CHEN Yongping, ZHAGN Yilin, WU Yulong, et al. Optimization of Extraction Technology and Antioxidant Activity of Total Flavonoids from Roots of Cichorium Intybus L. by Ultrasonic Assisted with Complex Enzyme[J]. Science and Technology of Food Industry, 2021, 42(8): 164−171. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020060184.
Citation: CHEN Yongping, ZHAGN Yilin, WU Yulong, et al. Optimization of Extraction Technology and Antioxidant Activity of Total Flavonoids from Roots of Cichorium Intybus L. by Ultrasonic Assisted with Complex Enzyme[J]. Science and Technology of Food Industry, 2021, 42(8): 164−171. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020060184.

Optimization of Extraction Technology and Antioxidant Activity of Total Flavonoids from Roots of Cichorium Intybus L. by Ultrasonic Assisted with Complex Enzyme

More Information
  • Received Date: June 14, 2020
  • Available Online: January 27, 2021
  • Objective: Optimization of extraction technology of total flavonoids from roots of Cichorium intybus L., and to study its antioxidative activity in vitro. Methods: On the basis of single-factor test, Box-Behnken test design method was used to establish a quadratic regression model with ultrasonic time, liquid-solid ratio, enzymatic hydrolysis time, ultrasonic power and enzyme (cellulase and pectinase) dosage as independent variables, and the total flavonoids yield of chicory roots as the responsive values. The antioxidative activity in vitro of total flavonoids from chicory roots extracted under optimized conditions was evaluated by scavenging ABTS and DPPH free radicals. Results: The optimum extraction conditions of total flavonoids of chicory roots by ultrasound assisted with complex enzyme were as follows: enzyme dosage was 2.2%, liquid-Solid ratio was 37:1 mL/g, enzymatic hydrolysis time was 66 min, ultrasonic power was 59 W, and ultrasonic time was 24 min. Under these conditions, the total flavonoids yield was 5.43±0.12 mg/g. The scavenging rates of DPPH and ABTS radical were 84.45% and 98.18% respectively at the concentration of total flavonoids solution was 0.1 mg/mL, and IC50 were 0.04 and 0.021 mg /mL, respectively. Conclusion: In this study, the extraction process of total flavonoids from chicory roots was optimized by response surface method, and a simulated regression equation of total flavonoids yield was established, which could be used for parameter optimization of extraction process of total flavonoids from chicory roots. The total flavonoids of chicory roots had good antioxidant activity in vitro and could be used as food additives and to develop new antioxidant drugs.
  • [1]
    饶路路. 菊苣[J]. 蔬菜,1997,3:12−13.
    [2]
    王佺珍, 崔健. 菊苣的药理药效研究及开发前景[J]. 中国中药杂志,2009,34(17):2269−2272. doi: 10.3321/j.issn:1001-5302.2009.17.033
    [3]
    杜欣. 菊苣的应用价值研究[J]. 中外食品工业,2014,6:74−75.
    [4]
    胡君萍, 李渊, 柳惠斌, 等. UPLC同时测定维药毛菊苣和菊苣中5种化学成分的含量[J]. 中国实验方剂学杂志,2014,20(17):65−68.
    [5]
    Mascherpa D, Carazzone C, Marrubini G, et al. Identification of phenolic constituents in Cichorium endivia var. crispum and var. latifolium salads by high-performance liquid chromatography with diode array detection and electrospray ioniziation tandem mass spectrometry[J]. Journal of Agricultura and Food Chemistry,2012,60(49):142−150.
    [6]
    Graziani G, Ferracane R, Sambo P, et al. Profiling chicory sesquiterpene lactones by high resolution mass spectrometry[J]. Food Research International,2015,67(1):193−198.
    [7]
    骆旭东, 杨建华, 张海波, 等. HPLC法同时测定毛菊苣根和种子7种化学成分的含量[J]. 西北药学杂志,2019,34(3):289−294. doi: 10.3969/j.issn.1004-2407.2019.03.002
    [8]
    中国药物生物制品检定所. 中国民族药志(第二卷)[M]. 北京: 人民出版社, 1990: 476−481.
    [9]
    Kumar, Shashank, Pandey, et al. Chemistry and biological activities of flavonoids: An overview[J]. The Scientific World Journal,2013,2013:1−16.
    [10]
    吴立军. 天然药物化学[M]. 北京: 人民卫生出版社, 2011.
    [11]
