Citation: | CAI Xiaofang, FENG Di, YUAN Hang, et al. Research Progress on Non-intentional Added Substances and Their Origins in Food Contact Materials[J]. Science and Technology of Food Industry, 2021, 42(8): 376−387. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2020060173. |
[1] |
Geueke Birgit FPF Dossier: Non-intentionally added substances (NIAS)[C]// American Thoracic Society International Conference, 2010.
|
[2] |
葛琨, 胡玉玲, 李攻科. 等. 食品接触材料样品前处理和检测方法研究进展[J]. 食品安全质量检测学报,2019,10(14):4451−4460. doi: 10.3969/j.issn.2095-0381.2019.14.003
|
[3] |
魏帅, 鲍蕾. 食品接触材料中非有意添加物的检测方法[J]. 食品安全质量检测学报,2019,10(24):8195−8203.
|
[4] |
魏晓晓, 高峡, 刘伟丽, 等. GC-MS和LC-MS技术用于食品接触高分子中非有意添加物的检测研究[J]. 分析仪器,2019(3):51−55. doi: 10.3969/j.issn.1001-232x.2019.03.011
|
[5] |
Bundesinstitut für Risikobewertung. Gemessene Gehalte an styrol-oligomeren in Lebensmittel simulanzien: Gesundheitlicherisiken sindunwahrscheinlich[R]. Germany: BRF, 2016.
|
[6] |
Úbeda S, Aznar M, Vera P, et al. Overall and specific migration from multilayer high barrier food contact materials-kinetic study of cyclic polyester oligomers migration[J]. Food Additives & Contaminants,2017,34(10):1784−1794.
|
[7] |
Ubeda S, Aznar M, Alfaro P, et al. Migration of oligomers from a food contact biopolymer based on polylactic acid(PLA) and polyester[J]. Analytical and Bioanalytical Chemistry,2019,411(16):3521−3532. doi: 10.1007/s00216-019-01831-0
|
[8] |
Aznar M, Ubeda S, Dreolin N, et al. Determination of non-volatile components of a biodegradable food packaging material based on polyester and polylactic acid(PLA) and its migration to food simulants[J]. Journal of Chromatography A,2019,1583:1−8. doi: 10.1016/j.chroma.2018.10.055
|
[9] |
Biedermann M, Grob K. Is recycled newspaper suitable for food contact materials? Technical grade mineral oils from printing inks[J]. European Food Research & Technology,2010,230(5):785−796.
|
[10] |
Zhou N, Luo H, Zhu B. Determination of the migration of 16 PAHS from paper cups into food stimulants[J]. Journal of Hygiene Research,2015,44(2):303−311.
|
[11] |
Mutsuga M, Yamaguchi M, Kawamura Y. Analysis of N-Nitrosamine Migration from Rubber Teats and Soothers[J]. American Journal of Analytical Chemistry,2013,4(6):277−285. doi: 10.4236/ajac.2013.46035
|
[12] |
幸苑娜, 王欣, 陈泽勇, 等. 气相色谱-正化学源质谱法测定家用橡胶手套中7种N-亚硝胺及其前体物的迁移量[J]. 分析测试学报,2011,30(5):503−507. doi: 10.3969/j.issn.1004-4957.2011.05.006
|
[13] |
Feng Di, Zhang Xirong, Wang Wenjuan, et al. Development, validation and comparison of three detection methods for 9 volatile methylsiloxanes in food-contact silicone rubber products[J]. Polymer Testing,2019,73:94−103. doi: 10.1016/j.polymertesting.2018.10.014
|
[14] |
Song X, Wrona M, Nerin C, et al. Volatile non-intentionally added substances (NIAS) identified in recycled expanded polystyrene containers and their migration into food simulants[J]. Food Packaging and Shelf Life,2019,20:100318. doi: 10.1016/j.fpsl.2019.100318
|
[15] |
Omer E, Cariou R, Remaud, Gérald, et al. Elucidation of non-intentionally added substances migrating from polyester-polyurethane lacquers using automated LC-HRMS data processing[J]. Analytical and Bioanalytical Chemistry,2018,410(22):5391−5403. doi: 10.1007/s00216-018-0968-z
|
[16] |
Juliana S, Félix, Isella F, et al. Analytical tools for identification of non-intentionally added substances (NIAS) coming from polyurethane adhesives in multilayer packaging materials and their migration into food simulants[J]. Analytical and Bioanalytical Chemistry,2012,403(10):2869−2882. doi: 10.1007/s00216-012-5965-z
|
[17] |
Pezo D, Fedeli M, Bosetti O, et al. Aromatic amines from polyurethane adhesives in food packaging: The challenge of identification and pattern recognition using Quadrupole-Time of Flight-Mass SpectrometryE[J]. Analytica Chimica Acta,2012,756(Complete):49−59.
