Citation: | TU Bowen, XUE Yingang, YAO Ping, WAND Nan, LI Junhong, TANG Hongbing, DU Qiang. Virulence Characteristics Application of Vibrio cholera from Different Source by Microbial Mass Spectrometry[J]. Science and Technology of Food Industry, 2021, 42(6): 130-136,150. DOI: 10.13386/j.issn1002-0306.2020060092 |
[1] |
Ali M,Nelson A R,Lopez A L,et al. Updated Global burden of cholera in endemic countries[J]. PLoS Neglected Tropical Diseases,2015,9(6):e0003832. DOI:10.1371/journal. pntd. 0003832.
|
[2] |
Ramamurthy T,Das B,Chakraborty S,et al. Diagnostic techniques for rapid detection of Vibrio cholerae O1/O139[J]. Vaccine. 2020,38:A73-A82.
|
[3] |
Faruque S M,Chowdhury N,Kamruzzaman M,et al. Genetic diversity and virulence potential of environmental Vibrio cholera population in a cholera-endemic area[J]. Proc Natl Acad Sci U S A,2004,101(7):2123-8.
|
[4] |
Gong L,Yu P,Zheng H J,et al. Comparative genomics for non-O1/O139Vibrio cholerae isolates recovered from the Yangtze River Estuary versus V. cholerae representative isolates from serogroup O1[J]. Molecular Genetics and Genomics,2019,294(2):417-430.
|
[5] |
Fu S Z,Hao J W,Jin S B,et al. A Human intestinal infection caused by a novel non-O1/O139 Vibrio cholerae genotype and its dissemination along the river[J]. Frontiers in Public Health,2019,7:100.
|
[6] |
Baker-Austin C,Trinanes J A,Taylor N G H,et al. Emerging Vibrio risk at high latitudes in response to ocean warming[J]. Nature Climate Change,2012,3(1):73-77.
|
[7] |
Frank C,Littman M,Alpers K,et al. Vibrio vulnificus wound infections after contact with the Baltic Sea,Germany[J]. Euro Surveillance,2006,11(8):E060817.1.
|
[8] |
Kim E J,Yu H J,Lee J H,et al. Replication of Vibrio cholerae classical CTX phage[J]. Proc Natl Acad Sci USA,2017,114(9):2343-2348.
|
[9] |
夏晓滨. 霍乱弧菌生物被膜[J]. 中华微生物学和免疫学杂志,2008,28(4):381-384.
|
[10] |
Huq A,Whitehouse C A,Grim C J,et al. Biofilms in water,its role and impact in human disease transmission[J]. Current Opinion in Biotechnology,2008,19(3):244-247.
|
[11] |
Chang Y W,Kjær A,Ortega D R,et al. Architecture of the Vibrio cholerae toxin-coregulated Pilus machine revealed by electron cryotomography[J]. Nature Microbiology,2017,2:16269.
|
[12] |
Ng D,Harn T,Altindal T,et al. The Vibrio cholerae minor pilin TcpB initiates assembly and retraction of the toxin-coregulated Pilus[J]. PLoS Pathogens,2016,12(12):e1006109.
|
[13] |
Rahman M H,Biswas K,Hossain M A,et al. Distribution of genes for virulence and ecological fitness among diverse Vibrio cholerae population in a cholera endemic area:Tracking the evolution of pathogenic strains[J]. DNA and Cell Biology,2008,27(7):347-355.
|
[14] |
Chow K H,Ng T K,Yuen K Y,et al. Detection of RTX toxin gene in Vibrio cholerae by PCR[J]. Journal of Clinical Microbiology,2001,39(7):2594-2597.
|
[15] |
Satchell K J F.MARTX,multifunctional autoprocessing repeats-in-toxin toxins[J]. Infection and Immunity,2007,75(11):5079-5084.
|
[16] |
Erler R,Wichels A,Heinemeyer E A,et al. Vibrio base:A MALDI-TOF MS database for fast identification of Vibrio spp. that are potentially pathogenic in humans[J]. Systematic and Applied Microbiology,2015,38(1):16-25.
|
[17] |
Vidal L M R,Venas T M,Gonçalves A R P,et al. Rapid screening of marine bacterial symbionts using MALDI-TOF MS[J]. Archives of Microbiology,2020,202(8):2329-2336.
|
[18] |
Kazazić S P,Topić Popović N,Strunjak-Perović I,et al. Matrix-assisted laser desorption/ionization time of flight mass spectrometry identification of Vibrio(Listonella)anguillarum isolated from sea bass and sea bream[J]. PLoS One,2019,14(11):e0225343.
|
[19] |
Krishnamurthy T,Ross P L,Rajamani U. Detection of pathogenic and non-pathogenic bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry[J]. Rapid Communications in Mass Spectrometry:RCM,1996,10(8):883-888.
|
[20] |
Bauer A,Rørvik L M. A novel multiplex PCR for the identification of Vibrio parahaemolyticus,Vibrio cholerae and Vibrio vulnificus[J]. Letters in Applied Microbiology,2007,45(4):371-375.
