Citation: | SHI Zhan, WANG Zhouli, YUE Tianli, CAI Rui, CUI Lu. Research Progress of Cold Plasma in Killing Foodborne Pathogens[J]. Science and Technology of Food Industry, 2021, 42(6): 363-370,382. DOI: 10.13386/j.issn1002-0306.2020060072 |
[1] |
魏玲,武会娟,李宝明,等.4种食源性致病菌污染情况及其新型检测技术研究进展[J].食品科学,2011,32(19):302-306.
|
[2] |
王霄晔,任婧寰,王哲,等.2017年全国食物中毒事件流行特征分析[J].疾病监测,2018,33(5):359-364.
|
[3] |
吴晓旻,任婧寰,王霄晔,等.2018年第二季度全国食物中毒事件流行特征分析[J].疾病监测,2019,34(7):640-644.
|
[4] |
任婧寰,王霄晔,吴晓旻,等.2018年第三季度全国食物中毒事件流行特征分析[J].疾病监测,2019,34(8):741-745.
|
[5] |
Smet C,Noriega E,Rosier F,et al. Impact of food model(micro)structure on the microbial inactivation efficacy of cold atmospheric plasma[J]. International Journal of Food Microbiology,2017,240:47-56.
|
[6] |
Thirumdas R,Sarangapani C,Annapure U S,et al. Cold plasma:A novel non-thermal technology for food processing[J]. Food Biophysics,2015,10(1):1-11.
|
[7] |
Niedzwiedz I,Wasko A,Pawlat J,et al. The state of research on antimicrobial activity of cold plasma[J]. Polish Journal of Microbiology,2019,68(2):153-164.
|
[8] |
Baggio A,Marino M,Innocente N,et al. Antimicrobial effect of oxidative technologies in food processing:An overview[J]. European Food Research and Technology,2020,246(4):669-692.
|
[9] |
孟宁,刘明,张培茵,等.低温等离子体技术在全谷物加工中的应用进展[J].食品工业科技,2019,40(24):332-337.
|
[10] |
Niemira B A. Cold plasma decontamination of foods[J]. Annual Review of Food Science and Technology,2012,3(1):125-142.
|
[11] |
Zhuang H,Rothrock M J,Hiett K L,et al. In-package antimicrobial treatment of chicken breast meat with high voltage dielectric barrier discharge-Electric voltage effect[J]. The Journal of Applied Poultry Research,2019,28(4):801-807.
|
[12] |
Dasan B G,Boyaci I H. Effect of cold atmospheric plasma on inactivation of Escherichia coli and physicochemical properties of apple,orange,tomato juices,and sour cherry nectar[J]. Food Bioprocess Technology,2018,11:334-343.
|
[13] |
韩格,陈倩,孔保华.低温等离子体技术在肉品保藏及加工中的应用研究进展[J].食品科学,2019,40(3):286-292.
|
[14] |
Khani M R,Shokri B,Khajeh K.Studying the performance of dielectric barrier discharge and gliding arc plasma reactors in tomato peroxidase inactivation[J]. Journal of Food Engineering,2017,197:107-112.
|
[15] |
Younis W O,Berekaa M M,Mohamed A H,et al. Enhanced microbial decontamination using non-thermal low pressure Argon plasma jet[J]. Pakistan Journal of Biological Sciences,2020,23(3):248-256.
|
[16] |
Hertwig C,Meneses N,Mathys A,et al. Cold atmospheric pressure plasma and low energy electron beam as alternative nonthermal decontamination technologies for dry food surfaces:A review[J]. Trends in Food Science and Technology,2018,77:131-142.
|
[17] |
Hosseini S M,Rostami S,Samani B H,et al. The effect of atmospheric pressure cold plasma on the inactivation of Escherichia coli in sour cherry juice and its qualitative properties[J]. Food Science and Nutrition,2020,8(2):870-883.
|
[18] |
Zhang Y,Wei J,Yuan Y,et al. Bactericidal effect of cold plasma on microbiota of commercial fish balls[J]. Innovative Food Science and Emerging Technologies,2019,52:394-405.
|
[19] |
Yusupov M,Bogaerts A,Huygh S,et al. Plasma-induced destruction of bacterial cell wall components:A reactive molecular dynamics simulation[J]. Journal of Physical Chemistry C,2013,117(11):5993-5998.
|
[20] |
Huang M,Zhuang H,Zhao J,et al. Differences in cellular damage induced by dielectric barrier discharge plasma between Salmonella typhimurium and Staphylococcus aureus[J]. Bioelectrochemistry,2020,132:107445.