|
[18] |
Bignardi C, Cavazza A, Carmen Laganà, et al. Release of non-intentionally added substances (NIAS) from food contact polycarbonate: Effect of ageing[J]. Food Control,2016,71:329−335.
|
[19] |
Riquet A M, Breysse C, Dahbi L, et al. The consequences of physical post-treatments (microwave and electron-beam) on food/packaging interactions: A physicochemical and toxicological approach[J]. Food Chemistry,2016,199:59−69. doi: 10.1016/j.foodchem.2015.09.034
|
[20] |
Yueping Y, Changying H, Huaining Z, et al. Effects of ultraviolet (UV) on degradation of irgafos 168 and migration of its degradation products from polypropylene films[J]. Journal of Agricultural and Food Chemistry,2016:acs. jafc. 6b03018.
|
[21] |
Canellas E, Nerin C, Moore R, et al. New UPLC coupled to mass spectrometry approaches for screening of non-volatile compounds as potential migrants from adhesives used in food packaging materials[J]. Anal Chim Acta, 2010, 666: 62−69.
|
[22] |
赖莺, 林睿, 林伟靖, 等. 丙烯酸树脂食品接触材料中16种单体迁移量的测定及迁移风险考察[J]. 分析化学,2015,43(10):1573−1579. doi: 10.11895/j.issn.0253-3820.150274
|
[23] |
Suciu N A, Tiberto F, Vasileiadis S, et al. Recycled paper–paperboard for food contact materials: Contaminants suspected and migration into foods and food simulant[J]. Food Chemistry,2013,141(4):4146−4151. doi: 10.1016/j.foodchem.2013.07.014
|
[24] |
Fiselier K, Rutschmann E, Mccombie G, et al. Migration of di(2-ethylhexyl) maleate from cardboard boxes into foods[J]. European Food Research & Technology,2010,230(4):619−626.
|
[25] |
许力, 蒋佳芮, 张建铎, 等. 纸质食品接触材料中七种多氯联苯的气相色谱法测定[J]. 食品工业科技,2019,40(3):245−254.
|
[26] |
Merkel S, Kappenstein O, Sander S, et al. Transfer of primary aromatic amines from coloured paper napkins into four different food matrices and into cold water extracts[J]. Food Additives & Contaminants,2018,35(6):1223−1229.
|
[27] |
Lestido-cardama A, Störmer Á, Franz R. Dialkylketones in paperboard food contact materials-method of analysis in fatty foods and comparative migration into liquid simulants versus foodstuffs[J]. Molecules,2020,25(4):915. doi: 10.3390/molecules25040915
|
[28] |
Ibarra V G, Quirós A R B, Losada P P, et al. Identification of intentionally and non-intentionally added substances in plastic packaging materials and their migration into food products[J]. Anal Bioanal Chem,2018,410:3789−3803. doi: 10.1007/s00216-018-1058-y
|
[29] |
García ibarra V, Raquel S, Juana B, et al. Estimates of dietary exposure of Spanish population to packaging contaminants from cereal based foods contained in plastic materials[J]. Food and Chemical Toxicology,2019,128:180−192. doi: 10.1016/j.fct.2019.04.003
|
[30] |
Su Q, Vera P, Van de wiele C, et al. Non-target screening of (semi-)volatiles in food-grade polymers by comparison of atmospheric pressure gas chromatography quadrupole time-of-flight and electron ionization mass spectrometry[J]. Talanta,2019,202:285−296. doi: 10.1016/j.talanta.2019.05.029
|
[31] |
Chandisree R, Joel P, Maria S, et al. Assessment of baby Bibs. GC-MS screening, migration into saliva and insight of toxicity with QSAR tools[J]. Food Control,2020,109:106951. doi: 10.1016/j.foodcont.2019.106951
|
[32] |
Alin J, Hakkarainen M. Microwave heating causes rapid degradation of antioxidants in polypropylene packaging, leading to greatly increased specific migration to food simulants as shown by ESI-MS and GC-MS[J]. Journal of Agricultural & Food Chemistry,2010,59(10):5418−5427.
