SHI Yonggui, LIN Rihui, JIAO Siyu, et al. Preparation of Starch Nanoparticle by Alcohol Precipitation and Simultaneous Embedding of Kaempferol[J]. Science and Technology of Food Industry, 2022, 43(2): 241−247. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020060123.
Citation: SHI Yonggui, LIN Rihui, JIAO Siyu, et al. Preparation of Starch Nanoparticle by Alcohol Precipitation and Simultaneous Embedding of Kaempferol[J]. Science and Technology of Food Industry, 2022, 43(2): 241−247. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020060123.

Preparation of Starch Nanoparticle by Alcohol Precipitation and Simultaneous Embedding of Kaempferol

More Information
  • Received Date: May 18, 2021
  • Available Online: November 19, 2021
  • Using tapioca starch as raw material, starch nanoparticles were prepared by ultrasonic stirring, and characterized by scanning electron microscopy, laser nanoparticle sizer, and X-ray diffraction. In the sedimentation stage of starch nanoparticles, kaempferol solution was used as the non-solvent phase with 0.7 mg/mL kaempferol solution to simultaneously embed kaempferol to prepare kaempferol starch nanoparticles. The influence of ethanol concentration on the embedding rate of kaempferol was explored, and the release rate and stability of kaempferol after embedding were investigated. The results showed that when the ethanol concentration was 60%, starch nanoparticles were formed, and the size was uniformly distributed between 50 and 200 nm, when the ethanol concentration was less than 40%, V-shaped starch particles were formed. When the ethanol concentration was 30%, the entrapment rate of kaempferol was the highest, at 62.94%, and the embedding amount was 3.78 mg/g. In a simulated body fluid environment, the kaempferol starch nanoparticles can continuously release the drug for 20 h. The release rate was 88.75%, while the original kaempferol was almost completely released in 3 h, the release rate was 93.75%, and the release rate increased with the increasing of the ethanol concentration of the sustained-release medium. Compared with the aqueous solution of kaempferol, the retention rate of kaempferol increased from 43.17% to 75% when the kaempferol starch nanoparticles were allowed to stand at room temperature for 5 h, which had a stable embedding effect. It could be seen that the simultaneous embedding preparation technology would have a good embedding slow-release effect and stabilizing effect on kaempferol.
  • [1]
    IMRAN M, RAUF A, SHAH Z A, et al. Chemo-preventive and therapeutic effect of the dietary flavonoid kaemp ferol: A comprehensive review[J]. Phytother Res,2019,33(2):263−275. doi: 10.1002/ptr.6227
    [2]
    张雅雯, 邵东燕, 师俊玲, 等. 山奈酚生物功能研究进展[J]. 生命科学,2017,29(4):400−405. [ZHANG Y W, SHAO D Y, SHI J L, et al. Research progress on biological function of kaempferol[J]. Bioresource Technology,2017,29(4):400−405.
    [3]
    SONG H B, BAO J J, WEI Y Z, et al. Kaempferol inhibits gastric cancer tumor growth: An in vitro and in vitro study[J]. Oncol Rep,2015,33:868−874. doi: 10.3892/or.2014.3662
    [4]
    杨秦, 叶扬, 肖洪, 等. 山奈酚功能及提取工艺研究进展[J]. 粮食与油脂,2018,31(3):12−16. [YANG Q, YE Y, XIAO H, et al. Research progress on the function and extraction process of kaanol[J]. Cereals and Oils,2018,31(3):12−16.
    [5]
    SEDEF I L K, NECDET S, MUSTAFA Ö, et al. Chitosan nanoparticles enhances the anti-quorum sensing activity of kaempferol[J]. International Journal of Biological Macromolecules,2017,94:1−29. doi: 10.1016/j.ijbiomac.2016.09.099
    [6]
    陈立新, 陈茜. 淀粉作为药物载体的研究现状及应用[J]. 中国组织工程研究与临床康复,2010,14(21):3943−3944. [CHEN L X, CHEN Q. Research status and application of starch as drug carrier[J]. Chinese Journal of Tissue Engineering Research and Clinical Rehabilitation,2010,14(21):3943−3944.
