ZAN Xuemei, LIU Ming, LIU Yanxiang, et al. Process Optimization of Enzyme-assisted Pregelatinization Technology and Analysis of Flavor Substance Difference[J]. Science and Technology of Food Industry, 2021, 42(8): 19−28. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020060094.
Citation: ZAN Xuemei, LIU Ming, LIU Yanxiang, et al. Process Optimization of Enzyme-assisted Pregelatinization Technology and Analysis of Flavor Substance Difference[J]. Science and Technology of Food Industry, 2021, 42(8): 19−28. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020060094.

Process Optimization of Enzyme-assisted Pregelatinization Technology and Analysis of Flavor Substance Difference

More Information
  • Received Date: June 08, 2020
  • Available Online: January 27, 2021
  • The response surface experiment was used to design and optimize the enzyme-assisted pregelatinization process of brown rice. The optimum conditions of enzyme-assisted pregelatinization process were obtained through the cooking time: The enzymatic hydrolysis time was 4 h, the amount of enzyme added was 0.1%, the pregelatinization time was 10 min and the enzymatic hydrolysis temperature was 39 ℃. Gas chromatography-ion migration spectrometry (GC-IMS) was used to determine the volatile substances of white rice, brown rice and enzyme-assisted pregelatinized brown rice before and after cooking. 56 kinds of volatile substances were detected in enzymolysis assisted pregelatinized brown rice, including 19 kinds of aldehydes, 8 kinds of ketones, 6 kinds of esters, 12 kinds of alcohols and 11 kinds of other compounds. Forty-four kinds of volatile substances were detected in the pregelatinized brown rice assisted by enzymatic hydrolysis after cooking, including 18 kinds of aldehydes, 8 kinds of ketones, 3 kinds of esters, 11 kinds of alcohols and 4 kinds of other compounds, and 2-octenal, phenylacetaldehyde, acetophenone, acetoin, gamma-butyralide, pentanoic acid, hexanoic acid, butyric acid and hexadiene disulfide and other volatile substances disappeared after cooking.Aldehydes, ketones and alcohols showed the largest changes in the volatile flavor components of brown rice before and after the enzymatic hydrolysis assisted pregelatinization. The acids in esters and other groups showed the greatest changes in the volatile flavor components of brown rice before and after cooking assisted by enzymatic hydrolysis.
  • [1]
    谭斌. 全谷物食品: 健康食品新趋势[J]. 农产品加工,2010(4):4−5.
    [2]
    Deng Y, Zhong Y, Yu W, et al. Effect of hydrostatic high pressure pretreatment on flavor volatile profile of cooked rice[J]. Journal of Cereal Science,2013,58(3):479−487.
    [3]
    Wu P, Deng R, Wu X, et al. In vitro gastric digestion of cooked white and brown rice using a dynamic rat stomach model[J]. Food Chemistry,2017,237:1065−1072. doi: 10.1016/j.foodchem.2017.05.081
    [4]
    昝学梅, 刘明, 孟宁, 等. 健康谷物及其制品在乳品加工中的应用[J]. 食品与机械,2019,35(11):5−10.
    [5]
    蒋龙伟. 糙米发芽前复合酶预处理工艺优化研究[D]. 哈尔滨: 东北农业大学, 2017.
    [6]
    Das M, Banerjee R, Bal S. Evaluation of physicochemical properties of enzyme treated brown rice (Part B)[J]. LWT-Food Science & Technology,2008,41(10):2092−2096.
    [7]
    王宏伟, 王新天, 肖乃勇, 等. 预糊化淀粉对糯米粉糊化、流变性能及微观结构的影响[J]. 中国粮油学报,2019,34(4):57−62.
    [8]
    Bortnowska G Y, Balejko J, Schube V, et al. Stability and physicochemical properties of model salad dressings prepared with pregelatinized potato starch[J]. Carbohydr Polym,2002,111:624−632.
    [9]
    Anastasiades A, Thanou S, Loulis D, et al. Rheological and physical characterization of pregelatinized maize starches[J]. Journal of Food Engineering,2016,52(1):57−66.