|
[33] |
Bentayeb K, Batlle R, Romero J, et al. UPLC–MS as a powerful technique for screening the nonvolatile contaminants in recycled PET[J]. Analytical and Bioanalytical Chemistry,2007,388(5−6):1031−1038. doi: 10.1007/s00216-007-1341-9
|
[34] |
Paula V, Elena C, Cristina N, et al. Identification of non volatile migrant compounds and NIAS in polypropylene films used as food packaging characterized by UPLC-MS/QTOF[J]. Talanta: The International Journal of Pure and Applied Analytical Chemistry,2018,188:750−762.
|
[35] |
Žnideršič L, Mlakar A, Prosen H. Development of a SPME-GC-MS/MS method for the determination of some contaminants from food contact material in beverages[J]. Food and Chemical Toxicology,2019,134:110829. doi: 10.1016/j.fct.2019.110829
|
[36] |
Adam V, VácLAV Š, Markéta D, et al. Easy and inexpensive method for multiclass analysis of 41 food contact related contaminants in fatty food by liquid chromatography–tandem mass spectrometry[J]. Journal of Agricultural and Food Chemistry,2019,67(39):10968−10976. doi: 10.1021/acs.jafc.9b02544
|
[37] |
Von eyken A, Ramachandran S, Bayen S, et al. Suspected-target screening for the assessment of plastic-related chemicals in honey[J]. Food Control,2020,109: 106941. doi: 10.1016/j.foodcont.2019.106941
|
[38] |
Hwang J, Boon, Lee Subi, Y, et al. HS-GC/MS method development and exposure assessment of volatile organic compounds from food packaging into food simulants[J]. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment,2019,36(10). doi: 10.1080/19440049.2019.1642520
|
[39] |
封棣, 张喜荣, 王文娟, 等. P& T-GC-MS法对食品接触硅胶奶嘴中VMSs的模拟迁移研究[J]. 包装工程,2018,39(15):21−27.
|
[40] |
Domeno C, Munizza G, Nerin C, et al. Development of a solid-phase microextraction method for direct determination of pentachlorophenol in paper and board samples: Comparison with conventional extraction method[J]. J Chromatogr A,2005,1095(1-2):8−15. doi: 10.1016/j.chroma.2005.07.119
|
[41] |
Oliveira, Echegoyen, Y, Cruz, S A, et al. Comparison between solid phase microextraction (SPME) and hollow fiber liquid phase microextraction (HFLPME) for determination of extractables from post-consumer recycled PET into food simulants[J]. Talanta,2014,127:59−67. doi: 10.1016/j.talanta.2014.03.042
|
[42] |
Lin Q B, Cai L F, Wu S J, et al. Determination of four types of hazardous chemicals in food contact materials by UHPLC-MS/MS[J]. Packaging Technology & Science,2015,28(5):461−474.
|
[43] |
Ubeda S, Aznar M, Nerín C. Determination of oligomers in virgin and recycled polyethylene terephthalate (PET) samples by UPLC-MS-QTOF[J]. Analytical & Bioanalytical Chemistry,2018,410:2377−2384.
|
[44] |
Parigoridi I E, Akrida-demertzi K, Demertzis P G. Determination of five (5) possible contaminants in recycled cardboard packages and food simulants using ultrasound assisted extraction coupled to GC-MS[J]. Materials Sciences and Applications,2014(5):745−751.