    [7]
    寇宗亮, 高凤苑, 蓝平, 等. 木薯淀粉纳米颗粒的制备及载药性能的研究[J]. 现代化工,2020,40(2):105−109,113. [KOU Z L, GAO F Y, LAN P, et al. Preparation and drug loading performance of cassava starch nanoparticles[J]. Modern Chemical Industry,2020,40(2):105−109,113.
    [8]
    刘璐婕, 黄立新, 张彩虹等. 纳米淀粉的制备、性质及应用的研究进展[J]. 材料导报,2020,34(19):19027−19033. [LIU L J, HUANG L X, ZHANG C H, et al. Progress in preparation, properties and applications of nanocrystalline starch[J]. Materials Review,2020,34(19):19027−19033.
    [9]
    冯涛, 胡中山, 游雪燕等. 直链淀粉分子螺旋对风味化合物包埋的研究进展[J]. 食品科技,2020,45(2):278−284. [FENG T, HU Z S, YOU X Y, et al. Research progress in the embalming of flavor compounds by amylose molecule helix[J]. Food Science and Technology,2020,45(2):278−284.
    [10]
    TAN Y, XU K, LI L L, et al. Fabrication of size-controlled starch-based nanospheres by nanoprecipitation[J]. ACS Applied Materials & Interfaces,2009,1(4):956−959.
    [11]
    ARVISENET G, LE B P, VOILLEY A, et al. Influence of physicochemical interactions between amylose and aroma compounds on the retention of aroma in foodlike matrices[J]. Journal of Agricultural & Food Chemistry,2002,50(24):7088−7093.
    [12]
    ZHU F, WANG Y J. Characterization of modified high-amylose maize starch-α-naphthol complexes and their influence on rheological properties of wheat starch[J]. Food Chemistry,2013,138(1):256−262. doi: 10.1016/j.foodchem.2012.09.097
    [13]
    HU A J, WU C, ZHENG J, et al. Study on ultrasound assisted preparation of nano rice starch[J]. Advanced Materials Research,2010,148-149:1648−1651. doi: 10.4028/www.scientific.net/AMR.148-149.1648
    [14]
    孙锦, 刘芳, 何会泉等. 微波超声波辅助制备木薯淀粉纳米颗粒及其特性表征[J]. 食品工业科技,2018,39(20):128−134,140. [SUN J, LIU F, HE H Q, et al. Microwave-ultrasonic assisted preparation and characterization of cassava starch nanoparticles[J]. Science and Technology of Food Industry,2018,39(20):128−134,140.
    [15]
    涂宗财, 任维, 刘成梅等. 纳米级大米淀粉的制备及性质[J]. 农业工程学报,2008(1):250−253. [TU Z C, RENG W, LIU C M, et al. Preparation and properties of nanometer rice starch[J]. Journal of Agricultural Engineering,2008(1):250−253.
    [16]
    ABURTO J, ALRIC I, THIEBAUD S, et al. Synthesis, characterization, and biodegradability of fatty-acid esters of amylose and starch[J]. Journal of Applied Polymer Science,2015,74(6):1440−1451.
    [17]
    LI M M, XIANG L W, LU Y L I, et al. Screening of anti-tumor effective extracts from Sedum bulbiferum Makino and HPLC determination of quercetin and kaempferol in this herbal medicine[J]. Medicinal Plant,2019,10(3):30−33.
    [18]
    苏丽. 山奈酚柔性脂质体纳米粒的制备及释放机制研究[D]. 长春: 吉林大学, 2018.

    SU L. Preparation and release mechanism of kaanxiol flexible liposome nanoparticles [D]. Changchun: Jilin University, 2018.
    [19]
    杨慧, 樊艳叶, 赵佩莹等. 微孔淀粉对2, 4-二硝基苯酚的负载与缓释[J]. 食品工业科技,2019,40(17):13−18. [YANG H, FAN Y Y, ZHAO P Y, et al. Loading and sustained-release of 2, 4-dinitrophenol on microporous starch[J]. Science and Technology of Food Industry,2019,40(17):13−18.
