CAI Xiaofang, FENG Di, YUAN Hang, et al. Research Progress on Non-intentional Added Substances and Their Origins in Food Contact Materials[J]. Science and Technology of Food Industry, 2021, 42(8): 376−387. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2020060173.
Citation: CAI Xiaofang, FENG Di, YUAN Hang, et al. Research Progress on Non-intentional Added Substances and Their Origins in Food Contact Materials[J]. Science and Technology of Food Industry, 2021, 42(8): 376−387. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2020060173.

Research Progress on Non-intentional Added Substances and Their Origins in Food Contact Materials

More Information
  • Received Date: June 14, 2020
  • Available Online: January 27, 2021
  • Non-intentional added substances (NIAS) would be introduced into food contact materials (FCMs) in the process of production, use and recycling. NIAS have brought the severe challenges to the safety assessment and supervision of FCMs due to their complexity and unascertainty. In recent years, as one of the important factors affecting food safety, the migration of NIAS in FCMs has attracted much attention. In this paper, the research procedure, classification and main origins of NIAS in FCMs are briefly introduced, the major analysis strategy of NIAS is summarized base on the target and research purpose.In addition, the recent progress of main NIAS and their possible origins in different types of FCMs are focused. This review is expected to provide scientific guidance for future studies of NIAS in FCMs.
  • [1]
    Geueke Birgit FPF Dossier: Non-intentionally added substances (NIAS)[C]// American Thoracic Society International Conference, 2010.
    [2]
    葛琨, 胡玉玲, 李攻科. 等. 食品接触材料样品前处理和检测方法研究进展[J]. 食品安全质量检测学报,2019,10(14):4451−4460. doi: 10.3969/j.issn.2095-0381.2019.14.003
    [3]
    魏帅, 鲍蕾. 食品接触材料中非有意添加物的检测方法[J]. 食品安全质量检测学报,2019,10(24):8195−8203.
    [4]
    魏晓晓, 高峡, 刘伟丽, 等. GC-MS和LC-MS技术用于食品接触高分子中非有意添加物的检测研究[J]. 分析仪器,2019(3):51−55. doi: 10.3969/j.issn.1001-232x.2019.03.011
    [5]
    Bundesinstitut für Risikobewertung. Gemessene Gehalte an styrol-oligomeren in Lebensmittel simulanzien: Gesundheitlicherisiken sindunwahrscheinlich[R]. Germany: BRF, 2016.
    [6]
    Úbeda S, Aznar M, Vera P, et al. Overall and specific migration from multilayer high barrier food contact materials-kinetic study of cyclic polyester oligomers migration[J]. Food Additives & Contaminants,2017,34(10):1784−1794.
    [7]
    Ubeda S, Aznar M, Alfaro P, et al. Migration of oligomers from a food contact biopolymer based on polylactic acid(PLA) and polyester[J]. Analytical and Bioanalytical Chemistry,2019,411(16):3521−3532. doi: 10.1007/s00216-019-01831-0
    [8]
    Aznar M, Ubeda S, Dreolin N, et al. Determination of non-volatile components of a biodegradable food packaging material based on polyester and polylactic acid(PLA) and its migration to food simulants[J]. Journal of Chromatography A,2019,1583:1−8. doi: 10.1016/j.chroma.2018.10.055
    [9]
    Biedermann M, Grob K. Is recycled newspaper suitable for food contact materials? Technical grade mineral oils from printing inks[J]. European Food Research & Technology,2010,230(5):785−796.
    [10]
    Zhou N, Luo H, Zhu B. Determination of the migration of 16 PAHS from paper cups into food stimulants[J]. Journal of Hygiene Research,2015,44(2):303−311.