    [10]
    Hedayati S, Shahidi F, Koocheki A, et al. Comparing the effects of sucrose and glucose on functional properties of pregelatinized maize starch[J]. International Journal of Biological Macromolecules,2016:499−504.
    [11]
    Seetapan N, Fuongfuchat A, Gamonpilas C, et al. Effect of modified tapioca starch and xanthan gum on low temperature texture stability and dough viscoelasticity of a starch-based food gel[J]. Journal of Food Engineering,2013,119(3):446−453. doi: 10.1016/j.jfoodeng.2013.06.010
    [12]
    Ortolan F, Brites L T G, Montenegro F M, et al. Effect of extruded wheat flour and pre-gelatinized cassava starch on process and quality parameters of French-type bread elaborated from frozen dough[J]. Food Research International,2015,76(Pt 3):402−409.
    [13]
    Fang D, Yang W, Kimatu B M, et al. Comparison of flavour qualities of mushrooms (Flammulina velutipes) packed with different packaging materials[J]. Food Chemistry,2017,232(OCT. 1):1−9.
    [14]
    Giri A, Osako K, Ohshima T. Identification and characterisation of headspace volatiles of fish miso, a Japanese fish meat based fermented paste, with special emphasis on effect of fish species and meat washing[J]. Food Chemistry,2009,120(2):621−631.
    [15]
    刘明, 孟宁, 朱运恒, 等. 低温等离子体技术改善糙米蒸煮品质工艺优化及热力学特性研究[J]. 粮油食品科技,2020,28(2):49−54.
    [16]
    孔祺, 李星骆, 刘庆庆. 蒸汽预糊化处理对发芽糙米结构及吸水特性的影响[J]. 食品科技,2019,44(12):193−198.
    [17]
    Bryant R J, Mcclung A M. Volatile profiles of aromatic and non-aromatic rice cultivars using SPME/GC–MS[J]. Food Chemistry,2011,124(2):501−513. doi: 10.1016/j.foodchem.2010.06.061
    [18]
    Shurong L, Li W, Chunhong Z, et al. Analysis of the key odorants of roasted peanut[J]. Scientia Agricultura Sinica,2010,43(15):3199−3203.
    [19]
    Zhao J, Wang M, Xie J, et al. Volatile flavor constituents in the pork broth of black-pig[J]. Food Chemistry,2017,226(JUL. 1):51−60.
    [20]
    Yaylayan V A, Haffenden L J W. Mechanism of pyrazole formation in [~(13)C-2] labeled glycine model systems: N-N bond formation during Maillard reaction[J]. Food Research International,2003,36(6):571−577. doi: 10.1016/S0963-9969(03)00003-6
    [21]
    朱琪, 师希雄, 韩玲, 等. 祁连清泉清炖羊肉汤挥发性化合物的检测[J]. 食品与发酵科技,2017,53(4):109−114.
    [22]
    Garcia-Gonzalez D L, Tena N, Aparicio-Ruiz R, et al. Relationship between sensory attributes and volatile compounds qualifying dry-cured hams[J]. Meat Science,2008,80(2):315−325. doi: 10.1016/j.meatsci.2007.12.015
    [23]
    单启梅, 赵晓策, 罗瑞明, 等. 滩羊肌肉在煮制过程中可挥发性化合物的变化[J]. 食品科学: 1-10 [2020-07-20]. http://kns.cnki.net/kcms/detail/11.2206.TS.20200414.1325.002.html.
    [24]
    崔琳琳, 赵燊, 周一鸣, 等. 基于GC-MS和电子鼻技术的大米挥发性风味成分分析[J]. 中国粮油学报,2018,33(12):134−141. doi: 10.3969/j.issn.1003-0174.2018.12.021
    [25]
    Champagne E T, Bettgarber K L, Thomson J L, et al. Impact of presoaking on flavor of cooked rice[J]. Cereal Chemistry,2008,85(3):275−276.
    [26]
    Zeng Z, Zhang H, Chen J Y, et al. Direct extraction of volatiles of rice during cooking using solid-phase microextraction[J]. Cereal Chemistry,2007,84(5):423−427. doi: 10.1094/CCHEM-84-5-0423
    [27]
    Lin, Lu, Shaoping, et al. Classification of rice by combining electronic tongue and nose[J]. Food Analytical Methods,2015,8(8):1839−1902.
