PENG Guihua, WANG Yongping, LI Wenxin, et al. Differences and Comprehensive of Color, Aroma and Taste Quality of 25 Dry Pepper Varieties[J]. Science and Technology of Food Industry, 2021, 42(8): 242−248. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020060290.
Citation: PENG Guihua, WANG Yongping, LI Wenxin, et al. Differences and Comprehensive of Color, Aroma and Taste Quality of 25 Dry Pepper Varieties[J]. Science and Technology of Food Industry, 2021, 42(8): 242−248. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020060290.

Differences and Comprehensive of Color, Aroma and Taste Quality of 25 Dry Pepper Varieties

More Information
  • Received Date: June 23, 2020
  • Available Online: January 26, 2021
  • The color, aroma and taste of chili pepper powder that was produced by 25 pepper varieties for both dry and fresh fruit production were measured with modern electronic equipment such as colorimeter, electronic nose, and electronic tongue. The principal component analysis, cluster analysis and difference evaluation were carried out. The results showed that: Analysis of the color of 25 peppers displayed that the L* of 25 chili powders was between 51.15~58.51, and the coefficient of variation was 3.19%. a* was between 24.43~31.02, and the coefficient of variation was 6.75%. b* was between 25.74~36.31, and the coefficient of variation was 8.69%. The chromaticity angle (H) was between 43.37~53.76, and the coefficient of variation was 5.53%. The saturation (C) was between 36.98~45.98, and the coefficient of variation was 6.39%. The main aroma difference of 25 chili powders was manifested in inorganic sulfide (W1W) and organic sulfur compounds(W2W). The main taste differences were expressed in umami, bitter and salty taste. The principal component analysis of the above evaluation indicators, the 7 main traits were combined into 3 main components-odor factor, salty factor and bitterness factor, and the 3 principal component factors contain most of the information on the color, aroma, and taste traits of 25 pepper varieties, and their cumulative contribution rate of over 86.31%. At the Euclidean distance D=14.5, 25 pepper varieties were gathered into 4 major groups, the first group’s characteristic was the highest a* and strongest umami taste, and weakest aroma. The second group featured the strongest salty taste, high a*, and strong umami and aroma. The third group was characterized by the highest b*, and the minimum a*, the weakest bitterness, and salty taste. The fourth group’s characteristic was the strongest aroma and bitterness, and the minimum b* and weakest umami. This study would have a certain guiding significance for the establishment of the electronic evaluation system of pepper sensory quality.
  • [1]
    龙章榆. 第5届贵州·遵义国际辣椒博览会开幕[EB/OL].http://gz.people.com.cn/n2/2020/0818/c222152-34234711.html, 2020-08-18/2020-10-8.
    [2]
    巩雪峰, 陈鑫, 赵黎明, 等. 109份辣椒种质资源果实品质的分析与评估[J]. 长江蔬菜,2019,18:54−58.
    [3]
    蓬桂华, 张爱民, 苏丹, 等. 93份贵州地方辣椒资源品质性状分析[J]. 植物遗传资源学报,2017,18(3):429−435.
    [4]
    王雪雅, 陆宽, 孙小静, 等. 贵州不同辣椒品种的品质及挥发性成分分析[J]. 食品科学,2018,39(4):212−218. doi: 10.7506/spkx1002-6630-201804032
    [5]
    Gruber R, Fontil L, Bergmame L, et al. Bioactive characteristics and antioxidant activities of nine peppers[J]. Journal of Functional Foods,2012,4(1):331−338. doi: 10.1016/j.jff.2012.01.001
    [6]
    张建, 杨瑞东, 陈蓉, 等. 贵州遵义辣椒矿质元素含量与其品质相关性分析[J]. 食品科学,2018,39(10):215−221. doi: 10.7506/spkx1002-6630-201810033
    [7]
    贡慧, 杨震, 刘梦, 等. 秋刀鱼热加工后挥发性风味成分变化的分析[J]. 肉类研究,2017,31(1):25−31. doi: 10.7506/rlyj1001-8123-201701005
    [8]
    Hayashi N, Chen R, Ikezaki H, et al. Evaluation of the umami taste intensity of green tea by a taste sensor[J]. Journal of Agricultural & Food Chemistry,2008,56(16):7384−7387.
    [9]
    Wang L, Niu Q, Hui Y, et al. Discrimination of rice with different pretreatment methods by using a voltammetric electronic tongue[J]. Sensors,2015,15(7):17787−17785.
    [10]
    Apetrei I M, Apetrei C. Application of voltammetric E-tongue for the detection of ammonia and putrescine in beef products[J]. Sensorsand Actuators B: Chemical,2016,234:371−379. doi: 10.1016/j.snb.2016.05.005
    [11]
    Benjamin O, Gamrashi D. Electronic tongue as an objective Evaluation method for taste profile of pomegranate juice in comparison with sensory panel and chemical analysis[J]. Food analytical methods,2015,9(6):1726−1735.
    [12]
    Escriche I, Kadar M, Domenech E, et al. A potentiometric electronic tongue por the discrimination of honey according to the botanical origin. Comparison with traditional methodologies: Physicochemical parameters and volatile profile[J]. Journal of Food Engineering,2012,109(3):449−456. doi: 10.1016/j.jfoodeng.2011.10.036
    [13]
    Souayah F, Rodrigues N, Veloso A C A, et al. Discrimination of olive oil by cultivar, geographical origin and quality using potentiometric electronic tongue fingerprints[J]. Journal of the American Oil Chemists’ Society,2017,94(12):1417−1429. doi: 10.1007/s11746-017-3051-6
    [14]
    Rudnitskaya A, Rocha S M, Legin A, et al. Evaluation of the feasibility of the electronic tongue as a rapid analytical tool for wine age prediction and quantification of the organic acids and phenolic compounds. The case-study of madeira wine[J]. Analytica Chimica Acta,2010,662(1):82−89. doi: 10.1016/j.aca.2009.12.042
    [15]
    Rudnitskaya A, Schmidtke L, Reis A, et al. Measurements of the effects of wine maceration with oak chips using an electronic tongue[J]. Food Chemistry,2017,229:20−27. doi: 10.1016/j.foodchem.2017.02.013
    [16]
    Apetrei I M, Apetrei C D. Detection of virgin oil adulteration using avoltammetric E-tongue[J]. Computers and Electronics in Agriculture,2014,108:148−154. doi: 10.1016/j.compag.2014.08.002
    [17]
    Liu D, Li S, Wang N, et al. Evolution of taste compounds of Dwzhou-braised chicken during cooking evaluated by Chemical analysis and an electronic tongue sytem[J]. Journal of Food Science,2017,82(5):1076−1082. doi: 10.1111/1750-3841.13693
    [18]
    黎量, 杨诗龙, 胥敏, 等. 基于电子鼻、电子舌技术的山楂气、味鉴别[J]. 中国实验方剂学杂志,2015,21(5):99−102.
    [19]
    王利群, 戴雄泽. 色差计在辣椒果实色泽变化检测中的应用[J]. 辣椒杂志,2009(3):23−26. doi: 10.3969/j.issn.1672-4542.2009.03.009
    [20]
    蓬桂华, 张爱民, 殷勇, 等. 应用电子鼻分析60Co-γ辐照对干辣椒整体气味的影响[J]. 辣椒杂志,2019(4):6−10. doi: 10.3969/j.issn.1672-4542.2019.04.002
    [21]
    苏美玲, 周之珞, 林林, 等. 不同套袋对三红蜜柚果皮色泽及果实品质的影响试验[J]. 农业研究与应用,2019,32(2):9−12.
    [22]
    汪琳, 应铁进. 番茄果实采后贮藏过程中的颜色动力学模型及其应用[J]. 农业工程学报,2001,17(3):118−121. doi: 10.3321/j.issn:1002-6819.2001.03.028
    [23]
    李锡香, 张宝玺. 辣椒种质资源描述规范和数据标准.[M]北京: 中国农业出版社, 2006: 20-21.
    [24]
    崔桂娟, 亢灵涛, 侯宇豪, 等. 基于主成分与聚类分析的辣椒品质综合评价[J]. 食品工业科技,2019,40(14):49−55.
    [25]
    李全辉, 邵登魁, 李江, 等. 辣椒果实类胡萝卜素生物合成研究进展[J]. 植物遗传资源学报,2019,20(2):239−248.
    [26]
    李智, 初众, 姚晶, 等. 海南产不同等级香草兰豆挥发性成分分析[J]. 食品科学,2015,38(18):97−102. doi: 10.7506/spkx1002-6630-201518018
    [27]
    李颖慧, 王辉, 杨延杰, 等. 应用电子鼻评价加工型辣椒果实辣度的方法[J]. 中国调味品,2018,43(12):146−150. doi: 10.3969/j.issn.1000-9973.2018.12.028
    [28]
    张玉玉, 黄明泉, 陈海涛. 7种面酱的电子鼻和电子舌辨别分析[J]. 中国食品学报,2012,12(1):198−205. doi: 10.3969/j.issn.1009-7848.2012.01.030
    [29]
    刘辉. 石柱主栽辣椒品种的干制及油制加工适性研究[D]. 重庆: 西南大学, 2011.
  • Cited by