    [11]
    Mutsuga M, Yamaguchi M, Kawamura Y. Analysis of N-Nitrosamine Migration from Rubber Teats and Soothers[J]. American Journal of Analytical Chemistry,2013,4(6):277−285. doi: 10.4236/ajac.2013.46035
    [12]
    幸苑娜, 王欣, 陈泽勇, 等. 气相色谱-正化学源质谱法测定家用橡胶手套中7种N-亚硝胺及其前体物的迁移量[J]. 分析测试学报,2011,30(5):503−507. doi: 10.3969/j.issn.1004-4957.2011.05.006
    [13]
    Feng Di, Zhang Xirong, Wang Wenjuan, et al. Development, validation and comparison of three detection methods for 9 volatile methylsiloxanes in food-contact silicone rubber products[J]. Polymer Testing,2019,73:94−103. doi: 10.1016/j.polymertesting.2018.10.014
    [14]
    Song X, Wrona M, Nerin C, et al. Volatile non-intentionally added substances (NIAS) identified in recycled expanded polystyrene containers and their migration into food simulants[J]. Food Packaging and Shelf Life,2019,20:100318. doi: 10.1016/j.fpsl.2019.100318
    [15]
    Omer E, Cariou R, Remaud, Gérald, et al. Elucidation of non-intentionally added substances migrating from polyester-polyurethane lacquers using automated LC-HRMS data processing[J]. Analytical and Bioanalytical Chemistry,2018,410(22):5391−5403. doi: 10.1007/s00216-018-0968-z
    [16]
    Juliana S, Félix, Isella F, et al. Analytical tools for identification of non-intentionally added substances (NIAS) coming from polyurethane adhesives in multilayer packaging materials and their migration into food simulants[J]. Analytical and Bioanalytical Chemistry,2012,403(10):2869−2882. doi: 10.1007/s00216-012-5965-z
    [17]
    Pezo D, Fedeli M, Bosetti O, et al. Aromatic amines from polyurethane adhesives in food packaging: The challenge of identification and pattern recognition using Quadrupole-Time of Flight-Mass SpectrometryE[J]. Analytica Chimica Acta,2012,756(Complete):49−59.
    [18]
    Bignardi C, Cavazza A, Carmen Laganà, et al. Release of non-intentionally added substances (NIAS) from food contact polycarbonate: Effect of ageing[J]. Food Control,2016,71:329−335.
    [19]
    Riquet A M, Breysse C, Dahbi L, et al. The consequences of physical post-treatments (microwave and electron-beam) on food/packaging interactions: A physicochemical and toxicological approach[J]. Food Chemistry,2016,199:59−69. doi: 10.1016/j.foodchem.2015.09.034
    [20]
    Yueping Y, Changying H, Huaining Z, et al. Effects of ultraviolet (UV) on degradation of irgafos 168 and migration of its degradation products from polypropylene films[J]. Journal of Agricultural and Food Chemistry,2016:acs. jafc. 6b03018.
    [21]
    Canellas E, Nerin C, Moore R, et al. New UPLC coupled to mass spectrometry approaches for screening of non-volatile compounds as potential migrants from adhesives used in food packaging materials[J]. Anal Chim Acta, 2010, 666: 62−69.
    [22]
    赖莺, 林睿, 林伟靖, 等. 丙烯酸树脂食品接触材料中16种单体迁移量的测定及迁移风险考察[J]. 分析化学,2015,43(10):1573−1579. doi: 10.11895/j.issn.0253-3820.150274
    [23]
    Suciu N A, Tiberto F, Vasileiadis S, et al. Recycled paper–paperboard for food contact materials: Contaminants suspected and migration into foods and food simulant[J]. Food Chemistry,2013,141(4):4146−4151. doi: 10.1016/j.foodchem.2013.07.014
    [24]
    Fiselier K, Rutschmann E, Mccombie G, et al. Migration of di(2-ethylhexyl) maleate from cardboard boxes into foods[J]. European Food Research & Technology,2010,230(4):619−626.
    [25]
    许力, 蒋佳芮, 张建铎, 等. 纸质食品接触材料中七种多氯联苯的气相色谱法测定[J]. 食品工业科技,2019,40(3):245−254.
    [26]
    Merkel S, Kappenstein O, Sander S, et al. Transfer of primary aromatic amines from coloured paper napkins into four different food matrices and into cold water extracts[J]. Food Additives & Contaminants,2018,35(6):1223−1229.