|
[45] |
张宪臣, 张朋杰, 时成玉, 等. 微波辅助萃取-超高效液相色谱-四极杆/静电场轨道阱高分辨质谱法快速测定食品接触塑料制品中48种污染物残留[J]. 色谱,2018,36(7):634−642.
|
[46] |
Fabrizio C antonella V, Gianluca T et al. Nonintentionally added substances in PET bottled mineral water during the shelf-life[J]. Eur Food Res Technol 2018.244: 433−439.
|
[47] |
范文哲, 姜遥, 黄正根, 等. 固相萃取联合液相色谱-三重四级杆质谱测定饮用水中的亚硝胺类物质[J]. 西北师范大学学报: 自然科学版,2019,55(1):73−78.
|
[48] |
Guo Q, Zhao S, Zhang J, et al. Determination of fipronil and its metabolites in chicken egg, muscle and cake by a modified QuEChERS method coupled with LC-MS/MS[J]. Food Additives & Contaminants: Part A,2018,35(8):1543−1552.
|
[49] |
Bauer A, Jesús F, Ramos M J G, et. al, Identification of unexpected chemical contaminants in baby food coming from plastic packaging migration by high resolution accurate mass spectrometry[J]. Food Chemistry 2019, (295)274−288.
|
[50] |
Adam V, lukas V, Jitka S, et al. Method for analysis of 68 organic contaminants in food contact paper using gas and liquid chromatography coupled with tandem mass spectrometry[J]. Food Control, 2016, 60: 221−229.
|
[51] |
Yan C, Xuemei N, Han Q et al. A high-throughput screening method of bisphenols, bisphenols digycidyl ethers and their derivatives in dairy products by ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Analytica Chimica Acta,2017,950:98−107. doi: 10.1016/j.aca.2016.11.006
|
[52] |
Gómez ramos M J, A Lozano A R. Fernández-alba, High-resolution mass spectrometry with data independent acquisition for the comprehensive non-targeted analysis of migrating chemicals coming from multilayer plastic packaging materials used for fruit purée and juice[J]. Talanta, 2019, 191: 180−192.
|
[53] |
Martínez-bueno M. J, . Hernandob M. D, Uclésa S, et al., Identification of non-intentionally added substances in food packaging nano films by gas and liquid chromatography coupled to orbitrap mass spectrometry[J]. Talanta, 2017, 172: 68−77.
|
[54] |
Koster S, Rennen M, Leeman W, Muilwijk B, et al. A novel safety assessment strategy for non-intentionally added substances (NIAS) in carton food contact materials[J]. Food Additives & Contaminants,2014,31(3):422−443.
|
[55] |
Gruner A, Chan S Y, Störmer A, et al. Semi-quantitative determination of potential migrants in food packaging materials-Part 2: Semi-volatile compounds[C]//Prague: Poster at ILSI 4th international symposium on food packaging-scientific developments supporting safety and quality, 2008.
|
[56] |
Koster S, Bani E, Marie H, et al. Guidance on best practices on the risk assessment of non-intentionally added substances (NIAS) in food contact materials and articles[M]. Belgium: International Life Sciences Institute, 2015.
|
[57] |
Murat P, Ferret PJ, Coslédan S, et al. Assessment of targeted non-intentionally added substances in cosmetics in contact with plastic packaging, analytical and toxicological aspects[J]. Food Chem Toxicol,2019,128:106−118. doi: 10.1016/j.fct.2019.03.030
|
[58] |
Brenz F, Linke S, Simat T, et al. Qualitative and quantitative analysis of monomers in polyesters for food contact materials[J]. Food Addit Contam,2017,34(2):307−319.
|
[59] |
Pang H, Jia W, Hu Z. Emerging applications of metabolomics in clinical pharmacology.[J]. Clinical Pharmacology and Therapeutics, 2019, 106: 544−556.