|
[21] |
马良军,王佳媚,黄明明,等.不同处理条件对介质阻挡放电低温等离子体杀菌效果及影响机理研究[J].微生物学报,2019,59(8):1512-1521.
|
[22] |
Olatunde O O,Benjakul S,Vongkamjan K. Dielectric barrier discharge cold atmospheric plasma:Bacterial inactivation mechanism[J]. Journal of Food Safety,2019,39:e12705.
|
[23] |
Guo J,Huang K,Wang J. Bactericidal effect of various non-thermal plasma agents and the influence of experimental conditions in microbial inactivation:A review[J]. Food Control,2015,50:482-490.
|
[24] |
López M,Calvo T,Prieto M,et al. A Review on non-thermal atmospheric plasma for food preservation:Mode of action,determinants of effectiveness,and applications[J]. Frontiers in Microbiology,2019,10:622.
|
[25] |
Quan T H,Benjakul S. Duck egg albumen:Physicochemical and functional properties as affected by storage and processing[J].Journal of Food Science and Technology,2019,56(3):1104-1115.
|
[26] |
Ziuzina D,Misra N N,Han L,et al. Investigation of a large gap cold plasma reactor for continuous in-package decontamination of fresh strawberries and spinach[J]. Innovative Food Science and Emerging Technologies,2019,59:102229.
|
[27] |
张铮,陈飒,张改,等.低温空气等离子体对金黄色葡萄球菌杀灭效果与机理研究[J].中国消毒学杂志,2017,34(10):897-901.
|
[28] |
Arjunan K P,Sharma V K,Ptasinska S,et al. Effects of atmospheric pressure plasmas on isolated and cellular DNA-A review[J]. International Journal of Molecular Sciences,2015,16(2):2971-3016.
|
[29] |
Dong X Y,Yang Y L. A novel approach to enhance blueberry quality during storage using cold plasma at atmospheric air pressure[J]. Food & Bioprocess Technology,2019,12(11):1409-1421.
|
[30] |
Attri P,Razzokov J,Yusupov M,et al. Influence of osmolytes and ionic liquids on the Bacteriorhodopsin structure in the absence and presence of oxidative stress:A combined experimental and computational study[J]. International Journal of Biological Macromolecules,2020,148:657-665.
|
[31] |
Wan Z,Chen Y,Pankaj S K,et al. High voltage atmospheric cold plasma treatment of refrigerated chicken eggs for control of Salmonella enteritidis contamination on egg shell[J]. LWT-Food Science and Technology,2016,76:124-130.
|
[32] |
Misra N N,Jo C. Applications of cold plasma technology for microbiological safety in meat industry[J]. Trends in Food Science and Technology,2017,64:74-86.
|
[33] |
Beggs C B. A quantitative method for evaluating the photoreactivation of ultraviolet damaged microorganisms[J]. Photochemical and Photobiological Sciences,2002,1(6):431-437.
|
[34] |
Liao X,Li J,Muhammad A I,et al. Application of a dielectric barrier discharge atmospheric cold plasma(Dbd-Acp)for Eshcerichia coli inactivation in apple juice[J]. Journal of Food Science,2018,83(2):401-408.
|
[35] |
Mahnot N K,Mahanta C L,Keener K M,et al. Strategy to achieve a 5-log Salmonella inactivation in tender coconut water using high voltage atmospheric cold plasma(HVACP)[J]. Food Chemistry,2019,284:303-311.
|
[36] |
Marlène D,Bulteau A L,Quinton D,et al. Oxidative modification and electrochemical inactivation of Escherichia coli upon cold atmospheric pressure plasma exposure[J]. PLOS ONE,2017,12(3):e0173618.
|
[37] |
Butscher D,Zimmermann D,Schuppler M,et al. Plasma inactivation of bacterial endospores on wheat grains and polymeric model substrates in a dielectric barrier discharge[J]. Food Control,2016,60:636-645.
|
[38] |
Choi S,Puligundla P,Mok C,et al. Corona discharge plasma jet for inactivation of Escherichia coli O157:H7 and Listeria monocytogenes on inoculated pork and its impact on meat quality attributes[J]. Annals of Microbiology,2016,66(2):685-694.
|
[39] |
Stratakos A C,Grant I R. Evaluation of the efficacy of multiple physical,biological and natural antimicrobial interventions for control of pathogenic Escherichia coli on beef[J].Food Microbiology,2018,76:209-218.
|
[40] |
Lis K A,Boulaaba A,Binder S,et al. Inactivation of Salmonella typhimurium and Listeria monocytogenes on ham with nonthermal atmospheric pressure plasma[J]. PLOS ONE,2018,13(5):e0197773.