    [27]
    Lestido-cardama A, Störmer Á, Franz R. Dialkylketones in paperboard food contact materials-method of analysis in fatty foods and comparative migration into liquid simulants versus foodstuffs[J]. Molecules,2020,25(4):915. doi: 10.3390/molecules25040915
    [28]
    Ibarra V G, Quirós A R B, Losada P P, et al. Identification of intentionally and non-intentionally added substances in plastic packaging materials and their migration into food products[J]. Anal Bioanal Chem,2018,410:3789−3803. doi: 10.1007/s00216-018-1058-y
    [29]
    García ibarra V, Raquel S, Juana B, et al. Estimates of dietary exposure of Spanish population to packaging contaminants from cereal based foods contained in plastic materials[J]. Food and Chemical Toxicology,2019,128:180−192. doi: 10.1016/j.fct.2019.04.003
    [30]
    Su Q, Vera P, Van de wiele C, et al. Non-target screening of (semi-)volatiles in food-grade polymers by comparison of atmospheric pressure gas chromatography quadrupole time-of-flight and electron ionization mass spectrometry[J]. Talanta,2019,202:285−296. doi: 10.1016/j.talanta.2019.05.029
    [31]
    Chandisree R, Joel P, Maria S, et al. Assessment of baby Bibs. GC-MS screening, migration into saliva and insight of toxicity with QSAR tools[J]. Food Control,2020,109:106951. doi: 10.1016/j.foodcont.2019.106951
    [32]
    Alin J, Hakkarainen M. Microwave heating causes rapid degradation of antioxidants in polypropylene packaging, leading to greatly increased specific migration to food simulants as shown by ESI-MS and GC-MS[J]. Journal of Agricultural & Food Chemistry,2010,59(10):5418−5427.
    [33]
    Bentayeb K, Batlle R, Romero J, et al. UPLC–MS as a powerful technique for screening the nonvolatile contaminants in recycled PET[J]. Analytical and Bioanalytical Chemistry,2007,388(5−6):1031−1038. doi: 10.1007/s00216-007-1341-9
    [34]
    Paula V, Elena C, Cristina N, et al. Identification of non volatile migrant compounds and NIAS in polypropylene films used as food packaging characterized by UPLC-MS/QTOF[J]. Talanta: The International Journal of Pure and Applied Analytical Chemistry,2018,188:750−762.
    [35]
    Žnideršič L, Mlakar A, Prosen H. Development of a SPME-GC-MS/MS method for the determination of some contaminants from food contact material in beverages[J]. Food and Chemical Toxicology,2019,134:110829. doi: 10.1016/j.fct.2019.110829
    [36]
    Adam V, VácLAV Š, Markéta D, et al. Easy and inexpensive method for multiclass analysis of 41 food contact related contaminants in fatty food by liquid chromatography–tandem mass spectrometry[J]. Journal of Agricultural and Food Chemistry,2019,67(39):10968−10976. doi: 10.1021/acs.jafc.9b02544
    [37]
    Von eyken A, Ramachandran S, Bayen S, et al. Suspected-target screening for the assessment of plastic-related chemicals in honey[J]. Food Control,2020,109: 106941. doi: 10.1016/j.foodcont.2019.106941
    [38]
    Hwang J, Boon, Lee Subi, Y, et al. HS-GC/MS method development and exposure assessment of volatile organic compounds from food packaging into food simulants[J]. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment,2019,36(10). doi: 10.1080/19440049.2019.1642520
    [39]
    封棣, 张喜荣, 王文娟, 等. P& T-GC-MS法对食品接触硅胶奶嘴中VMSs的模拟迁移研究[J]. 包装工程,2018,39(15):21−27.
    [40]
    Domeno C, Munizza G, Nerin C, et al. Development of a solid-phase microextraction method for direct determination of pentachlorophenol in paper and board samples: Comparison with conventional extraction method[J]. J Chromatogr A,2005,1095(1-2):8−15. doi: 10.1016/j.chroma.2005.07.119
    [41]
    Oliveira, Echegoyen, Y, Cruz, S A, et al. Comparison between solid phase microextraction (SPME) and hollow fiber liquid phase microextraction (HFLPME) for determination of extractables from post-consumer recycled PET into food simulants[J]. Talanta,2014,127:59−67. doi: 10.1016/j.talanta.2014.03.042
    [42]
    Lin Q B, Cai L F, Wu S J, et al. Determination of four types of hazardous chemicals in food contact materials by UHPLC-MS/MS[J]. Packaging Technology & Science,2015,28(5):461−474.
