2973−2984. doi: 10.1007/s00253-019-09669-3
    [13]
    Shimba N, Yokoyama K, Suzuki E. NMR-based screening method for transglutaminases:   Rapid analysis of their substrate specificities and reaction rates[J]. Journal of Agricultural and Food Chemistry,2002,50(6):1330−1334. doi: 10.1021/jf010995k
    [14]
    Norbert E, Juettner et al. Structure of a glutamine donor mimicking inhibitory peptide shaped by the catalytic cleft of microbial transglutaminase[J]. The FEBS Journal,2018,285(24):4684−4694.
    [15]
    Yang M T, Chang C H, Wang J M, et al. Crystal structure and inhibition studies of transglutaminase from Streptomyces mobaraense[J]. Journal of Biological Chemistry,2011,286(9):7301−7307. doi: 10.1074/jbc.M110.203315
    [16]
    Ahhmed A M, Kuroda R, Kawahara S, et al. Dependence of microbial transglutaminase on meat type in myofibrillar proteins cross-linking[J]. Food Chemistry,2009,112(2):354−361. doi: 10.1016/j.foodchem.2008.05.078
    [17]
    Uran H, Aksu F, Yilmaz İ, et al. Effect of transglutaminase on the quality properties of chicken breast patties[J]. Kafkas Universitesi Veteriner Fakultesi Dergisi,2013,19(2):331−335.
    [18]
    Aaslyng M D, Vestergaard C, Koch A G. The effect of salt reduction on sensory quality and microbial growth in hotdog sausages, bacon, ham and salami[J]. Meat Sci,2014,96(1):47−55. doi: 10.1016/j.meatsci.2013.06.004
    [19]
    Nielsen G S, Petersen B R, Møller A J. Impact of salt, phosphate and temperature on the effect of a transglutaminase (F XIIIa) on the texture of restructured meat[J]. Meat Science,1995,41(3):293−299. doi: 10.1016/0309-1740(94)00002-O
    [20]
    Gharibzahedi S M T, Chronakis I S. Crosslinking of milk proteins by microbial transglutaminase: Utilization in functional yogurt products[J]. Food Chemistry,2018,245:620−632. doi: 10.1016/j.foodchem.2017.10.138
    [21]
    Romeih E, Abdel-Hamid M, Awad A. The addition of buttermilk powder and transglutaminase improves textural and organoleptic properties of fat-free buffalo yogurt[J]. Dairy Science & Technology,2014,94:297−309.
    [22]
    Da Silva T M, de Deus C, de Souza Fonseca B, et al. The effect of enzymatic crosslinking on the viability of probiotic bacteria (Lactobacillus acidophilus) encapsulated by complex coacervation[J]. Food Research International,2019,125:108577. doi: 10.1016/j.foodres.2019.108577
    [23]
    Tsevdou M S, Eleftheriou E G, Taoukis P S. Transglutaminase treatment of thermally and high pressure processed milk: Effects on the properties and storage stability of set yoghurt[J]. Innovative Food Science and Emerging Technologies,2013,17:144−152. doi: 10.1016/j.ifset.2012.11.004
    [24]
    Topcu A, Bulat T, Özer B. Process design for processed Kashar cheese (a- pasta-filata cheese) by means of microbial transglutaminase: Effect on physical properties, yield and proteolysis[J]. LWT - Food Science and Technology,2020,125:109226. doi: 10.1016/j.lwt.2020.109226
    [25]
    Fotschki J, Wróblewska B, Fotschki B, et al. Microbial transglutaminase alters the immunogenic potential and cross-reactivity of horse and cow milk proteins[J]. Journal of Dairy Science,2020,103(3):2153−2166. doi: 10.3168/jds.2019-17264
    [26]
    Luongo D, Maurano F, Bergamo P, et al. Microbial transglutaminase: A biotechnological tool to manage gluten intolerance[J]. Analytical Biochemistry,2020,592:113584. doi: 10.1016/j.ab.2020.113584
    [27]
    Comunian T A, Gomez-Estaca J, Ferro-Furtado R, et al. Effect of different polysaccharides and crosslinks on echium oil microcapsules[J]. Elsevier Science,2016,150:319−29.
