ZHU Shanshan, WANG Lei, LI Li, et al. Research Progress on Detection Methods of Polycyclic Aromatic Hydrocarbons in Meat Products [J]. Science and Technology of Food Industry, 2021, 42(8): 366−375. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2020060100.
Citation: ZHU Shanshan, WANG Lei, LI Li, et al. Research Progress on Detection Methods of Polycyclic Aromatic Hydrocarbons in Meat Products [J]. Science and Technology of Food Industry, 2021, 42(8): 366−375. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2020060100.

Research Progress on Detection Methods of Polycyclic Aromatic Hydrocarbons in Meat Products

More Information
  • Received Date: June 08, 2020
  • Available Online: January 27, 2021
  • As a volatile aromatic alkane compound, polycyclic aromatic hydrocarbons have teratogenicity, carcinogenicity, mutagenicity and genotoxicity, and are recognized as the main organic pollutants affecting human health. Because meat products contain a lot of nutrients such as fat and protein, polycyclic aromatic hydrocarbons are easily produced during the processing process, which poses a potential threat to human health. In recent years, with the research on the toxicity of polycyclic aromatic hydrocarbons, the food safety issues caused by it have received more and more attention. The research direction of PAHs detection and analysis is prospected, with a view to providing a reference for the development of accurate, fast, efficient and green detection and analysis methods.
  • [1]
    江黎雯, 薛超轶, 何志勇, 等. 肉制品中3类有害物质的来源与控制方法研究进展[J]. 肉类研究,2020,34(4):77−87.
    [2]
    Serena S, Stefania A, Nicoletta M, et al. Study on the occurrence of polycyclic aromatic hydrocarbons in milk and meat/fish based baby food available in Italy[J]. Chemosphere,2017,184:467−472. doi: 10.1016/j.chemosphere.2017.06.017
    [3]
    Olatunde S O, Olalekan S F, Beatrice O O, et al. Determination of polycyclic aromatic hydrocarbons [PAHs] in processed meat products using gas chromatography-Flame ionization detector[J]. Food Chemistry,2014,156:296−300. doi: 10.1016/j.foodchem.2014.01.120
    [4]
    Amin M, John L Z, Akiyoshi O, et al. Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments[J]. Science of the Total Environment,2019,696:198−208.
    [5]
    Thomas W, Zuzana Z. Polycyclic aromatic hydrocarbons in food and feed[J]. Encyclopedia of Food Chemistry,2019:455−469.
    [6]
    Krešimir M, Brankica K, Jelena P, et al. Polycyclic aromatic hydrocarbons in the traditional smoked sausage Slavonska kobasica[J]. Journal of Food Composition and Analysis,2019,83:103282. doi: 10.1016/j.jfca.2019.103282
    [7]
    Sun Y Q, Wu S M, Gong G Y. Trends of research on polycyclic aromatic hydrocarbons in food: A 20-year perspective from 1997 to 2017[J]. Trends in Food Science & Technology,2019,83:86−98.
    [8]
    Tereza S, Anna S R, Adéla F, et al. Application of QuEChERS-EMR-Lipid-DLLME method for the determination of polycyclic aromatic hydrocarbons in smoked food of animal origin[J]. Journal of Food Composition and Analysis,2020,87:103420. doi: 10.1016/j.jfca.2020.103420
    [9]
    Wanwisa W, Kanithaporn V. Effects of oil types and pH on carcinogenic polycyclic aromatic hydrocarbons (PAHs) in grilled chicken[J]. Food Control,2017,79:119−125. doi: 10.1016/j.foodcont.2017.03.029
    [10]
    李冬雪, 汪启兵, 张迪, 等. 色谱在生物有机体内多环芳烃检测中的应用[J]. 生命的化学,2018,38(1):61−70.