    [43]
    Ubeda S, Aznar M, Nerín C. Determination of oligomers in virgin and recycled polyethylene terephthalate (PET) samples by UPLC-MS-QTOF[J]. Analytical & Bioanalytical Chemistry,2018,410:2377−2384.
    [44]
    Parigoridi I E, Akrida-demertzi K, Demertzis P G. Determination of five (5) possible contaminants in recycled cardboard packages and food simulants using ultrasound assisted extraction coupled to GC-MS[J]. Materials Sciences and Applications,2014(5):745−751.
    [45]
    张宪臣, 张朋杰, 时成玉, 等. 微波辅助萃取-超高效液相色谱-四极杆/静电场轨道阱高分辨质谱法快速测定食品接触塑料制品中48种污染物残留[J]. 色谱,2018,36(7):634−642.
    [46]
    Fabrizio C antonella V, Gianluca T et al. Nonintentionally added substances in PET bottled mineral water during the shelf-life[J]. Eur Food Res Technol 2018.244: 433−439.
    [47]
    范文哲, 姜遥, 黄正根, 等. 固相萃取联合液相色谱-三重四级杆质谱测定饮用水中的亚硝胺类物质[J]. 西北师范大学学报: 自然科学版,2019,55(1):73−78.
    [48]
    Guo Q, Zhao S, Zhang J, et al. Determination of fipronil and its metabolites in chicken egg, muscle and cake by a modified QuEChERS method coupled with LC-MS/MS[J]. Food Additives & Contaminants: Part A,2018,35(8):1543−1552.
    [49]
    Bauer A, Jesús F, Ramos M J G, et. al, Identification of unexpected chemical contaminants in baby food coming from plastic packaging migration by high resolution accurate mass spectrometry[J]. Food Chemistry 2019, (295)274−288.
    [50]
    Adam V, lukas V, Jitka S, et al. Method for analysis of 68 organic contaminants in food contact paper using gas and liquid chromatography coupled with tandem mass spectrometry[J]. Food Control, 2016, 60: 221−229.
    [51]
    Yan C, Xuemei N, Han Q et al. A high-throughput screening method of bisphenols, bisphenols digycidyl ethers and their derivatives in dairy products by ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Analytica Chimica Acta,2017,950:98−107. doi: 10.1016/j.aca.2016.11.006
    [52]
    Gómez ramos M J, A Lozano A R. Fernández-alba, High-resolution mass spectrometry with data independent acquisition for the comprehensive non-targeted analysis of migrating chemicals coming from multilayer plastic packaging materials used for fruit purée and juice[J]. Talanta, 2019, 191: 180−192.
    [53]
    Martínez-bueno M. J, . Hernandob M. D, Uclésa S, et al., Identification of non-intentionally added substances in food packaging nano films by gas and liquid chromatography coupled to orbitrap mass spectrometry[J]. Talanta, 2017, 172: 68−77.
    [54]
    Koster S, Rennen M, Leeman W, Muilwijk B, et al. A novel safety assessment strategy for non-intentionally added substances (NIAS) in carton food contact materials[J]. Food Additives & Contaminants,2014,31(3):422−443.
    [55]
    Gruner A, Chan S Y, Störmer A, et al. Semi-quantitative determination of potential migrants in food packaging materials-Part 2: Semi-volatile compounds[C]//Prague: Poster at ILSI 4th international symposium on food packaging-scientific developments supporting safety and quality, 2008.
    [56]
    Koster S, Bani E, Marie H, et al. Guidance on best practices on the risk assessment of non-intentionally added substances (NIAS) in food contact materials and articles[M]. Belgium: International Life Sciences Institute, 2015.
    [57]
    Murat P, Ferret PJ, Coslédan S, et al. Assessment of targeted non-intentionally added substances in cosmetics in contact with plastic packaging, analytical and toxicological aspects[J]. Food Chem Toxicol,2019,128:106−118. doi: 10.1016/j.fct.2019.03.030
    [58]
    Brenz F, Linke S, Simat T, et al. Qualitative and quantitative analysis of monomers in polyesters for food contact materials[J]. Food Addit Contam,2017,34(2):307−319.