    [28]
    祁岩龙, 冯怀章, 于洋, 等. 美拉德反应研究进展及在食品工业中的应用[J]. 食品工业,2018,39(3):248−252.
    [29]
    邓仕彬. 美拉德反应中间体的水相制备及其在卷烟中的应用[D]. 无锡: 江南大学, 2017.
    [30]
    苑蘅. Heyns化合物的质谱碎裂规律及其在Maillard反应中含量与变化研究[D]. 北京: 中国农业大学, 2016.
    [31]
    Xie J, Sun B, Zheng F, et al. Volatile flavor constituents in roasted pork of Mini-pig[J]. Food Chemistry,2008,109(3):506−514. doi: 10.1016/j.foodchem.2007.12.074
  • Related Articles

    [1]PENG Xuyang, CHEN Junran, CUI Hanyuan, HU Liwu, ZHANG Zidi, ZHU Xingyu, CHEN Cunkun. Volatile Substances of Different Hosts of Cistanche deserticola in Xinjiang Based on GC-IMS[J]. Science and Technology of Food Industry, 2024, 45(9): 272-279. DOI: 10.13386/j.issn1002-0306.2023050230
    [2]KAN Jintao, WANG Yuanyuan, SONG Fei, ZHANG Jianguo, ZHANG Yufeng. Effect of Frozen Periods on Volatile Flavor Compounds of Coconut Water Based on GC-IMS and Chemometrics Analysis[J]. Science and Technology of Food Industry, 2023, 44(19): 329-335. DOI: 10.13386/j.issn1002-0306.2022110273
    [3]YAN Chen, ZHANG Yunbin, XU Qijie, ZHOU Xuxia, DING Yuting, WANG Wenjie. Effect of Storage Positions on the Volatile Flavor Compounds (VFCs) of Paddy Rice through Gas Chromatography-Ion Mobility Spectroscopy (GC-IMS) Analysis[J]. Science and Technology of Food Industry, 2023, 44(17): 375-382. DOI: 10.13386/j.issn1002-0306.2022120073
    [4]Bingkun YANG, Ning JU, Yuhong DING, Rong GUO, Mianhong GONG. Characterization of Volatile Flavors of Fermented Sea-buckthorn Yoghurt Using Gas Chromatography-Ion Mobility Spectroscopy[J]. Science and Technology of Food Industry, 2023, 44(13): 308-315. DOI: 10.13386/j.issn1002-0306.2022080120
    [5]LIU Lili, YANG Hui, JING Xiong, ZHANG Yafang, XU Chen, YAN Zongke, QI Yaohua. Analysis of Volatile Compounds in Aged Fengxiang Crude Baijiu Based on GC-MS and GC-IMS[J]. Science and Technology of Food Industry, 2022, 43(23): 318-327. DOI: 10.13386/j.issn1002-0306.2022040054
    [6]LUO Yang, FENG Tao, WANG Kai, LI Dejun, MENG Xianle, SHI Mingliang, WANG Liang. Analysis of Difference Volatile Organic Compounds in Passion Fruit with Different Maturity via GC-IMS[J]. Science and Technology of Food Industry, 2022, 43(15): 321-328. DOI: 10.13386/j.issn1002-0306.2021120148