|
[41] |
Yadav B,Spinelli A C,Govindan B N,et al. Cold plasma treatment of ready-to-eat ham:Influence of process conditions and storage on inactivation of Listeria innocua[J]. Food research international,2019,123:276-285.
|
[42] |
Roh S H,Lee S Y,Park H H,et al. Effects of the treatment parameters on the efficacy of the inactivation of Salmonella contaminating boiled chicken breast by in-package atmospheric cold plasma treatment[J]. International Journal of Food Microbiology,2019,293:24-33.
|
[43] |
G k V,Aktop S,Özkan M,et al. The effects of atmospheric cold plasma on inactivation of Listeria monocytogenes and Staphylococcus aureus and some quality characteristics of pastırma-a dry-cured beef product[J]. Innovative Food Science and Emerging Technologies,2019,56:102188.
|
[44] |
Kilonzo-Nthenge A,Liu S,Yannam S,et al. Atmospheric cold plasma inactivation of Salmonella and Escherichia coli on the surface of golden delicious apples[J]. Frontiers in Nutrition,2018,5:120.
|
[45] |
Pasquali F,Stratakos A C,Koidis A,et al. Atmospheric cold plasma process for vegetable leaf decontamination:A feasibility study on radicchio(red chicory,Cichorium intybus L.)[J]. Food Control,2016,60:552-559.
|
[46] |
Min S C,Roh S H,Niemira B A,et al. Dielectric barrier discharge atmospheric cold plasma inhibits Escherichia coli O157:H7,Salmonella,Listeria monocytogenes,and Tulane virus in romaine lettuce[J]. International Journal of Food Microbiology,2016,237:114-120.
|
[47] |
Min S C,Roh S H,Niemira B A,et al. In-package atmospheric cold plasma treatment of bulk grape tomatoes for microbiological safety and preservation[J]. Food Research International,2018,108:378-386.
|
[48] |
Los A,Ziuzina D,Boehm D,et al. The potential of atmospheric air cold plasma for control of bacterial contaminants relevant to cereal grain production[J]. Innovative Food Science and Emerging Technologies,2017,44:36-45.
|
[49] |
Thomas-Popo E,Aubrey M,Misra N N,et al. Inactivation of Shiga-toxin-producing Escherichia coli,Salmonella enterica and natural microflora on tempered wheat grains by atmospheric cold plasma[J]. Food Control,2019,104:231-239.
|
[50] |
Gavahian M,Peng H,Chu Y,et al. Efficacy of cold plasma in producing Salmonella-free duck eggs:Effects on physical characteristics,lipid oxidation,and fatty acid profile[J]. Journal of Food Science and Technology,2019,56(12):5271-5281.
|
[51] |
Coutinho N M,Silveira M R,Rocha R S,et al. Cold plasma processing of milk and dairy products[J]. Trends in Food Science and Technology,2018,74:56-68.
|
[52] |
王卓,周丹丹,彭菁,等.低温等离子体对蓝莓果实的杀菌效果及对其品质的影响[J].食品科学,2018,39(15):101-107.
|
[53] |
Hou Y,Wang R,Gan Z,et al. Effect of cold plasma on blueberry juice quality[J]. Food Chemistry,2019,290:79-86.
|
[54] |
Moreau M,Orange N,Feuilloley M G J. Non-thermal plasma technologies:New tools for bio-decontamination[J]. Biotechnology Advances,2008,26(6):610-617.
|
[55] |
Kim S Y,Bang I H,Min S C. Effects of packaging parameters on the inactivation of Salmonella contaminating mixed vegetables in plastic packages using atmospheric dielectric barrier discharge cold plasma treatment[J]. Journal of Food Engineering,2019,242:55-67.
|
[56] |
郭斌,梁萌青,徐后国,等. 江蓠、浒苔、藻渣和菌渣替代鱼粉对大菱鲆幼鱼生长性能、血清和肝脏生化指标、体组成和肠道组织结构的影响[J]. 动物营养学报,2018,30(1):299-312.
|
[56] |
Choi M S,Jeon E B,Kim J Y,et al. Impact of non-thermal dielectric barrier discharge plasma on Staphylococcus aureus and Bacillus cereus and quality of dried blackmouth angler(Lophiomus setigerus)[J]. Journal of Food Engineering,2020,278:109952.
|
[57] |
Meinita M D N,Mahaeni B,Jeong G T,et al. Sequential acid and enzymatic hydrolysis of carrageenan solid waste for bioethanol production:A biorefinery approach[J]. Journal of Applied Phycology,2019,31(4):2507-2515.