    [59]
    Pang H, Jia W, Hu Z. Emerging applications of metabolomics in clinical pharmacology.[J]. Clinical Pharmacology and Therapeutics, 2019, 106: 544−556.
    [60]
    Delgado-blanca I, EJLlorent-martínez, Ruiz-medina A, et al. Automated on-line liquid-liquid extraction in a multisyringe flow injection analysis manifold for migration studies in food-contact materials: analysis of 4,4´-dihydroxybiphenyl[J]. Food Additives & Contaminants,2020,37(1):174−182.
    [61]
    Lago M A, Ackerman L K. Identification of print-related contaminants in food packaging[J]. Food Addit Contam Part A Chem Anal Control Expo Risk Assess,2016,33(3):518−529.
    [62]
    Canellas E, Paula V, Cristina N. Migration assessment and the ‘threshold of toxicological concern’ applied to the safe design of an acrylic adhesive for food-contact laminates[J]. Food Additives & Contaminants: Part A: 6th ILSI International Symposium on Food Packaging,2017,34(10):1721−1729.
    [63]
    Eckardt M, Greb A, Simat T J. Polyphenylsulfone (PPSU) for baby bottles: A comprehensive assessment on polymer-related non-intentionally added substances (NIAS)[J]. Food Additives & Contaminants: Part A,2018,35(7):1421−1437.
    [64]
    Friederike K, Kappenstein O, Samira S, et al. N -nitrosamines migrating from food contact materials into food simulants: Analysis and quantification by means of HPLC-APCI-MS/MS[J]. Food Additives & Contaminants Part A,2017,35(4):792−801.
    [65]
    Ackerman L K, Noonan G O, Begley T H, et al. Accurate mass and nuclear magnetic resonance identification of bisphenolic can coating migrants and their interference with liquid chromatography/tandem mass spectrometric analysis of bisphenol A[J]. Rapid Commun Mass Spectrom,2011,25(9):1336−1342.
    [66]
    Omer E, Emmanuelle B, Sébastien H, et al. Toward the characterisation of non-intentionally added substances migrating from polyester-polyurethane lacquers by comprehensive gas chromatography-mass spectrometry technologies[J]. Journal of Chromatography A,2019,1601:327−334.
    [67]
    Nerin C, Alfaro P, Aznar M, et al. The challenge of identifying nonintentionally added substances from food packaging materials: A review. [J] Analytica Chimica Acta, 2013, (775), 14−24.
    [68]
    Bignard i C, Cavazza A, Corradini C, et al. Targeted and untargeted data-dependent experiments for characterization of polycarbonate food-contact plastics by ultra high performance chromatography coupled to quadrupole orbitrap tandem mass spectrometry[J]. Journal of Chromatography A,2014,1372:133−144.
    [69]
    祝爱兰, 任明利. PET中环状齐聚物的研究[J]. 上海化工,2005,30(5):24−28.
    [70]
    张勤军,贝荣华,张泓,等.气相色谱-质谱联用法检测食品复合包装材料中17种丙烯酸酯类单体的残留量及迁移量[J/OL].食品科学:1−11[2020-06-11].http://kns.cnki.net/kcms/detail/11.2206.TS.20200302.1215.004.html.
    [71]
    Lee J W, Lee J W, Kim K, et al. n-Butyl acrylate-induced antioxidant system alteration through two generations in Oryziaslatipes[J]. Springer Netherlands,2019,45(3). doi: 10.1007/s10695-018-0584-z
    [72]
    Machotov A J, Podzimek Š, Zgoni H, et al. Determination of molar mass of structured acrylic microgels: effect of molar mass on coating properties of self-crosslinking latexes[J]. Journal of Polymer Research,2016,23(2):1−10.
    [73]
    Colorants for Plastics and other Polymers Used in Commodities As of 01.06.2019 [R].Germany.BRF.2019.
    [74]
    Blanco-Zubiaguirre L, Zabaleta I, Usobiaga A, et al. Target and suspect screening of substances liable to migrate from food contact paper and cardboard materials using liquid chromatography-high resolution tandem mass spectrometry[J]. Talanta,2020,208:120394.