|
[60] |
Delgado-blanca I, EJLlorent-martínez, Ruiz-medina A, et al. Automated on-line liquid-liquid extraction in a multisyringe flow injection analysis manifold for migration studies in food-contact materials: analysis of 4,4´-dihydroxybiphenyl[J]. Food Additives & Contaminants,2020,37(1):174−182.
|
[61] |
Lago M A, Ackerman L K. Identification of print-related contaminants in food packaging[J]. Food Addit Contam Part A Chem Anal Control Expo Risk Assess,2016,33(3):518−529.
|
[62] |
Canellas E, Paula V, Cristina N. Migration assessment and the ‘threshold of toxicological concern’ applied to the safe design of an acrylic adhesive for food-contact laminates[J]. Food Additives & Contaminants: Part A: 6th ILSI International Symposium on Food Packaging,2017,34(10):1721−1729.
|
[63] |
Eckardt M, Greb A, Simat T J. Polyphenylsulfone (PPSU) for baby bottles: A comprehensive assessment on polymer-related non-intentionally added substances (NIAS)[J]. Food Additives & Contaminants: Part A,2018,35(7):1421−1437.
|
[64] |
Friederike K, Kappenstein O, Samira S, et al. N -nitrosamines migrating from food contact materials into food simulants: Analysis and quantification by means of HPLC-APCI-MS/MS[J]. Food Additives & Contaminants Part A,2017,35(4):792−801.
|
[65] |
Ackerman L K, Noonan G O, Begley T H, et al. Accurate mass and nuclear magnetic resonance identification of bisphenolic can coating migrants and their interference with liquid chromatography/tandem mass spectrometric analysis of bisphenol A[J]. Rapid Commun Mass Spectrom,2011,25(9):1336−1342.
|
[66] |
Omer E, Emmanuelle B, Sébastien H, et al. Toward the characterisation of non-intentionally added substances migrating from polyester-polyurethane lacquers by comprehensive gas chromatography-mass spectrometry technologies[J]. Journal of Chromatography A,2019,1601:327−334.
|
[67] |
Nerin C, Alfaro P, Aznar M, et al. The challenge of identifying nonintentionally added substances from food packaging materials: A review. [J] Analytica Chimica Acta, 2013, (775), 14−24.
|
[68] |
Bignard i C, Cavazza A, Corradini C, et al. Targeted and untargeted data-dependent experiments for characterization of polycarbonate food-contact plastics by ultra high performance chromatography coupled to quadrupole orbitrap tandem mass spectrometry[J]. Journal of Chromatography A,2014,1372:133−144.
|
[69] |
祝爱兰, 任明利. PET中环状齐聚物的研究[J]. 上海化工,2005,30(5):24−28.
|
[70] |
张勤军,贝荣华,张泓,等.气相色谱-质谱联用法检测食品复合包装材料中17种丙烯酸酯类单体的残留量及迁移量[J/OL].食品科学:1−11[2020-06-11].http://kns.cnki.net/kcms/detail/11.2206.TS.20200302.1215.004.html.
|
[71] |
Lee J W, Lee J W, Kim K, et al. n-Butyl acrylate-induced antioxidant system alteration through two generations in Oryziaslatipes[J]. Springer Netherlands,2019,45(3). doi: 10.1007/s10695-018-0584-z
|
[72] |
Machotov A J, Podzimek Š, Zgoni H, et al. Determination of molar mass of structured acrylic microgels: effect of molar mass on coating properties of self-crosslinking latexes[J]. Journal of Polymer Research,2016,23(2):1−10.
|
[73] |
Colorants for Plastics and other Polymers Used in Commodities As of 01.06.2019 [R].Germany.BRF.2019.
|
[74] |
Blanco-Zubiaguirre L, Zabaleta I, Usobiaga A, et al. Target and suspect screening of substances liable to migrate from food contact paper and cardboard materials using liquid chromatography-high resolution tandem mass spectrometry[J]. Talanta,2020,208:120394.
|
[75] |
张玉霞, 刘肖肖, 梁青, 等. 气相色谱法测定食品包装纸中饱和烃矿物油迁移量[J]. 标准科学,2017,6:70−74.