    Kumar S, Mishra A, Pandey AK. Antioxidant mediated protective effect of Parthenium hysterophorus against oxidative damage using in vitro models[J]. BMC Complementary and Alternative Medicine,2013,13(1):120−120. doi: 10.1186/1472-6882-13-120
    [12]
    Barzegar A. Antioxidant activity of polyphenolic myricetin in vitro cell-free and cell-based systems[J]. Molecular Biology Research Communications,2016,5:87−95.
    [13]
    Zhuo X, Tian Y, Wei Y, et al. Flavone of Hippophae (H-flavone) lowers atherosclerotic risk factors via upregulation of the adipokine C1q/tumor necrosis factor-related protein 6(CTRP6) in macrophages[J]. Bioscience Biotechnology & Biochemistry,2019(10):1−8.
    [14]
    陈玉峰, 付诗尧, 金露, 等. 膳食黄酮消脂减肥的分子作用机制研究进展[J]. 中国食品学报,2019,19(10):315−330.
    [15]
    Jahan S, Khan M, Imran S, et al. The hepatoprotective role of silymarin in isoniazid induced liver damage of rabbits[J]. Journal of the Pakistan Medical Association,2015,65:620−623.
    [16]
    Du W, Yang X, Song Z, et al. Antitumor activity of total flavonoids from daphne genkwa in colorectal cancer[J]. Phytotherapy Research,2016,30:323−330. doi: 10.1002/ptr.5540
    [17]
    Bettaieb A, Cremonini E, Kang H, et al. Anti-inflammatory actions of (-)-epicatechin in the adipose tissue of obese mice[J]. International Journal of Biochemistry & Cell Biology,2016,81:383−392.
    [18]
    李萌茹, 周玉枝, 杜冠华, 等. 中药黄酮类化合物抗衰老作用及其机制研究进展[J]. 药学学报,2019,54(8):1382−1391.
    [19]
    李旭光, 方莲花, 杜冠华. 黄酮类化合物的心血管保护作用机制研究进展[J]. 中国药理学通报,2018,34(6):741−744. doi: 10.3969/j.issn.1001-1978.2018.06.001
    [20]
    Jiao Yi, Li Ya-Nan, Chen Zhi-Wu, et al. Mechanism of H2S-mediated ROCK inhibition of total flavones of Rhododendra against myocardial ischemia injury[J]. Experimental and Therapeutic Medicine,2019,18(5):783−792.
    [21]
    Nagula Ruchika L, Wairkar Sarika. Recent advances in topical delivery of flavonoids: A review[J]. Journal of Controlled Release,2019,296:190−201. doi: 10.1016/j.jconrel.2019.01.029
    [22]
    荆常亮. 紫花苜蓿总黄酮的提取、纯化及其抗氧化活性研究[D]. 北京: 中国农业科学院, 2016.
    [23]
    李洪娟. 几种耐盐植物中黄酮化合物的大孔树脂分离及抑藻活性评价[D]. 北京: 中国科学院大学, 2018.
    [24]
    Dranca F, Oroian M. Optimization of ultrasound assisted extraction of total monomeric anthocyanin(TMA) and total phenolic content(TPC) from eggplant(Solanum melongena L.) peel[J]. Ultrasonics Sonochemistry,2016,31:637−646. doi: 10.1016/j.ultsonch.2015.11.008
    [25]
    师婷婷. 生物酶与超滤纯化在枸杞多糖和总黄酮提取中的应用研究[D]. 甘肃: 甘肃中医药大学, 2016.
    [26]
    张成, 胡紫薇, 罗映, 等. 紫茉莉籽黄酮响应面法优化提取及其抗氧化活性研究[J]. 中国农学通报,2019,35(34):127−133. doi: 10.11924/j.issn.1000-6850.casb20190600327
    [27]
    刘媛洁, 张良. 响应面法优化复合酶辅助超声波提取柚子皮总黄酮工艺[J]. 食品工业科技,2019,40(23):143−150.
    [28]
    谢挺, 赵晖. 响应面法优化微波辅助提取菜豆总黄酮工艺及对运动大鼠心肌线粒体的影响[J]. 食品研究与开发,2020,41(12):90−95. doi: 10.12161/j.issn.1005-6521.2020.12.015
    [29]
    Ai S, Tanabe S, Nishimura T. Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment[J]. J Agric Food Chem,2003,51(12):3661−3667. doi: 10.1021/jf021156g
    [30]
    Ewelina Z, Barbara B, Monika K. Antioxidant and anti-inflammatory activities of hydrolysates and peptide fractions obtained by enzymatic hydrolysis of selected heat-treated edible insects[J]. Nutrients,2017,9:970. doi: 10.3390/nu9090970
    [31]
    刘玉梅, 张家俊, 吴浪. 复合酶协同超声波法提取香椿老叶总黄酮工艺研究[J]. 现代食品科技,2019,35(11):223−230.
    [32]
    钟翠娟, 王小明, 张鹏, 等. 超声波-乙醇法提取甜茶总黄酮工艺优化[J]. 安徽农业科学,2019,47(20):172−175. doi: 10.3969/j.issn.0517-6611.2019.20.046
    [33]
    施伟梅, 王妙飞, 罗双慧, 等. 超声联合酶法提取紫花苜蓿总黄酮及其抗氧化性能研究[J]. 作物杂志,2015(6):64−69.
    [34]
    唐婷范, 黄芳丽, 朱家庆, 等. 超声波辅助提取葛根异黄酮的工艺优化及其抑菌活性研究[J]. 食品研究与开发,2020,41(12):30−36. doi: 10.12161/j.issn.1005-6521.2020.12.006
    [35]
    蒋丽施, 孟晓, 左蕾蕾, 等. 超声波辅助提取会理石榴皮中总黄酮的工艺研究[J]. 中国食品添加剂,2019,30(9):106−110.
    [36]
    魏春红, 姜秀杰, 包鸿慧, 等. 超声波辅助提取绿豆芽总黄酮工艺及抗氧化活性研究[J]. 黑龙江八一农垦大学学报,2019,31(4):50−55. doi: 10.3969/j.issn.1002-2090.2019.04.008
    [37]
    赵月, 李荣, 姜子涛. 栽培菊苣籽总黄酮的提取、成分鉴定及抗氧化活性成分的识别[J]. 食品科学,2016,37(16):36−42. doi: 10.7506/spkx1002-6630-201616006
    [38]
    刘馨瑶, 李金秒, 张利萍, 等. 结球菊苣叶总黄酮提取工艺研究[J]. 沈阳化工大学学报,2018,32(2):161−165. doi: 10.3969/j.issn.2095-2198.2018.02.013
  • Related Articles