    [28]
    Prata A S, Zaninb M H A, Re M I, et al. Release properties of chemical and enzymatic crosslinked gelatin-gum Arabic microparticles containing a fluorescent probe plus vetiver essential oil[J]. Colloids and Surfaces B: Biointerfaces,2008,67(2):171−178.
    [29]
    Bastos L P H, Dos Santos C H C, de Carvalho M G, et al. Encapsulation of the black pepper (Piper nigrum L.) essential oil by lactoferrin-sodium alginate complex coacervates: Structural characterization and simulated gastrointestinal conditions[J]. Food Chemistry,2020,316:126345. doi: 10.1016/j.foodchem.2020.126345
    [30]
    De Prisco, Gianluigi Mauriello. A Probiotication of foods a focus on microencapsulation tool[J]. Trends in Food Science & Technology,2015:924−2244.
    [31]
    Ouwehand A C, Salminen S J. The health effects of cultured milk products with viable and non-viable bacteria[Z]. Elsevier Ltd, 1998: 8, 749−758.
    [32]
    Shori A B. Microencapsulation improved probiotics survival during gastric transit[J]. HAYATI Journal of Biosciences,2017,24(1):1−5. doi: 10.1016/j.hjb.2016.12.008
    [33]
    Cook M T, Tzortzis G, Charalampopoulos D, et al. Microencapsulation of probiotics for gastrointestinal delivery[J]. Journal of Controlled Release,2012,162(1):56−67. doi: 10.1016/j.jconrel.2012.06.003
    [34]
    Xiao Y, Han C, Yang H, et al. Layer (whey protein isolate) -by-layer (xanthan gum) microencapsulation enhances survivability of L. bulgaricus and L. paracasei under simulated gastrointestinal juice and thermal conditions[J]. International Journal of Biological Macromolecules,2020:14417.
    [35]
    Mora-Gutierrez A, Attaie R, Kirven J M, et al. Cross-linking of bovine and caprine caseins by microbial transglutaminase and their use as microencapsulating agents for n-3 fatty acids[J]. International Journal of Food Science and Technology,2014:49, 1530−1543.
    [36]
    Mao L, Roos Y H, Miao S. Study on the rheological properties and volatile release of cold-set emulsion-filled protein gels[J]. Journal of Agricultural and Food Chemistry,2014,62(47):11420−11428. doi: 10.1021/jf503931y
    [37]
    Ye A, Taylor S. Characterization of cold-set gels produced from heated emulsions stabilized by whey protein[J]. International Dairy Journal,2009,19(12):721−727. doi: 10.1016/j.idairyj.2009.06.003
    [38]
    Liang X, Ma C, Yan X, et al. Structure, rheology and functionality of whey protein emulsion gels Effects of double[J]. Food Hydrocolloids,2019,102:105569.
    [39]
    韩敏义. 肌原纤维蛋白结构与热诱导凝胶功能特性关系研究[D]. 南京: 南京农业大学, 2009.
    [40]
    Eissa A S, Bisram S, Khan S A. Polymerization and gelation of whey protein isolates at low pH using transglutaminase enzyme[J]. Journal of Agricultural and Food Chemistry,2004,52(14):4456−4464. doi: 10.1021/jf0355304
    [41]
    Zhang M, Yang Y, Acevedo N C. Effects of pre-heating soybean protein isolate and transglutaminase treatments on the properties of egg-soybean protein isolate composite gels[J]. Food Chemistry,2020,318:126421. doi: 10.1016/j.foodchem.2020.126421
    [42]
    Farhad Alavi, Emam-Djomeh Z, Salami M, et al. Effect of microbial transglutaminase on the mechanical properties and microstructure of acid-induced gels and emulsion gels produced from thermal denatured egg white proteins[J]. International Journal of Biological Macromolecules,2020:14959.