|
[76] |
Pieke E N, Kit G, Bruno T, et al. Prioritization before risk assessment: The viability of uncertain data on food contact materials[J]. Regulatory Toxicology & Pharmacology,2018,97:134−1143.
|
[77] |
Lommatzsch M, Richter L, Biedermann-brem S, et al. Functional barriers or adsorbent to reduce the migration of mineral oil hydrocarbons from recycled cardboard into dry food[J]. European Food Research & Technology,2016,242(10):1727−1733.
|
[78] |
Bevana R, Harrisona P T C, Jeffery B, et al. Evaluating the risk to humans from mineral oils in foods: Current state of the evidence[J]. Food and Chemical Toxicology,2020,136:p. 110966.
|
[79] |
Feng Di, YangHuimin, Qi Donglei, et al. Extraction, confirmation, and screening of non-target compounds in silicone rubber teats by purge-and-trap and SPME combined with GC-MS[J]. Polymer Testing,2016,56:91−98.
|
[80] |
El Moussawi S N, Ouaini R, Matta J, et al. Simultaneous migration of bisphenol compounds and trace metals in canned vegetable food[J]. Food Chemistry,2019,288:228−238.
|
[81] |
杨岳平, 胡长鹰, 李克亚,等. 毒理学关注阈值方法在食品接触材料风险评估中的应用[J]. 食品科学,2015,516(23):356−361.
|
[82] |
钟怀宁, 陈俊骐, 冯婕莉,等. 食品接触材料中非有意添加物的安全评估[J]. 中国食品卫生杂志,2017,29(2):238−243.
|
[83] |
隋海霞, 张磊, 毛伟峰,等. 毒理学关注阈值方法的建立及其在食品接触材料评估中的应用[J]. 中国食品卫生杂志,2012,24(2).
|
[84] |
王文娟, 蔡小芳, 唐洁,等. 体外生物测定法在食品接触材料安全性评价中的应用研究进展[J]. 食品科学,2019,40(15):277−284.
|
[1] | GAO Ziqi, LIU Xiuwei, LI Zelin, FAN Fangyu, WANG Hanmo, TIAN Hao, NIU Zhirui. Dynamic Visual Analysis Literature in Coffee Flavor Research[J]. Science and Technology of Food Industry, 2024, 45(22): 225-235. DOI: 10.13386/j.issn1002-0306.2023110286 |
[2] | LI Tingyang, HOU Yue, GOU Wenfeng, SHANG Haihua, XU Feifei, LI Yiliang, HOU Wenbin, ZHOU Fujun. Visual Analysis of Amino Acid Radiation Protection Research Based on CiteSpace[J]. Science and Technology of Food Industry, 2024, 45(18): 366-375. DOI: 10.13386/j.issn1002-0306.2023090282 |
[3] | ZHANG Xuwen, LIU Sui, ZHAO Jinqi, YANG Ya, GE Binggang, WANG Kunbo, FU Donghe. Visual Analysis of Dark Tea Research Status Based on CiteSpace[J]. Science and Technology of Food Industry, 2024, 45(8): 397-406. DOI: 10.13386/j.issn1002-0306.2023050356 |
[4] | LI Jianing, ZHANG Yulin, LÜ Yi, WANG Jiaqi, MA Tingting, FANG Yulin, SUN Xiangyu. Research Progress Analysis on Copper in Wine Based on Bibliometrics[J]. Science and Technology of Food Industry, 2023, 44(16): 470-479. DOI: 10.13386/j.issn1002-0306.2022120101 |