    [75]
    张玉霞, 刘肖肖, 梁青, 等. 气相色谱法测定食品包装纸中饱和烃矿物油迁移量[J]. 标准科学,2017,6:70−74.
    [76]
    Pieke E N, Kit G, Bruno T, et al. Prioritization before risk assessment: The viability of uncertain data on food contact materials[J]. Regulatory Toxicology & Pharmacology,2018,97:134−1143.
    [77]
    Lommatzsch M, Richter L, Biedermann-brem S, et al. Functional barriers or adsorbent to reduce the migration of mineral oil hydrocarbons from recycled cardboard into dry food[J]. European Food Research & Technology,2016,242(10):1727−1733.
    [78]
    Bevana R, Harrisona P T C, Jeffery B, et al. Evaluating the risk to humans from mineral oils in foods: Current state of the evidence[J]. Food and Chemical Toxicology,2020,136:p. 110966.
    [79]
    Feng Di, YangHuimin, Qi Donglei, et al. Extraction, confirmation, and screening of non-target compounds in silicone rubber teats by purge-and-trap and SPME combined with GC-MS[J]. Polymer Testing,2016,56:91−98.
    [80]
    El Moussawi S N, Ouaini R, Matta J, et al. Simultaneous migration of bisphenol compounds and trace metals in canned vegetable food[J]. Food Chemistry,2019,288:228−238.
    [81]
    杨岳平, 胡长鹰, 李克亚,等. 毒理学关注阈值方法在食品接触材料风险评估中的应用[J]. 食品科学,2015,516(23):356−361.
    [82]
    钟怀宁, 陈俊骐, 冯婕莉,等. 食品接触材料中非有意添加物的安全评估[J]. 中国食品卫生杂志,2017,29(2):238−243.
    [83]
    隋海霞, 张磊, 毛伟峰,等. 毒理学关注阈值方法的建立及其在食品接触材料评估中的应用[J]. 中国食品卫生杂志,2012,24(2).
    [84]
    王文娟, 蔡小芳, 唐洁,等. 体外生物测定法在食品接触材料安全性评价中的应用研究进展[J]. 食品科学,2019,40(15):277−284.
  • Related Articles

    [1]GAO Ziqi, LIU Xiuwei, LI Zelin, FAN Fangyu, WANG Hanmo, TIAN Hao, NIU Zhirui. Dynamic Visual Analysis Literature in Coffee Flavor Research[J]. Science and Technology of Food Industry, 2024, 45(22): 225-235. DOI: 10.13386/j.issn1002-0306.2023110286
    [2]LI Tingyang, HOU Yue, GOU Wenfeng, SHANG Haihua, XU Feifei, LI Yiliang, HOU Wenbin, ZHOU Fujun. Visual Analysis of Amino Acid Radiation Protection Research Based on CiteSpace[J]. Science and Technology of Food Industry, 2024, 45(18): 366-375. DOI: 10.13386/j.issn1002-0306.2023090282
    [3]ZHANG Xuwen, LIU Sui, ZHAO Jinqi, YANG Ya, GE Binggang, WANG Kunbo, FU Donghe. Visual Analysis of Dark Tea Research Status Based on CiteSpace[J]. Science and Technology of Food Industry, 2024, 45(8): 397-406. DOI: 10.13386/j.issn1002-0306.2023050356
    [4]LI Jianing, ZHANG Yulin, LÜ Yi, WANG Jiaqi, MA Tingting, FANG Yulin, SUN Xiangyu. Research Progress Analysis on Copper in Wine Based on Bibliometrics[J]. Science and Technology of Food Industry, 2023, 44(16): 470-479. DOI: 10.13386/j.issn1002-0306.2022120101