    [43]
    Reid A A, Vuillemard J C, Britten M, et al. Microentrapment of probiotic bacteria in a Ca2+-induced whey protein gel and effects on their viability in a dynamic gastro-intestinal model[J]. Journal of Microencapsulation,2005:22−26.
    [44]
    徐幸莲, 程巧芬, 周光宏. 转谷氨酰胺酶对蛋白质凝胶性能的影响[J]. 食品科学,2003(10):38−43. doi: 10.3321/j.issn:1002-6630.2003.10.006
    [45]
    Sabbah M, Altamimi M, Di Pierro P, et al. Black edible films from protein-containing defatted cake of nigella sativa seeds[J]. International Journal of Molecular Sciences,2020,21(3):832. doi: 10.3390/ijms21030832
    [46]
    Wang Y, Liu A, Ye R, et al. Transglutaminase-induced crosslinking of gelatin–calcium carbonate composite films[J]. Food Chemistry,2015,166:414−422. doi: 10.1016/j.foodchem.2014.06.062
    [47]
    Peng N, Gu L, Li J, et al. Films based on egg white protein and succinylated casein cross-linked with transglutaminase[J]. Food and Bioprocess Technology,2017,10(8):1422−1430. doi: 10.1007/s11947-017-1901-8
    [48]
    Cheng S, Wang W, Li Y, et al. Cross-linking and film-forming properties of transglutaminase-modified collagen fibers tailored by denaturation temperature[J]. Food Chemistry,2019,271:527−535. doi: 10.1016/j.foodchem.2018.07.223
    [49]
    Porta R, Di Pierro P, Sabbah M, et al. Blend films of pectin and bitter vetch (Vicia ervilia) proteins: Properties and effect of transglutaminase[J]. Innovative Food Science and Emerging Technologies,2016,36:245−251. doi: 10.1016/j.ifset.2016.07.001
    [50]
    Zadeh E M, O'Keefe S E, Kim Y, et al. Evaluation of enzymatically modified soy protein isolate film forming solution and film at different manufacturing conditions[J]. J Food Sci,2018,83(4):946−955. doi: 10.1111/1750-3841.14018
    [51]
    Kaewprachu P, Osako K, Tongdeesoontorn W, et al. The effects of microbial transglutaminase on the properties of fish myofibrillar protein film[J]. Food Packaging and Shelf Life,2017,12:91−99. doi: 10.1016/j.fpsl.2017.04.002
  • Cited by

    Periodical cited type(26)

    1. 郭莉滨. “双碳”和“健康中国”背景下植物基肉制品的营养组分及健康功能性研究进展. 食品安全质量检测学报. 2025(03): 123-129 .
    2. 陈金换,安红周,孙嘉瑜,张皓冰,黄泽华. 植物蛋白的改性加工及热点应用领域研究进展. 粮油食品科技. 2025(02): 83-89 .
    3. 王庆沛,宇光海,廖爱美,潘龙,黄继红. 微生物合成血红蛋白的研究进展及其在食品中的应用. 中国调味品. 2024(01): 189-197 .
    4. 王彦丽,刘萌,朱来景,赵祥忠. 辣椒添加对植物蛋白肉感官特性的影响. 中国调味品. 2024(03): 28-32 .
    5. 刘静,金娜,石春芹,李永双,邓清升,罗旋飞,刘艳,杨宝君,聂龙. 响应面法优化豌豆蛋白植物肉配方及其体外消化分析. 食品工业科技. 2024(08): 216-226 . 本站查看
    6. 芦鑫,路风银,孙强,宋国辉,黄纪念. 植物蛋白肉感官品质与营养安全研究进展. 粮食与油脂. 2024(06): 6-10 .
    7. 俎新宇,赵亚男,王新新,杨进洁,边文洁,赵祥忠,梁艳. DHA藻油微胶囊粉对植物蛋白肉品质特性的影响. 食品研究与开发. 2024(14): 23-29 .