    [7]ZHANG Minmin, LU Yanxiang, ZHAO Zhiguo, CUI Li, YAN Huijiao, WANG Xiao, ZHAO Hengqiang. Rapid Discrimination of Different Years of Brewing Liquor by Gas Chromatography-Ion Mobility Spectroscopy Combined with Chemometrics Method[J]. Science and Technology of Food Industry, 2021, 42(14): 226-232. DOI: 10.13386/j.issn1002-0306.2020080205
    [8]Hang YIN, Wenhong ZHOU, Yunxia BAI, Xiaoling LIU. Analysis of the Flavor of Guangxi Luosi-Noodle and Luosi-Hot-Pot by Electronic Nose and Gas Chromatography-Ion Mobility Spectrometry (GC-IMS)[J]. Science and Technology of Food Industry, 2021, 42(9): 281-288. DOI: 10.13386/j.issn1002-0306.2020070197
    [9]Wensheng YAO, Shuangyu MA, Yingxuan CAI, Dengyong LIU, Mingcheng ZHANG, Hao ZHANG. Analysis of Volatile Flavor Substances in Mutton Shashlik Based on GC-IMS Technology[J]. Science and Technology of Food Industry, 2021, 42(8): 256-263. DOI: 10.13386/j.issn1002-0306.2020060339
    [10]GUO Mei-juan, CHAI Chun-xiang, LU Xiao-xiang, WANG Tian, FAN Hou-qin. Development and applications of HS-SPME-GC-MS technology on detection of volatile flavor components in aquatic product[J]. Science and Technology of Food Industry, 2014, (09): 368-371. DOI: 10.13386/j.issn1002-0306.2014.09.072
  • Cited by

    Periodical cited type(13)

    1. 陈品文,杨贵先,蒲成伟,周立,杨贵川,唐明双,刘建中,祝正林. 南充辣木主要病虫害发生规律及其防控措施. 农技服务. 2024(03): 68-71 .
    2. 雷福红,龙继明,张祖兵,段波,马志亮,李海泉,赵春攀. 辣木茎叶、籽、果荚营养成分及提取物抗氧化活性研究. 中国食品添加剂. 2024(07): 40-45 .
    3. 张玲玲,黄幼霞,林水花,张文州,吴新泉. 辣木叶干粉制备工艺中添加载体及干燥技术研究. 东南园艺. 2024(06): 505-511 .
    4. 杨卓凡,宣攒威,罗浩鑫,郑智彬,朱锦鸿,周红祖,黄庆宝,余惠旻. 辣木叶及其有效成分抗高脂血症药理作用研究进展. 药物评价研究. 2023(04): 911-916 .
    5. 何至杭,刘丽,彭钟通,陈轶群,王艺颖,刘悦,曾曙才,莫其锋. 水氮耦合对辣木幼苗根系形态特征的影响. 广西植物. 2023(05): 936-946 .
    6. 张玉雯,蔡明,王福军,刘彦培,刘建勇,黄必志. 辣木作为蛋白饲料在家养动物饲喂上的应用进展. 草学. 2023(02): 66-77 .
    7. 陈冰冰,欧颖仪,叶灏铎,金昶言,梁兴唐,尹艳镇,郑韵英,曹庸,苗建银. 富硒辣木叶蛋白ACE抑制肽的酶解工艺优化及活性研究. 食品工业科技. 2022(03): 1-9 . 本站查看
    8. 余芳,汪洪涛,郑梦瑶,朱龙龙. 辣木茶多酚提取工艺优化及其体外抗氧化活性. 农产品加工. 2022(07): 24-28+34 .
    9. 张明晓,李化,陈娜,向俊洁,林路洁,李志勇,杨滨. 一测多评法同时测定辣木叶中硫苷及黄酮类成分的含量. 中国中药杂志. 2022(12): 3285-3294 .
    10. 张欣,周天天,孔祥辉,姜威,候杨. 黑木耳辣木叶复合压片糖果生产工艺研究. 中国食物与营养. 2022(11): 15-18 .
    11. 付饶,张明烁,彭华胜,张子隽,李皓月,宋坪,黄秀兰,李志勇. 柬埔寨常用药用植物资源的整理与研究. 中国现代中药. 2022(12): 2322-2334 .
    12. 岑忠用,苏江,高丽霞,吕丽娥,黄喜苗. 响应面优化辣木叶游离氨基酸的提取工艺. 饲料研究. 2021(11): 85-89 .
    13. Chidvilaphone Saythong,李家明,张玉鹏,唐燕飞,韦宗海,刘举祥,杨膺白,李梦梅. 发酵辣木叶对广西麻鸡生长性能、屠宰性能和肉品质的影响. 饲料研究. 2021(16): 20-24 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (284) PDF downloads (23) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return