    [11]
    刘宜奇, 胡长鹰. 食品中多环芳烃的安全性研究进展[J]. 食品科学,2019,40(19):353−362. doi: 10.7506/spkx1002-6630-20181008-053
    [12]
    Demetris K, Andri K, Eftychia C, et al. Determination of polycyclic aromatic hydrocarbons in traditionally smoked meat products and charcoal grilled meat in Cyprus[J]. Meat Science,2020,164:108088. doi: 10.1016/j.meatsci.2020.108088
    [13]
    Ledesma E, Rendueles M, Díaz M. Contamination of meat products during smoking by polycyclic aromatic hydrocarbons: Processes and prevention[J]. Food Control,2016,60:64−87. doi: 10.1016/j.foodcont.2015.07.016
    [14]
    Andrés J R, Abdelmonaim A, Evaristo B. Trace level determination of polycyclic aromatic hydrocarbons in raw and processed meat and fish products from European markets by GC-MS[J]. Food Control,2019,101:198−208. doi: 10.1016/j.foodcont.2019.02.037
    [15]
    Gustav G, Prasanna E, Ashantha G, et al. Optimized simultaneous pressurized fluid extraction and in-cell clean-up, and analysis of polycyclic aromatic hydrocarbons (PAHs), and nitro-, carbonyl-, hydroxy -PAHs in solid particles[J]. Analytica Chimica Acta,2020,1125:19−28. doi: 10.1016/j.aca.2020.05.021
    [16]
    付欣. 新型磁性固相萃取材料的合成、表征及应用[D]. 合肥: 中国科学技术大学, 2019.
    [17]
    Zhang C, Deng Y, Zheng J, et al. The application of the QuEChERS methodology in the determination of antibiotics in food: a review[J]. TrAC Trends in Analytical Chemistry,2019,118:517−537. doi: 10.1016/j.trac.2019.06.012
    [18]
    徐志华, 朱晓华, 葛筱琴, 等. 自动索氏抽提-凝胶渗透色谱-气相色谱/质谱法测定渔业养殖环境及水产品中16种多环芳烃残留量[J]. 江苏农业学报,2019,35(6):1459−1467. doi: 10.3969/j.issn.1000-4440.2019.06.027
    [19]
    Beshare H, Parvin Z, Mojtaba S. Recent developments and applications of different sorbents for SPE and SPME from biological samples[J]. Talanta,2018,187:337−347. doi: 10.1016/j.talanta.2018.05.053
    [20]
    Tania M G V, Martha P, García D L. On-line MSPD-SPE-HPLC/FLD analysis of polycyclic aromatic hydrocarbons in bovine tissues[J]. Food Chemistry,2017,223:82−88. doi: 10.1016/j.foodchem.2016.11.099
    [21]
    林亚楠, 李诗言, 崔益玮, 等. 分子印迹固相萃取/液-质谱联用法测定烟熏鲟鱼中苯并芘[J]. 中国食品学报,2020,20(3):251−257.
    [22]
    李娜. 磁性固相萃取和高效液相色谱联用检测食品污染物的研究[D]. 临汾: 山西师范大学, 2019.
    [23]
    Jalili V, Barkhordari A, Ghiasvand A. Solid-phase microextraction technique for sampling and preconcentration of polycyclic aromatic hydrocarbons: A review[J]. Microchemical Journal,2020,157:104967. doi: 10.1016/j.microc.2020.104967
    [24]
    Vahid J, Abdullah B, Alireza G. A comprehensive look at solid-phase microextraction technique: A review of reviews[J]. Microchemical Journal,2020,152:104319. doi: 10.1016/j.microc.2019.104319
    [25]
    Huang S M, Chen G S, Ye N R, et al. Solid-phase microextraction: An appealing alternative for the determination of endogenous substances - A review[J]. Analytica Chimica Acta,2019,1077:67−86. doi: 10.1016/j.aca.2019.05.054
    [26]
    Ma T T, Shen X F, Yang C, et al. Covalent immobilization of covalent organic framework on stainless steel wire for solid-phase microextraction GC-MS/MS determination of sixteen polycyclic aromatic hydrocarbons in grilled meat samples[J]. Talanta,2019,201:413−418. doi: 10.1016/j.talanta.2019.04.031
    [27]
    Yuan Y, Lin X, Li T, et al. A solid phase microextraction arrow with zirconium metal–organic framework/molybdenum disulfide coating coupled with gas chromatography–mass spectrometer for the determination of polycyclic aromatic hydrocarbons in fish samples[J]. Journal of Chromatography A,2019,1592:9−18. doi: 10.1016/j.chroma.2019.01.066
    [28]
    Liu M M, Liu J F, Guo C, et al. Metal azolate framework-66-coated fiber for headspace solid-phase microextraction of polycyclic aromatic hydrocarbons[J]. Journal of Chromatography A,2018,1584:57−63.