|
[21] |
Schirmeister F,Dieckmann R,Bechlars S,et al. Genetic and phenotypic analysis of Vibrio cholerae non-O1,non-O139 isolated from German and Austrian patients[J]. European Journal of Clinical Microbiology & Infectious Diseases,2014,33(5):767-778.
|
[22] |
Chatterjee S,Ghosh K,Raychoudhuri A,et al. Incidence,virulence factors,and clonality among clinical strains of non-O1,non-O139Vibrio cholerae isolates from hospitalized diarrheal patients in Kolkata,India[J]. Journal of Clinical Microbiology,2009,47(4):1087-1095.
|
[23] |
Pang B,Yan M Y,Cui Z G,et al. Genetic diversity of toxigenic and nontoxigenic Vibrio cholerae serogroups O1 and O139 revealed by array-based comparative genomic hybridization[J]. Journal of Bacteriology,2007,189(13):4837-4849.
|
[24] |
Bhattacharya T,Chatterjee S,Maiti D,et al. Molecular analysis of the rstR and orfU genes of the CTX prophages integrated in the small chromosomes of environmental Vibrio cholerae non-O1,non-O139 strains[J]. Environmental Microbiology,2006,8(3):526-634.
|
[25] |
Mauritzen J J,Castillo D,Tan D M,et al. Beyond cholera:Characterization of zot-encoding filamentous phages in the marine fish pathogen Vibrio anguillarum[J]. Viruses,2020,12(7):730.
|
[26] |
Shanley J,Kanj A,El Zein S,et al. Non-O1,non-O139Vibrio cholerae bacteremia in an urban academic medical center in the United States[J]. IDCases,2019,15:e00527.
|
[27] |
Takemura T,Murase K,Maruyama F,et al. Genetic diversity of environmental Vibrio cholerae O1 strains isolated in Northern Vietnam[J]. Infection,Genetics and Evolution,2017,54:146-151.
|
[28] |
Xue H,Xu Y,Boucher Y,et al. High frequency of a novel filamentous phage,VCY φ,within an environmental Vibrio cholerae population[J]. Applied and Environmental Microbiology,2012,78(1):28-33.
|
[29] |
Faruque S M,Bin Naser,Fujihara K,et al. Genomic sequence and receptor for the Vibrio cholerae phage KSF-1phi:Evolutionary divergence among filamentous vibriophages mediating lateral gene transfer[J]. Journal of Bacteriology,2005,187(12):4095-4103.
|
[30] |
Faruque S M,Kamruzzaman M,Asadulghani,et al. CTXphi-independent production of the RS1 satellite phage by Vibrio cholera[J]. Proc Natl Acad Sci U S A,2003,100(3):1280-5.
|
[31] |
Paauw A,Trip H,Niemcewicz M,et al. OmpU as a biomarker for rapid discrimination between toxigenic and epidemic Vibrio cholerae O1/O139 and non-epidemic Vibrio cholerae in a modified MALDI-TOF MS assay[J]. BMC Microbiol,2014,14:158.
|
[32] |
Chaika S O,Telesmanich N R,Lomov Y M. Mass spectrometry virulence marker Vibrio cholera[J]. Klinicheskaia Laboratornaia Diagnostika,2018,63(7):445-449.
|
[33] |
Dieckmann R,Strauch E,Alter T. Rapid identification and characterization of Vibrio species using whole-cell MALDI-TOF mass spectrometry[J]. Journal of Applied Microbiology,2010,109(1):199-211.
|
1. |
王雅利,赵楠,葛黎红,赖海梅,杨梦露,黄玉立,梅源,刘达玉,朱永清. 酵母菌对发酵萝卜品质的影响. 食品与发酵工业. 2024(24): 68-75 .
![]() | |
2. |
刘艳秋,范梓琪,常凯,毛迪锐,徐澎,耿业业. 玫瑰面包啤酒生产工艺优化. 北华大学学报(自然科学版). 2023(01): 134-140 .
![]() | |
3. |
颜子豪,孟庆芳,陈江魁,孙嘉怡. 冰糖红梨酒发酵工艺优化及香气成分分析. 食品工业科技. 2022(06): 228-235 .
![]() | |
4. |
李夏,谢光杰,王东鹏,徐旻. 发酵条件对高山葡萄石斛酒品质的影响研究. 食品安全质量检测学报. 2022(12): 4036-4042 .
![]() | |
5. |
赵彤,王宣,吴黎明,延莎,卢焕仙,赵洪木,薛晓锋. 发酵蜂产品研究进展. 食品工业科技. 2022(14): 461-466 .
![]() | |
6. |
刁体伟,陈晓姣,冷银江,魏鑫,赖晓琴,马懿. 植物源多酚对梨酒抗氧化能力及其感官品质的影响. 食品与发酵工业. 2022(23): 93-101 .
![]() |