PENG Guihua, WANG Yongping, LI Wenxin, et al. Differences and Comprehensive of Color, Aroma and Taste Quality of 25 Dry Pepper Varieties[J]. Science and Technology of Food Industry, 2021, 42(8): 242−248. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020060290.
Citation: PENG Guihua, WANG Yongping, LI Wenxin, et al. Differences and Comprehensive of Color, Aroma and Taste Quality of 25 Dry Pepper Varieties[J]. Science and Technology of Food Industry, 2021, 42(8): 242−248. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020060290.

Differences and Comprehensive of Color, Aroma and Taste Quality of 25 Dry Pepper Varieties

More Information
  • Received Date: June 23, 2020
  • Available Online: January 26, 2021
  • The color, aroma and taste of chili pepper powder that was produced by 25 pepper varieties for both dry and fresh fruit production were measured with modern electronic equipment such as colorimeter, electronic nose, and electronic tongue. The principal component analysis, cluster analysis and difference evaluation were carried out. The results showed that: Analysis of the color of 25 peppers displayed that the L* of 25 chili powders was between 51.15~58.51, and the coefficient of variation was 3.19%. a* was between 24.43~31.02, and the coefficient of variation was 6.75%. b* was between 25.74~36.31, and the coefficient of variation was 8.69%. The chromaticity angle (H) was between 43.37~53.76, and the coefficient of variation was 5.53%. The saturation (C) was between 36.98~45.98, and the coefficient of variation was 6.39%. The main aroma difference of 25 chili powders was manifested in inorganic sulfide (W1W) and organic sulfur compounds(W2W). The main taste differences were expressed in umami, bitter and salty taste. The principal component analysis of the above evaluation indicators, the 7 main traits were combined into 3 main components-odor factor, salty factor and bitterness factor, and the 3 principal component factors contain most of the information on the color, aroma, and taste traits of 25 pepper varieties, and their cumulative contribution rate of over 86.31%. At the Euclidean distance D=14.5, 25 pepper varieties were gathered into 4 major groups, the first group’s characteristic was the highest a* and strongest umami taste, and weakest aroma. The second group featured the strongest salty taste, high a*, and strong umami and aroma. The third group was characterized by the highest b*, and the minimum a*, the weakest bitterness, and salty taste. The fourth group’s characteristic was the strongest aroma and bitterness, and the minimum b* and weakest umami. This study would have a certain guiding significance for the establishment of the electronic evaluation system of pepper sensory quality.
  • [1]
    龙章榆. 第5届贵州·遵义国际辣椒博览会开幕[EB/OL].http://gz.people.com.cn/n2/2020/0818/c222152-34234711.html, 2020-08-18/2020-10-8.
    [2]
    巩雪峰, 陈鑫, 赵黎明, 等. 109份辣椒种质资源果实品质的分析与评估[J]. 长江蔬菜,2019,18:54−58.
    [3]
    蓬桂华, 张爱民, 苏丹, 等. 93份贵州地方辣椒资源品质性状分析[J]. 植物遗传资源学报,2017,18(3):429−435.
    [4]
    王雪雅, 陆宽, 孙小静, 等. 贵州不同辣椒品种的品质及挥发性成分分析[J]. 食品科学,2018,39(4):212−218. doi: 10.7506/spkx1002-6630-201804032
    [5]
    Gruber R, Fontil L, Bergmame L, et al. Bioactive characteristics and antioxidant activities of nine peppers[J]. Journal of Functional Foods,2012,4(1):331−338. doi: 10.1016/j.jff.2012.01.001
    [6]
    张建, 杨瑞东, 陈蓉, 等. 贵州遵义辣椒矿质元素含量与其品质相关性分析[J]. 食品科学,2018,39(10):215−221. doi: 10.7506/spkx1002-6630-201810033
    [7]
    贡慧, 杨震, 刘梦, 等. 秋刀鱼热加工后挥发性风味成分变化的分析[J]. 肉类研究,2017,31(1):25−31. doi: 10.7506/rlyj1001-8123-201701005
    [8]
    Hayashi N, Chen R, Ikezaki H, et al. Evaluation of the umami taste intensity of green tea by a taste sensor[J]. Journal of Agricultural & Food Chemistry,2008,56(16):7384−7387.
    [9]
    Wang L, Niu Q, Hui Y, et al. Discrimination of rice with different pretreatment methods by using a voltammetric electronic tongue[J]. Sensors,2015,15(7):17787−17785.
    [10]
    Apetrei I M, Apetrei C. Application of voltammetric E-tongue for the detection of ammonia and putrescine in beef products[J]. Sensorsand Actuators B: Chemical,2016,234:371−379. doi: 10.1016/j.snb.2016.05.005
    [11]
    Benjamin O, Gamrashi D. Electronic tongue as an objective Evaluation method for taste profile of pomegranate juice in comparison with sensory panel and chemical analysis[J]. Food analytical methods,2015,9(6):1726−1735.
    [12]
    Escriche I, Kadar M, Domenech E, et al. A potentiometric electronic tongue por the discrimination of honey according to the botanical origin. Comparison with traditional methodologies: Physicochemical parameters and volatile profile[J]. Journal of Food Engineering,2012,109(3):449−456. doi: 10.1016/j.jfoodeng.2011.10.036
    [13]
    Souayah F, Rodrigues N, Veloso A C A, et al. Discrimination of olive oil by cultivar, geographical origin and quality using potentiometric electronic tongue fingerprints[J]. Journal of the American Oil Chemists’ Society,2017,94(12):1417−1429. doi: 10.1007/s11746-017-3051-6
    [14]
    Rudnitskaya A, Rocha S M, Legin A, et al. Evaluation of the feasibility of the electronic tongue as a rapid analytical tool for wine age prediction and quantification of the organic acids and phenolic compounds. The case-study of madeira wine[J]. Analytica Chimica Acta,2010,662(1):82−89. doi: 10.1016/j.aca.2009.12.042
    [15]
    Rudnitskaya A, Schmidtke L, Reis A, et al. Measurements of the effects of wine maceration with oak chips using an electronic tongue[J]. Food Chemistry,2017,229:20−27. doi: 10.1016/j.foodchem.2017.02.013
    [16]
    Apetrei I M, Apetrei C D. Detection of virgin oil adulteration using avoltammetric E-tongue[J]. Computers and Electronics in Agriculture,2014,108:148−154. doi: 10.1016/j.compag.2014.08.002
    [17]
    Liu D, Li S, Wang N, et al. Evolution of taste compounds of Dwzhou-braised chicken during cooking evaluated by Chemical analysis and an electronic tongue sytem[J]. Journal of Food Science,2017,82(5):1076−1082. doi: 10.1111/1750-3841.13693
    [18]
    黎量, 杨诗龙, 胥敏, 等. 基于电子鼻、电子舌技术的山楂气、味鉴别[J]. 中国实验方剂学杂志,2015,21(5):99−102.
    [19]
    王利群, 戴雄泽. 色差计在辣椒果实色泽变化检测中的应用[J]. 辣椒杂志,2009(3):23−26. doi: 10.3969/j.issn.1672-4542.2009.03.009
    [20]
    蓬桂华, 张爱民, 殷勇, 等. 应用电子鼻分析60Co-γ辐照对干辣椒整体气味的影响[J]. 辣椒杂志,2019(4):6−10. doi: 10.3969/j.issn.1672-4542.2019.04.002
    [21]
    苏美玲, 周之珞, 林林, 等. 不同套袋对三红蜜柚果皮色泽及果实品质的影响试验[J]. 农业研究与应用,2019,32(2):9−12.
    [22]
    汪琳, 应铁进. 番茄果实采后贮藏过程中的颜色动力学模型及其应用[J]. 农业工程学报,2001,17(3):118−121. doi: 10.3321/j.issn:1002-6819.2001.03.028
    [23]
    李锡香, 张宝玺. 辣椒种质资源描述规范和数据标准.[M]北京: 中国农业出版社, 2006: 20-21.
    [24]
    崔桂娟, 亢灵涛, 侯宇豪, 等. 基于主成分与聚类分析的辣椒品质综合评价[J]. 食品工业科技,2019,40(14):49−55.
    [25]
    李全辉, 邵登魁, 李江, 等. 辣椒果实类胡萝卜素生物合成研究进展[J]. 植物遗传资源学报,2019,20(2):239−248.
    [26]
    李智, 初众, 姚晶, 等. 海南产不同等级香草兰豆挥发性成分分析[J]. 食品科学,2015,38(18):97−102. doi: 10.7506/spkx1002-6630-201518018
    [27]
    李颖慧, 王辉, 杨延杰, 等. 应用电子鼻评价加工型辣椒果实辣度的方法[J]. 中国调味品,2018,43(12):146−150. doi: 10.3969/j.issn.1000-9973.2018.12.028
    [28]
    张玉玉, 黄明泉, 陈海涛. 7种面酱的电子鼻和电子舌辨别分析[J]. 中国食品学报,2012,12(1):198−205. doi: 10.3969/j.issn.1009-7848.2012.01.030
    [29]
    刘辉. 石柱主栽辣椒品种的干制及油制加工适性研究[D]. 重庆: 西南大学, 2011.
  • Cited by