|
[57] |
Pan Y,Zhang Y,Cheng J H,et al. Inactivation of Listeria monocytogenes at various growth temperatures by ultrasound pretreatment and cold plasma[J]. LWT-Food Science and Technology,2020,118:108635.
|
[58] |
Tan I S,Lee K T. Enzymatic hydrolysis and fermentation of seaweed solid wastes for bioethanol production:An optimization study[J]. Energy,2014,78(SI):53-62.
|
[58] |
Bogdanov T,Tsonev I,Marinova P,et al. Microwave plasma torch generated in Argon for small berries surface treatment[J]. Applied Sciences,2018,8(10):1870.
|
[59] |
Song Y,Fan X. Cold plasma enhances the efficacy of aerosolized hydrogen peroxide in reducing populations of Salmonella typhimurium and Listeria innocua on grape tomatoes,apples,cantaloupe and romaine lettuce[J]. Food Microbiology,2020,87:103391.
|
[59] |
Solorzano-Chavez E G,Paz-Cedeno F R,De Olivira L E,et al.Evaluation of the Kappaphycus alvarezii growth under different environmental conditions and efficiency of the enzymatic hydrolysis of the residue generated in the carrageenan processing[J]. Biomass and Bioenergy,2019,127:UNSP 105254.
|
[60] |
Mahnot N K,Mahanta C L,Farkas B E,et al. Atmospheric cold plasma inactivation of Escherichia coli and Listeria monocytogenes in tender coconut water:Inoculation and accelerated shelf-life studies[J]. Food Control,2019,106:106678. (上接第376页)
|
[60] |
Masarin F,Cedeno F R P,Chavez E G S,et al. Chemical analysis and biorefinery of red algae Kappaphycus alvarezii for efficient production of glucose from residue of carrageenan extraction process[J]. Biotechnology for Biofuels,2016,9:122.
|
[1] | PENG Xuyang, CHEN Junran, CUI Hanyuan, HU Liwu, ZHANG Zidi, ZHU Xingyu, CHEN Cunkun. Volatile Substances of Different Hosts of Cistanche deserticola in Xinjiang Based on GC-IMS[J]. Science and Technology of Food Industry, 2024, 45(9): 272-279. DOI: 10.13386/j.issn1002-0306.2023050230 |
[2] | KAN Jintao, WANG Yuanyuan, SONG Fei, ZHANG Jianguo, ZHANG Yufeng. Effect of Frozen Periods on Volatile Flavor Compounds of Coconut Water Based on GC-IMS and Chemometrics Analysis[J]. Science and Technology of Food Industry, 2023, 44(19): 329-335. DOI: 10.13386/j.issn1002-0306.2022110273 |
[3] | YAN Chen, ZHANG Yunbin, XU Qijie, ZHOU Xuxia, DING Yuting, WANG Wenjie. Effect of Storage Positions on the Volatile Flavor Compounds (VFCs) of Paddy Rice through Gas Chromatography-Ion Mobility Spectroscopy (GC-IMS) Analysis[J]. Science and Technology of Food Industry, 2023, 44(17): 375-382. DOI: 10.13386/j.issn1002-0306.2022120073 |
[4] | Bingkun YANG, Ning JU, Yuhong DING, Rong GUO, Mianhong GONG. Characterization of Volatile Flavors of Fermented Sea-buckthorn Yoghurt Using Gas Chromatography-Ion Mobility Spectroscopy[J]. Science and Technology of Food Industry, 2023, 44(13): 308-315. DOI: 10.13386/j.issn1002-0306.2022080120 |