    Periodical cited type(7)

    1. 杨晓华,洪嘉淇,王临好,潘丽怡,郭何子贤,王洁,廖振林. 降糖活性乳酸菌的筛选及对2型糖尿病小鼠的改善作用. 食品科学. 2025(08): 151-161 .
    2. 兰星,李媛,李莎. 妊娠期糖尿病患者阴道微生态状况与绒毛膜羊膜炎和妊娠结局的相关性分析. 中国妇幼保健. 2023(14): 2550-2553 .
    3. 张雪静,牛红红,苗欣宇,华梅,孙慕白,刘文健,王景会. 自然发酵玉米液中乳酸菌的分离、鉴定及益生特性研究. 中国酿造. 2023(08): 129-134 .
    4. 谢秀明,热孜姑丽·库尔班,马彦科,林勇,杨洁. 阿勒泰传统酸驼乳中乳酸菌发酵乳益生活性评价. 中国乳品工业. 2023(08): 12-19+24 .
    5. 唐铭,高聪聪,王宁宇,胡梅梅,韩雪梅,王海宽. 副干酪乳杆菌TK1501发酵大豆粉对小鼠Ⅱ型糖尿病的干预作用. 食品研究与开发. 2022(12): 61-70 .
    6. 曹英,侯敏,易光平,买尔哈巴·艾合买提,薛杉,陈钢粮,崔卫东. 驼乳制品中抑制α-淀粉酶和α-葡萄糖苷酶活性乳酸菌的筛选及益生特性研究. 食品工业科技. 2022(19): 191-201 . 本站查看
    7. 申永艳,何贵新,肖婷,玉黎燕. 针灸疗法调节肠道菌群防治动脉粥样硬化的研究进展. 广西医学. 2021(13): 1627-1630 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return