[5] | DING Yan, SUN Yuanming, LI Dongsheng, LI Tongxi, ZHANG Yongcheng, LIU Yang, LAN Haipeng. Visualized Analysis of Research Progress and Trends in Fruit Nondestructive Testing Based on CiteSpace[J]. Science and Technology of Food Industry, 2023, 44(16): 444-453. DOI: 10.13386/j.issn1002-0306.2022100233 |
[6] | ZHAO Qiaozhen, ZHANG Mengmeng, MIAO Kunchen, LI Xiaojie, REN Guanghua, LÜ Xiaofeng, XU Xinyu, MENG Wu. Research Status and Visualization Analysis of Microorganism in Baijiu Brewing Based on Bibliometrics[J]. Science and Technology of Food Industry, 2023, 44(15): 492-500. DOI: 10.13386/j.issn1002-0306.2022120042 |
[7] | MENG Jin-ming, FAN Ai-ping, HE Chuan-qi, ZENG Li-ping. Dynamic Changes of Physicochemical and Aroma Components in the Fermentation Process of Mango-carrot Compound Fruit Wine[J]. Science and Technology of Food Industry, 2020, 41(12): 7-13. DOI: 10.13386/j.issn1002-0306.2020.12.002 |
[8] | SONG Meng-di, ZENG Jie, JIA Tian, ZHANG Rui-yao, MENG Ke-xin, JIANG Ji-kai, GAO Hai-yan, SU Tong-chao, SUN Jun-liang, LI Guang-lei. Processing Technology and Antioxidant Activities of Deep-fried Instant Carrot Noodles[J]. Science and Technology of Food Industry, 2019, 40(10): 227-231,237. DOI: 10.13386/j.issn1002-0306.2019.10.037 |
[9] | LIU Ying, JIAO Meng-yue, WANG Li-xia, GAO Han, TIAN Yi-ling. Optimization of lactic acid bacteria fermentation carrot protoplasmic technology using the response surface method and the analysis of main volatile components[J]. Science and Technology of Food Industry, 2017, (15): 85-92. DOI: 10.13386/j.issn1002-0306.2017.15.017 |
[10] | SUN Ya-xin, KANG Xu-lei, LIANG Dong, CHEN Fang, HU Xiao-song. Study on effect and mechanism of high pressure processing on hardness of fresh-cut carrot[J]. Science and Technology of Food Industry, 2017, (11): 200-204. DOI: 10.13386/j.issn1002-0306.2017.11.029 |
1. |
夏羽菡,丁欢,孟甘露,赵荣,刘文颖,杜颖鑫. 小麦肽对小鼠成肌细胞C2C12凋亡的影响及机制研究. 中国食物与营养. 2024(10): 54-61 .
![]() | |
2. |
李尽哲,张弛,盛思佳,柳凤凤,祝浩杰,黄雅琴. 花脸香蘑山药菌质饮料的配方优化及其抗氧化活性. 食品工业科技. 2023(05): 195-203 .
![]() | |
3. |
杨亚萍,吕亚辉,刘飞祥,彭新. 灵芝菌丝体硒多糖结构表征、抗氧化活性及对小鼠运动疲劳的影响. 中国食品添加剂. 2023(06): 109-118 .
![]() | |
4. |
符家庆,毛志晨. 蒲菜总黄酮的分离纯化及其对小鼠运动耐力的影响. 中国食品添加剂. 2023(06): 138-145 .
![]() | |
5. |
侯志远,孟飞燕. 响应面法优化白灵菇菌丝体多糖运动饮料配方及其抗疲劳研究. 中国食品添加剂. 2023(07): 174-180 .
![]() | |
6. |
张瑞,刘敬科,常世敏,刘俊利. 谷物饮料的研究进展. 食品科技. 2023(08): 152-158 .
![]() | |
7. |
吕一鸣,田潇凌,王晓曦,马森. 小麦蛋白质研究与开发现状. 粮食加工. 2022(03): 8-13 .
![]() | |
8. |
赵云龙. 芜菁山楂复合饮料配方优化及其对运动耐力的影响. 食品工业科技. 2022(14): 401-408 .
![]() | |
9. |
樊一婷. 缓解恢复运动性疲劳的天然物质化学提取工艺及性能分析. 粘接. 2022(10): 118-121 .
![]() | |
10. |
董佳萍,杨琪,谢琳琳,王鹤霖,刘殊凡,迟晓星. 金雀异黄素缓解免疫抑制大鼠运动性疲劳的作用研究. 中国粮油学报. 2022(09): 111-116 .
![]() |