    [20]
    JUNA S, HUBER A. Formation of nano- and micro-structures of various botanical sources of native starches investigated employing asymmetrical flow field-flow fractionation[J]. Starch,2013,65:1029−1037. doi: 10.1002/star.201300059
    [21]
    CLASEN S H, MÜLLER C, PARIZE A L, et al. Synthesis and characterization of cassava starch with maleic acid derivatives by etherification reaction[J]. Carbohydrate Polymers,2018(180):348−353.
    [22]
    SHI L, FU X, TAN C P, et al. Encapsulation of ethylene gas into granular cold-water-soluble starch: Structure and release kinetics[J]. Journal of Agricultural & Food Chemistry,2017,65(10):2189−2197.
    [23]
    YAN X, CHANG Y, WANG Q, et al. Influence of precipitation conditions on crystallinity of amylose nanoparticles[J]. Starch -Strke,2018(70):7−8.
    [24]
    侯敬申, 梁颖涛, 王伟雄等. 山奈酚抑制人胆囊癌细胞增殖及其对mTORC1通路的影响[J]. 暨南大学学报(自然科学与医学版),2019,40(5):419−425. [HOU J S, LIANG Y T, WANG W X, et al. Effects of kaemonol on the proliferation of human gallbladder carcinoma cells[J]. Journal of Jinan University (Natural Science & Medical Edition),2019,40(5):419−425.
    [25]
    侯晓苹, 赵娟, 侯晓莉等. 维生素C、茶碱和BSA在微孔淀粉上的吸附/释放动力学考察[J]. 中国医药工业杂志,2015,46(8):860−865. [HOU X P, ZHAO J, HOU X L, et al. Adsorption and release kinetics of vitamin C, theophylline and BSA on microporous starch[J]. China Pharmaceutical Industry,2015,46(8):860−865.
    [26]
    HUANG M G, SU E Z, ZHENG F P, et al. Encapsulation of flavonoids in liposomal delivery systems: The case of quercetin, kaempferol and luteolin[J]. Food & Function,2017,8(9):1−34.
    [27]
    胡晓. 蜂胶提取技术及其黄酮等主要活性物质稳定性研究[D]. 长沙: 湖南农业大学, 2008.

    HU X. Propolis extraction technology and study on the stability of its main active substances such as flavonoids[D]. Changshan: Hunan Agricultural University, 2008.
  • Cited by

    Periodical cited type(27)

    1. 戴明云,李斌,张朝阳,白富瑾,肖伟. 螺旋藻生长影响因素及功能特性应用研究进展. 现代农业科技. 2025(01): 161-165+179 .
    2. 李雪贤,刘洋,皮杰,桂雨婷,陆娟娟. 螺旋藻的主要成分及生理功能研究进展. 水产养殖. 2025(02): 37-42 .
    3. 韩佩,夏嵩,闫冰,姜钦亮,王一雯. 极大螺旋藻对四氧嘧啶性糖尿病小鼠的降血糖作用. 食品研究与开发. 2025(09): 44-51 .
    4. 吴朋徽,刘耀,张磊,肖芃颖,张玥. 微藻两阶段培养技术研究进展. 微生物学通报. 2024(01): 1-16 .
    5. 姜梦云,刘旭,衣然. 4种前处理方法-原子荧光光谱法测定螺旋藻中总砷含量. 食品安全导刊. 2024(03): 56-58 .
    6. 孙博,武晋海,李金凤,赵佳敏,刘金桃,黄凤丽. 螺旋藻口服液制备的工艺优化. 食品安全导刊. 2024(08): 127-131+135 .
    7. 唐魁延,龚艺松,田冬青,张晓宇,聂远洋,李波. 螺旋藻豆腐的研制开发. 河南科技学院学报(自然科学版). 2024(04): 15-27 .
    8. 薛宪辉,李思雨,郭睿,崔文凯,纪蓓. 螺旋藻风味酱的发酵工艺研究. 中国调味品. 2024(08): 69-73 .