    [5]DING Yan, SUN Yuanming, LI Dongsheng, LI Tongxi, ZHANG Yongcheng, LIU Yang, LAN Haipeng. Visualized Analysis of Research Progress and Trends in Fruit Nondestructive Testing Based on CiteSpace[J]. Science and Technology of Food Industry, 2023, 44(16): 444-453. DOI: 10.13386/j.issn1002-0306.2022100233
    [6]ZHAO Qiaozhen, ZHANG Mengmeng, MIAO Kunchen, LI Xiaojie, REN Guanghua, LÜ Xiaofeng, XU Xinyu, MENG Wu. Research Status and Visualization Analysis of Microorganism in Baijiu Brewing Based on Bibliometrics[J]. Science and Technology of Food Industry, 2023, 44(15): 492-500. DOI: 10.13386/j.issn1002-0306.2022120042
    [7]MENG Jin-ming, FAN Ai-ping, HE Chuan-qi, ZENG Li-ping. Dynamic Changes of Physicochemical and Aroma Components in the Fermentation Process of Mango-carrot Compound Fruit Wine[J]. Science and Technology of Food Industry, 2020, 41(12): 7-13. DOI: 10.13386/j.issn1002-0306.2020.12.002
    [8]SONG Meng-di, ZENG Jie, JIA Tian, ZHANG Rui-yao, MENG Ke-xin, JIANG Ji-kai, GAO Hai-yan, SU Tong-chao, SUN Jun-liang, LI Guang-lei. Processing Technology and Antioxidant Activities of Deep-fried Instant Carrot Noodles[J]. Science and Technology of Food Industry, 2019, 40(10): 227-231,237. DOI: 10.13386/j.issn1002-0306.2019.10.037
    [9]LIU Ying, JIAO Meng-yue, WANG Li-xia, GAO Han, TIAN Yi-ling. Optimization of lactic acid bacteria fermentation carrot protoplasmic technology using the response surface method and the analysis of main volatile components[J]. Science and Technology of Food Industry, 2017, (15): 85-92. DOI: 10.13386/j.issn1002-0306.2017.15.017
    [10]SUN Ya-xin, KANG Xu-lei, LIANG Dong, CHEN Fang, HU Xiao-song. Study on effect and mechanism of high pressure processing on hardness of fresh-cut carrot[J]. Science and Technology of Food Industry, 2017, (11): 200-204. DOI: 10.13386/j.issn1002-0306.2017.11.029
  • Cited by

    Periodical cited type(10)

    1. 夏羽菡,丁欢,孟甘露,赵荣,刘文颖,杜颖鑫. 小麦肽对小鼠成肌细胞C2C12凋亡的影响及机制研究. 中国食物与营养. 2024(10): 54-61 .
    2. 李尽哲,张弛,盛思佳,柳凤凤,祝浩杰,黄雅琴. 花脸香蘑山药菌质饮料的配方优化及其抗氧化活性. 食品工业科技. 2023(05): 195-203 . 本站查看
    3. 杨亚萍,吕亚辉,刘飞祥,彭新. 灵芝菌丝体硒多糖结构表征、抗氧化活性及对小鼠运动疲劳的影响. 中国食品添加剂. 2023(06): 109-118 .
    4. 符家庆,毛志晨. 蒲菜总黄酮的分离纯化及其对小鼠运动耐力的影响. 中国食品添加剂. 2023(06): 138-145 .
    5. 侯志远,孟飞燕. 响应面法优化白灵菇菌丝体多糖运动饮料配方及其抗疲劳研究. 中国食品添加剂. 2023(07): 174-180 .
    6. 张瑞,刘敬科,常世敏,刘俊利. 谷物饮料的研究进展. 食品科技. 2023(08): 152-158 .
    7. 吕一鸣,田潇凌,王晓曦,马森. 小麦蛋白质研究与开发现状. 粮食加工. 2022(03): 8-13 .
    8. 赵云龙. 芜菁山楂复合饮料配方优化及其对运动耐力的影响. 食品工业科技. 2022(14): 401-408 . 本站查看
    9. 樊一婷. 缓解恢复运动性疲劳的天然物质化学提取工艺及性能分析. 粘接. 2022(10): 118-121 .
    10. 董佳萍,杨琪,谢琳琳,王鹤霖,刘殊凡,迟晓星. 金雀异黄素缓解免疫抑制大鼠运动性疲劳的作用研究. 中国粮油学报. 2022(09): 111-116 .

    Other cited types(10)

Catalog

    Article Metrics

    Article views (807) PDF downloads (59) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return