    8. 周鑫,马宁,王鑫,王恰,刘业学,田晓静,王稳航. 大豆组织蛋白发酵产品的体外消化特性. 食品研究与开发. 2024(17): 59-65 .
    9. 麻梦寒,冯朵,李梦洁,李琥,郭丽萍,王靖. 植物基食品加工技术、营养成分及其对不同人群的影响研究进展. 食品安全质量检测学报. 2024(18): 123-130 .
    10. 郭志伟,杨进洁,边文洁,赵祥忠,王晨莹. 酵母抽提物对植物蛋白肉品质的影响. 食品研究与开发. 2024(22): 9-14 .
    11. 葛志优,王羽,高艳娥,蔡维. 植物蛋白肉超声振动3D打印方法与试验. 农业工程学报. 2024(20): 259-268 .
    12. 王谊,陈志娜,尹琳琳,卞楠月,叶韬,陆剑锋. 豌豆蛋白粉添加量对低规格克氏原螯虾肉糜凝胶品质的影响. 廊坊师范学院学报(自然科学版). 2024(04): 56-62 .
    13. 刘萌,王聪睿,刘波,赵祥忠. 豇豆血红蛋白Lb Ⅱ在大肠杆菌中的重组表达条件优化、纯化与鉴定. 食品工业科技. 2023(04): 163-170 . 本站查看
    14. 樊炯,马骏骅,颜金鑫,张慧恩,杨华. 冷藏温度对植物基培根品质的影响. 食品与机械. 2023(05): 115-118+131 .
    15. 孙莹,王龙,朱秀清,江连洲. 植物基蛋白肉的研究现状与挑战. 食品工业科技. 2023(17): 438-446 . 本站查看
    16. 蔡维,王羽,高艳娥,李丽. 植物蛋白肉3D打印工艺参数优化. 农业工程学报. 2023(12): 254-264 .
    17. 刘浩栋,张金闯,陈琼玲,张玉洁,李同庆,王强. 植物基肉制品营养品质研究现状. 中国食品学报. 2023(08): 428-439 .
    18. 李振,相海,赵有斌,宋健宇,张德程,梁昊,张艺潇. 植物蛋白螺杆挤压组织化技术的研究进展. 中国油脂. 2023(09): 67-74 .
    19. 陶相锦,黄立强,王冬玲,马文平,马世岷. 植物蛋白肉生产的关键因素分析. 食品安全导刊. 2023(30): 160-162 .
    20. 佟宗航,李亚敏,高昂,谢赫然,高子凡,邢竹青. 植物蛋白肉产品品质评价及过敏原分析. 食品工业科技. 2022(04): 387-395 . 本站查看
    21. 臧学丽,黄志远,叶春民. 高斯软件模拟转谷氨酰胺酶交联大豆分离蛋白机理的研究. 高分子通报. 2022(10): 108-119 .
    22. 袁丽,孔云菲,贾世亮,石彤,励建荣,包玉龙,高瑞昌. 植物蛋白在动物肉糜类制品中的应用现状及研究进展. 肉类研究. 2022(10): 43-50 .
    23. 豆康宁,赵永敢,金少举,李超敏,邓同兴,赵志军. 植物基肉制品的研究进展. 食品与机械. 2022(11): 230-235 .
    24. 李家磊,管立军,高扬,严松,王崑仑,王春丽,李晓娟,卢淑雯,李波,周野. 液熏高水分挤压组织化植物蛋白加工工艺优化. 中国食品学报. 2022(11): 214-227 .
    25. 高智利,杨军飞. 植物蛋白肉的研究进展与发展趋势. 食品安全导刊. 2021(12): 184-186 .
    26. 周亚楠,王淑敏,马小清,缪松,卢旭. 植物基人造肉的营养特性与食用安全性. 食品安全质量检测学报. 2021(11): 4402-4410 .

    Other cited types(16)

Catalog

    Article Metrics

    Article views (877) PDF downloads (90) Cited by(42)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return