    [29]
    Duedahl O L, Iversen N M, Kelmo C, et al. Validation of QuEChERS for screening of 4 marker polycyclic aromatic hydrocarbons in fish and malt[J]. Food Control,2020,108:106434. doi: 10.1016/j.foodcont.2018.12.010
    [30]
    Rosa P, Pedro S, Priscilla P F, et al. Pereira, Catarina Silva, Sonia Medina, José S. Câmara. QuEChERS - Fundamentals, relevant improvements, applications and future trends[J]. Analytica Chimica Acta,2019,1070:1−28. doi: 10.1016/j.aca.2019.02.036
    [31]
    Kim L, Lee D, Cho H K, et al. Review of the QuEChERS method for the analysis of organic pollutants: Persistent organic pollutants, polycyclic aromatic hydrocarbons, and pharmaceuticals[J]. Trends in Environmental Analytical Chemistry,2019:22.
    [32]
    Niladri S C, Sagar U, Kaushik B, et al. Multiresidue analysis of multiclass pesticides and polyaromatic hydrocarbons in fatty fish by gas chromatography tandem mass spectrometry and evaluation of matrix effect[J]. Food Chemistry,2016,196:1−8. doi: 10.1016/j.foodchem.2015.09.014
    [33]
    王溪, 阮丽萍, 李放, 等. 凝胶渗透色谱净化-高效液相色谱荧光法检测生肉中15种多环芳烃[J]. 江苏预防医学,2019,30(3):259−261+279.
    [34]
    沈习习, 战俊良, 汤晓艳. 凝胶渗透色谱净化-气相色谱-质谱法检测烤鸭鸭皮中16种多环芳烃[J]. 肉类研究,2020,34(1):77−82.
    [35]
    陈飞龙, 陆金丹, 侯军沛, 等. 加压流体萃取法-气相色谱质谱法测定海洋生物体中的苯并(a)芘[J]. 广东化工,2019,46(4):156−157. doi: 10.3969/j.issn.1007-1865.2019.04.075
    [36]
    何健, 赵舰, 唐晓琴, 等. 加速溶剂萃取/凝胶渗透色谱净化-气质联用法测定烟熏腊肉中24种多环芳烃[J]. 现代预防医学,2019,46(1):126−131.
    [37]
    周蕾, 陈溪, 袁明珠, 等. 加速溶剂萃取和凝胶渗透色谱净化GC–MS法测定烟熏腊肉中16种多环芳烃[J]. 化学分析计量,2016,25(1):15−18. doi: 10.3969/j.issn.1008-6145.2016.01.004
    [38]
    乔斌. 基于荧光微球和金纳米棒的苊和芴检测方法研究[D]. 长春: 吉林大学, 2018.
    [39]
    Duedahl O L, Aaslyng M, Meinert L, et al. Polycyclic aromatic hydrocarbons (PAH) in Danish barbecued meat[J]. Food Control,2015,57:169−176. doi: 10.1016/j.foodcont.2015.04.012
    [40]
    Ghasemzadeh M V, Mohammadi A, Hashemi M, et al. Microwave-assisted extraction and dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry for isolation and determination of polycyclic aromatic hydrocarbons in smoked fish[J]. Journal of Chromatography A,2012,1237:30−36. doi: 10.1016/j.chroma.2012.02.078
    [41]
    Lee Y N, Lee S, Kim J S, et al. Chemical analysis techniques and investigation of polycyclic aromatic hydrocarbons in fruit, vegetables and meats and their products[J]. Food Chemistry,2019,277:156−161. doi: 10.1016/j.foodchem.2018.10.114
    [42]
    John A M M, Emmanuel N. Levels of polycyclic aromatic hydrocarbons (PAHs) in smoked and sun-dried fish samples from areas in Lake Victoria in Mwanza, Tanzania[J]. Journal of Food Composition and Analysis,2018,73:39−46. doi: 10.1016/j.jfca.2018.07.010
    [43]
    Alicja Z, Dorota G, Lesław J. Contamination of smoked meat and fish products from Polish market with polycyclic aromatic hydrocarbons[J]. Food Control,2017,80:45−51. doi: 10.1016/j.foodcont.2017.04.024
    [44]
    Lu F, Gunter K K, Cheng Q F. Heterocyclic amines and polycyclic aromatic hydrocarbons in commercial ready-to-eat meat products on UK market[J]. Food Control,2017,73:306−315. doi: 10.1016/j.foodcont.2016.08.021
    [45]
    Tanja B, Jelka P, Sandra P, et al. The occurrence of polycyclic aromatic hydrocarbons in fish and meat products of Croatia and dietary exposure[J]. Journal of Food Composition and Analysis,2019,75:49−60. doi: 10.1016/j.jfca.2018.09.017
    [46]
    章骅, 陈旭艳, 张靓文. 在线净化-液相色谱法快速测定熏烤水产品中的苯并(a)芘[J]. 食品研究与开发,2020,41(2):124−128.