[5] | LIU Lili, YANG Hui, JING Xiong, ZHANG Yafang, XU Chen, YAN Zongke, QI Yaohua. Analysis of Volatile Compounds in Aged Fengxiang Crude Baijiu Based on GC-MS and GC-IMS[J]. Science and Technology of Food Industry, 2022, 43(23): 318-327. DOI: 10.13386/j.issn1002-0306.2022040054 |
[6] | LUO Yang, FENG Tao, WANG Kai, LI Dejun, MENG Xianle, SHI Mingliang, WANG Liang. Analysis of Difference Volatile Organic Compounds in Passion Fruit with Different Maturity via GC-IMS[J]. Science and Technology of Food Industry, 2022, 43(15): 321-328. DOI: 10.13386/j.issn1002-0306.2021120148 |
[7] | ZHANG Minmin, LU Yanxiang, ZHAO Zhiguo, CUI Li, YAN Huijiao, WANG Xiao, ZHAO Hengqiang. Rapid Discrimination of Different Years of Brewing Liquor by Gas Chromatography-Ion Mobility Spectroscopy Combined with Chemometrics Method[J]. Science and Technology of Food Industry, 2021, 42(14): 226-232. DOI: 10.13386/j.issn1002-0306.2020080205 |
[8] | Hang YIN, Wenhong ZHOU, Yunxia BAI, Xiaoling LIU. Analysis of the Flavor of Guangxi Luosi-Noodle and Luosi-Hot-Pot by Electronic Nose and Gas Chromatography-Ion Mobility Spectrometry (GC-IMS)[J]. Science and Technology of Food Industry, 2021, 42(9): 281-288. DOI: 10.13386/j.issn1002-0306.2020070197 |
[9] | Wensheng YAO, Shuangyu MA, Yingxuan CAI, Dengyong LIU, Mingcheng ZHANG, Hao ZHANG. Analysis of Volatile Flavor Substances in Mutton Shashlik Based on GC-IMS Technology[J]. Science and Technology of Food Industry, 2021, 42(8): 256-263. DOI: 10.13386/j.issn1002-0306.2020060339 |
[10] | GUO Mei-juan, CHAI Chun-xiang, LU Xiao-xiang, WANG Tian, FAN Hou-qin. Development and applications of HS-SPME-GC-MS technology on detection of volatile flavor components in aquatic product[J]. Science and Technology of Food Industry, 2014, (09): 368-371. DOI: 10.13386/j.issn1002-0306.2014.09.072 |
1. |
陈品文,杨贵先,蒲成伟,周立,杨贵川,唐明双,刘建中,祝正林. 南充辣木主要病虫害发生规律及其防控措施. 农技服务. 2024(03): 68-71 .
![]() | |
2. |
雷福红,龙继明,张祖兵,段波,马志亮,李海泉,赵春攀. 辣木茎叶、籽、果荚营养成分及提取物抗氧化活性研究. 中国食品添加剂. 2024(07): 40-45 .
![]() | |
3. |
张玲玲,黄幼霞,林水花,张文州,吴新泉. 辣木叶干粉制备工艺中添加载体及干燥技术研究. 东南园艺. 2024(06): 505-511 .
![]() | |
4. |
杨卓凡,宣攒威,罗浩鑫,郑智彬,朱锦鸿,周红祖,黄庆宝,余惠旻. 辣木叶及其有效成分抗高脂血症药理作用研究进展. 药物评价研究. 2023(04): 911-916 .
![]() | |
5. |
何至杭,刘丽,彭钟通,陈轶群,王艺颖,刘悦,曾曙才,莫其锋. 水氮耦合对辣木幼苗根系形态特征的影响. 广西植物. 2023(05): 936-946 .
![]() | |
6. |
张玉雯,蔡明,王福军,刘彦培,刘建勇,黄必志. 辣木作为蛋白饲料在家养动物饲喂上的应用进展. 草学. 2023(02): 66-77 .
![]() | |
7. |
陈冰冰,欧颖仪,叶灏铎,金昶言,梁兴唐,尹艳镇,郑韵英,曹庸,苗建银. 富硒辣木叶蛋白ACE抑制肽的酶解工艺优化及活性研究. 食品工业科技. 2022(03): 1-9 .
![]() | |
8. |
余芳,汪洪涛,郑梦瑶,朱龙龙. 辣木茶多酚提取工艺优化及其体外抗氧化活性. 农产品加工. 2022(07): 24-28+34 .
![]() | |
9. |
张明晓,李化,陈娜,向俊洁,林路洁,李志勇,杨滨. 一测多评法同时测定辣木叶中硫苷及黄酮类成分的含量. 中国中药杂志. 2022(12): 3285-3294 .
![]() | |
10. |
张欣,周天天,孔祥辉,姜威,候杨. 黑木耳辣木叶复合压片糖果生产工艺研究. 中国食物与营养. 2022(11): 15-18 .
![]() | |
11. |
付饶,张明烁,彭华胜,张子隽,李皓月,宋坪,黄秀兰,李志勇. 柬埔寨常用药用植物资源的整理与研究. 中国现代中药. 2022(12): 2322-2334 .
![]() | |
12. |
岑忠用,苏江,高丽霞,吕丽娥,黄喜苗. 响应面优化辣木叶游离氨基酸的提取工艺. 饲料研究. 2021(11): 85-89 .
![]() | |
13. |
Chidvilaphone Saythong,李家明,张玉鹏,唐燕飞,韦宗海,刘举祥,杨膺白,李梦梅. 发酵辣木叶对广西麻鸡生长性能、屠宰性能和肉品质的影响. 饲料研究. 2021(16): 20-24 .
![]() |