    Periodical cited type(9)

    1. 文舒瑶,郭宝松,梁悦琪,卫晓涵,陈映羲,纪超凡,张素芳. 水开菲尔粒中产酸菌株的筛选及其在无醇发酵麦芽汁中的应用. 食品与发酵工业. 2025(08): 60-67+76 .
    2. 严德林,黄雷,邱婧,陈世浪,梅芷晴,张凯旋,杨存义,高向阳. PB试验结合BBD响应面法优化纳豆γ-聚谷氨酸发酵条件. 食品工业科技. 2024(01): 208-215 . 本站查看
    3. 叶延欣,秦鹏,别鹏坤,张书斌,李蕾蕾,陈艳艳,张道雷. 纳豆芽孢杆菌Bacillus natto NK4液态发酵产纳豆激酶的工艺优化. 河南城建学院学报. 2024(02): 103-108+132 .
    4. 叶丽莎,高梦迪,程婉冰,庞凤萍,邓立高,李坚斌. 枯草芽孢杆菌产纳豆激酶的复合诱变选育及发酵条件优化. 应用化工. 2024(11): 2562-2568 .
    5. 王淼霜,仝艳军,蒋雨桥,杨瑞金. 苦荞对发酵豆乳纳豆激酶活力、风味及抗氧化活性的影响. 食品与生物技术学报. 2023(07): 62-71 .
    6. 王刚,王芝玉,安荣荣,滕玉婷,古梅,刘霞,高慧娟,董瑞丽. 固态发酵条件对纳豆激酶活性的影响及发酵条件的优化. 粮食加工. 2023(05): 33-37 .
    7. 陈俊煌. 纳豆激酶高产菌株的选育及其酶学活性研究. 生物化工. 2023(05): 152-155+159 .
    8. 高梦迪,苏钱琙,李杰,樊学晶,王朝阳,邓立高,李坚斌. 纳豆激酶微生物生产研究进展. 大豆科学. 2022(06): 740-746 .
    9. 余薇,邓小华,刘婷,潘笃杰,郑巧双. 一株益生型枯草芽孢杆菌液态发酵条件优化. 现代食品. 2022(20): 84-86 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (580) PDF downloads (40) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return