    9. 王丽梅,西妮,穆文静,苏小军,张永明. 基于Cite Space对螺旋藻藻蓝蛋白的研究进展与热点分析. 食品与发酵工业. 2024(16): 313-323 .
    10. 宋盈萱,尹馨一,刘盈萱. 螺旋藻营养成分及生物活性研究进展. 食品安全导刊. 2024(27): 178-182 .
    11. 曾巧辉,余杏同,林妙銮. 螺旋藻蛋白-原花青素稳定亚麻籽油品质的研究. 佛山科学技术学院学报(自然科学版). 2024(05): 54-68 .
    12. 杨正磊,冯鑫,尹淑涛. 微藻资源概述及微藻多糖的生物活性研究进展. 中国食物与营养. 2024(09): 58-66 .
    13. 陈慧桢,吕莹果,陈洁,李雪琴. 螺旋藻方便面片制备工艺优化. 粮食与油脂. 2024(11): 135-142+162 .
    14. 柯善文,习向玉,陈翊可,张官鹏,宋富艳,韩栋敏,苏蓉,李晓雪,牛鑫,单华佳,梁倩倩. PDA培养基中添加不同有机氮源物质对黑木耳退化菌种复壮效果的影响. 山东农业科学. 2024(11): 121-126 .
    15. 袁泽文,高旭芳,田益玲. 响应面法优化乙酸锌对螺旋藻护色的研究. 粮食与油脂. 2023(04): 137-140 .
    16. 米顺利,竹烨,张艺,黄晓菊,蒋心怡,易湘茜. 螺旋藻复配代餐粉的研制. 保鲜与加工. 2023(07): 43-49 .
    17. 李平,吕莹果,李雪琴,陈洁. 螺旋藻粉对面团流变性质及面筋结构的影响. 食品科学. 2023(14): 63-71 .
    18. 王志忠,穆洁,巩东辉,郭彩凤,王志国,宝俊刚. 钝顶螺旋藻与五种常见食物营养成分对比分析. 食品与发酵科技. 2023(04): 111-115+121 .
    19. 郭旭,魏登枭,钟彩荣,兰英,何勇锦,陈必链. 正己烷与氯化钙介导法联产提取未破壁螺旋藻的藻蓝蛋白和油脂. 食品与发酵工业. 2023(17): 202-208 .
    20. 魏登,李美善,刘艳霞,金永燮,佟立爽. 精酿绿啤加工工艺优化及其挥发性风味鉴定分析. 中国食品添加剂. 2023(10): 217-225 .
    21. 魏登,刘艳霞,金永燮,佟立爽. 菠菜螺旋藻复合精酿小麦绿啤挥发性香气表征研究. 食品安全导刊. 2023(30): 88-91 .
    22. 吴慧. 螺旋藻曲奇饼干制作工艺的研究. 食品安全导刊. 2022(04): 128-131+135 .
    23. 付雨,姜雨,王进博,张铂瑾,宋宸,孙明霞. 螺旋藻类保健食品批准情况及问题. 食品与机械. 2022(08): 1-6+13 .
    24. 李青卓,张楠,梅兴国,吴基良. 新鲜螺旋藻中β-胡萝卜素提取与测定. 湖北科技学院学报(医学版). 2022(04): 287-291 .
    25. 刘璐璐,陈玟璇,刘小慧,李世乐,许志浩,陈洪彬,郑宗平,王宝贝. 雨生红球藻对戚风蛋糕品质的影响及其虾青素稳定性. 食品工业科技. 2022(19): 76-83 . 本站查看
    26. 佟立爽,王晏驰,周娜,李美善,魏登. 不同温度条件下精酿绿啤二次发酵的挥发性风味差异分析. 中国食品添加剂. 2022(11): 9-17 .
    27. 张春艳,张震,仇钧仪,初宇轩,彭磊磊,罗鹏,陈成勋. 饲料添加复合氨基酸对锦鲤生长和生理生化指标的影响. 经济动物学报. 2022(04): 261-267 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (205) PDF downloads (22) Cited by(36)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return