    [1]XI Yijia, PAN Haiyu, WU Zhenglin, XU Guihu, LI Xiaoyin, GAO Yanhua. Research Progress on Regulatory Effects and Mechanism of Akkermansia muciniphila on Glycolipid Metabolism and Intestinal Health[J]. Science and Technology of Food Industry, 2025, 46(8): 431-440. DOI: 10.13386/j.issn1002-0306.2024060336
    [2]YU Junying, CHU Baiyi, HAN Yu, ZHAO Yuxin, LIU Caiqin, WANG Nan. Effects of Soft-shelled Turtle Protein-derived Oligopeptides on Tubulin Polymerization-Depolymerization Regulatory Mode in Vitro[J]. Science and Technology of Food Industry, 2024, 45(16): 85-93. DOI: 10.13386/j.issn1002-0306.2023090240
    [3]ZHAO Qian, DAI Tian-yi, HONG Wen-long, ZHOU Li-mian, SU Hai-ran, TIAN Yang, BAI Zhong-bin. Regulatory Effect of Dendrobium officinale Kinura et Migo Glycoprotein on Skin Inflammation and Its Mechanism[J]. Science and Technology of Food Industry, 2020, 41(21): 304-310,316. DOI: 10.13386/j.issn1002-0306.2019120094
    [4]RUAN Xiao-li, RAN Jun-jian, ZHAO Rui-xiang, LI Gang, LEI Shuang, ZHU Yang. Clone and Heterologly Expression of Bacteriocin Gene plnEF of Lactobacillus plantarum[J]. Science and Technology of Food Industry, 2019, 40(16): 107-111,117. DOI: 10.13386/j.issn1002-0306.2019.16.018
    [5]WANG Fang, LU Wen-jun, YANG Jing, BIE Xiao-mei. Study on screeging of high-yield bacteriocin producing Lactobacillus plantarum stains induced by mutations[J]. Science and Technology of Food Industry, 2017, (02): 191-195. DOI: 10.13386/j.issn1002-0306.2017.02.028
    [6]CUI Xian, LIU Rong-xu, JIANG Fan, SONG Xiao-xiao, LIU Jia-tong, ZHANG Li-li, HAN Jian-chun. Effect of fermentation by lactobacillus plantrum on functional properties of soybean protein[J]. Science and Technology of Food Industry, 2016, (03): 177-180. DOI: 10.13386/j.issn1002-0306.2016.03.029
    [7]DONG Wei, CHEN An-jun, HAN Guo-quan, PU Biao, LUO Wei, HOU Xiao-yan. Expression of nitrite reductase gene from Lactobacillus plantarum from Sichuan pao cai[J]. Science and Technology of Food Industry, 2015, (15): 143-147. DOI: 10.13386/j.issn1002-0306.2015.15.022
    [8]SUN Hui-gang, ZHANG Chong, LV Feng-xia, BIE Xiao-mei, LU Zhao-xin. Promoter P43 regulatory effect for subtilosin A synthesis by expressing key enzyme gene[J]. Science and Technology of Food Industry, 2013, (23): 164-167. DOI: 10.13386/j.issn1002-0306.2013.23.002
    [9]Regulatory effect of the typical methyl-group donors on the oxygen metabolism in Pseudomonas denitrificans[J]. Science and Technology of Food Industry, 2013, (07): 162-164. DOI: 10.13386/j.issn1002-0306.2013.07.040
    [10]Research progress in protein gel formation and regulation of preserved eggs[J]. Science and Technology of Food Industry, 2012, (23): 383-387. DOI: 10.13386/j.issn1002-0306.2012.23.065
  • Cited by

    Periodical cited type(1)

    1. 高燕,陈义,姜重燕,舒蕾,张佳容. 新疆乌鲁木齐地区常住居民膳食模式对心血管疾病高危人群的影响研究. 华南预防医学. 2023(12): 1576-1579 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (361) PDF downloads (37) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return