    [47]
    杨丹丹, 韩峰, 史永富, 等. 高效液相色谱-紫外/荧光测定贝类体内16种多环芳烃[J]. 分析试验室,2019,38(7):828−833.
    [48]
    郭娅, 阳文武, 周浓. Florisil固相萃取-HPLC-FLD法测定烤肉中15种多环芳烃[J]. 食品工业,2019,40(6):312−315.
    [49]
    刘笑笑, 张菁菁, 丁辉, 等. 分子印迹-气相色谱-串联质谱法检测烤肉中的14种多环芳烃[J]. 食品安全质量检测学报,2019,10(14):4557−4564. doi: 10.3969/j.issn.2095-0381.2019.14.019
    [50]
    Melisew T A, Zebasil T M, Ellen M. Advances in surface-enhanced Raman spectroscopy for analysis of pharmaceuticals: A review[J]. Vibrational Spectroscopy,2018,98:50−63. doi: 10.1016/j.vibspec.2018.06.013
    [51]
    Jiang Y F, Sun D W, Pu H B, et al. Surface enhanced raman spectroscopy (SERS): A novel reliable technique for rapid detection of common harmful chemical residues[J]. Trends in Food Science & Technology,2018,75:10−22.
    [52]
    项晨. 表面增强拉曼光谱结合分子印迹技术快速检测苯并芘[D]. 杭州: 浙江工业大学, 2019.
    [53]
    Chen Y H, Xia E Q, Xu X R, et al. Evaluation of benzo[a]pyrene in food from China by high-performance liquid chromatography-fluorescence detection[J]. International Journal of Environmental Research and Public Health,2012,9(11):4159−4169. doi: 10.3390/ijerph9114159
    [54]
    Bahareh B, Delnia B, Abdollah S. Highly sensitive bioaffinity electrochemiluminescence sensors: Recent advances and future directions[J]. Biosensors and Bioelectronics,2019,142:111530. doi: 10.1016/j.bios.2019.111530
    [55]
    孙苗, 徐文清, 王黎, 等. 基于共价有机骨架修饰电极的苯并芘电化学发光传感器[J/OL]. 分析测试学报, 2020(5): 1-6[2020-05-28]. http://kns.cnki.net/kcms/detail/44.1318.TH.20200519.1310.002.html.
  • Cited by

    Periodical cited type(9)

    1. 向芳. 食品减盐策略研究进展. 食品与发酵工业. 2024(06): 350-358 .
    2. 赵亚丽,张香美,卢涵,杨贝,文港. 传统腌腊肉制品质量安全管理研究. 食品与机械. 2023(01): 55-60+156 .
    3. 刘东,夏金龙. 低钠酱鹿肉的配方优化及贮藏期特性研究. 中国调味品. 2023(03): 67-74 .
    4. 李智,牛超杰,邹爱军,常超. 肉制品加工减盐技术及其应用. 武汉轻工大学学报. 2023(04): 31-38 .
    5. 张彦慧,郑红霞,刘楠,高彦祥,毛立科. 胶体结构设计在减盐食品中的应用. 食品科学. 2022(01): 213-222 .
    6. 吕广英,孔君,郑润愽. 一种低钠休闲香肠的加工技术研究. 肉类工业. 2022(05): 16-19 .
    7. 芮李彤,李海静,张婷婷,郭琦,李子豪,夏秀芳. 食盐对肉制品品质形成的作用及减盐技术研究进展. 肉类研究. 2022(07): 61-67 .
    8. 孙悦,李震,王鹏,徐幸莲. 响应面优化减盐鸡肉松热加工工艺及品质测定. 食品工业科技. 2022(20): 263-273 . 本站查看
    9. 周平萍. 咸味剂咸度分析研究方法进展. 现代食品. 2022(17): 23-26+37 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (461) PDF downloads (47) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return