YU Jinshen, ZHANG Fang. Effects of Curcumin-mediated Photodynamic Technology on Bactericidal Efficacy of Fresh-cut Potatoes[J]. Science and Technology of Food Industry, 2021, 42(4): 259-263,270. DOI: 10.13386/j.issn1002-0306.2020060050
Citation: YU Jinshen, ZHANG Fang. Effects of Curcumin-mediated Photodynamic Technology on Bactericidal Efficacy of Fresh-cut Potatoes[J]. Science and Technology of Food Industry, 2021, 42(4): 259-263,270. DOI: 10.13386/j.issn1002-0306.2020060050

Effects of Curcumin-mediated Photodynamic Technology on Bactericidal Efficacy of Fresh-cut Potatoes

More Information
  • Received Date: June 07, 2020
  • Available Online: March 01, 2021
  • Photodynamic technology(PDT)was used as a kind of non-thermal sterilization in the research to sterilize fresh-cut potatoes. Curcumin was used as photosensitizer in all experiments and the excitation light source is a kind of blue light generated by the light emitting diode(LED),and the wave length was 420 nm in the experiments. In order to determine the optimal bactericidal conditions of PDT against Escherichia coli(E. coli)and Staphylococcus aureus(S. aureus)on the surface of fresh-cut potato slices,the bactericidal effects of different light power,light time,incubation time and photosensitizer concentration were detected by counting the number of E. coli and S. aureus after experiments. Results showed that the optimal sterilization conditions against E. coli on the surface of fresh-cut potato slices were:The light power was 40 W,the light time was 20 min,the incubation time was 15 min,and the concentration of curcumin was 30 μmol/L;the optimal sterilization conditions against S. aureus were:The light power was 20 W,the light time was 10 min,the incubation time was 15 min,and the concentration of curcumin was 30 μmol/L. Compared with the control group,the total number of bacterial colonies of E. coli and S. aureus after being treated by PDT were reduced by 3.60 and 5.23 lg CFU/mL,respectively.
  • [1]
    邹红梅. 微波、乙醇处理对鲜切马铃薯酶促褐变的抑制效果研究[D]. 兰州:兰州理工大学,2019.
    [2]
    曹斌斌,武娟,许川山,等.姜黄素介导的光动力冷杀菌方法对牡蛎杀菌的效果研究[J]. 食品科学,2016,37(5):46-49.
    [3]
    张兵兵. 鲜切马铃薯品质保持技术的探讨[D]. 泰安:山东农业大学,2010.
    [4]
    吴谦. 副溶血弧菌生物菌膜形成特性及亚甲基蓝光动力灭活作用研究[D]. 广州:暨南大学,2016.
    [5]
    Hamblin M R.Antimicrobial photodynamic inactivation:A bright new technique to kill resistant microbes[J]. Current Opinion in Microbiology,2016,33:67-73.
    [6]
    李欣. 5-氨基酮戊酸光动力(ALA-PDT)对表皮葡萄球菌浮游菌和生物膜杀菌效应研究[D]. 合肥:安徽医科大学,2012.
    [7]
    韩晓博,郑英虹,杨力明.光敏剂在光动力治疗中的研究进展[J]. 上海大学学报(自然科学版),2017,23(2):169-178.
    [8]
    邹朝晖. 光动力疗法对口腔生物膜致龋变形链球菌抑制作用的研究[D]. 天津:天津医科大学,2009.
    [9]
    武娟. 生鲜牡蛎中大肠杆菌和诺如病毒的检测及光动力非热力杀菌相关研究[D]. 青岛:中国海洋大学,2015.
    [10]
    张敏欢. 静电场协同阻隔性包装对马铃薯及其鲜切产品的保鲜效果研究[D]. 呼和浩特:内蒙古农业大学,2018.
    [11]
    赵冬晗. 生姜提取物对鲜切马铃薯褐变的抑制作用[D]. 长春:吉林大学,2015.
    [12]
    刘箕箕. 天冬氨酸抑制鲜切马铃薯褐变的研究[D]. 泰安:山东农业大学,2019.
    [13]
    Penha C B,Bonin E,da Silva A F,et al. Photodynamic inactivation of foodborne and food spoilage bacteria by curcumin[J]. LWT-Food Science and Technology,2017,76:198-202.
    [14]
    Tao R,Zhang F,Tang Q J,et al. Effects of curcumin-based photodynamic treatment on the storage quality of fresh-cut apples[J]. Food Chemistry,2019,274:415-421.
    [15]
    Bhavya M L,Umesh Hebbar H.Efficacy of blue LED in microbial inactivation:Effect of photosensitization and process parameters[J]. International Journal of Food Microbiology,2019,290:296-304.
    [16]
    Srimagal A,Ramesh T,Sahu J K.Effect of light emitting diode treatment on inactivation of Escherichia coli in milk[J]. LWT-Food Science and Technology,2016,71:378-385.
    [17]
    严金华,杨晨,李泽林,等.光强和光照时间对大肠杆菌光动力灭菌效果的影响[J]. 浙江工业大学学报,2017,45(1):60-63.
    [18]
    Ghate V S,Ng K S,Zhou W B,et al. Antibacterial effect of light emitting diodes of visible wavelengths on selected foodborne pathogens at different illumination temperatures[J]. International Journal of Food Microbiology,2013,166(3):399-406.
    [19]
    Ghate V,Kumar A,Kim M J,et al. Effect of 460 nm light emitting diode illumination on survival of Salmonella spp.on fresh-cut pineapples at different irradiances and temperatures[J]. Journal of Food Engineering,2017,196:130-138.
    [20]
    Winter S,Tortik N,Kubin A,et al. Back to the roots:Photodynamic inactivation of bacteria based on water-soluble curcumin bound to polyvinylpyrrolidone as a photosensitizer[J]. Photochemical & Photobiological Sciences,2013,12(10):1795.
    [21]
    Schastak S,Ziganshyna S,Gitter B,et al. Efficient photodynamic therapy against gram-positive and gram-negative bacteria using THPTS,a cationic photosensitizer excited by infrared wavelength[J]. PLoS One,2010,5(7):e11674.
    [22]
    Donnelly R F,Cassidy C M,Loughlin R G,et al. Delivery of Methylene Blue and meso-Tetra(N-methyl-4-pyridyl)porphine Tetra tosylate from cross-linked poly(vinyl alcohol)hydrogels:A potential means of photodynamic therapy of infected wounds[J]. Journal of Photochemistry and Photobiology B:Biology,2009,96(3):223-231.
    [23]
    唐姝姝,唐书泽,李红爱,等.亚甲基蓝对肠出血性大肠杆菌O157的光动力杀菌技术研究[J]. 食品工业科技,2012,33(23):136-139

    ,143.
    [24]
    杨鹏高,王川,王宁,等.460 nm可见光杀灭浮游状态和生物膜内大肠埃希菌的实验研究[J]. 上海交通大学学报(医学版),2014,34(7

    ):1001-1005.
    [25]
    Liu F,Li Z J,Cao B B,et al. The effect of a novel photodynamic activation method mediated by curcumin on oyster shelf life and quality[J]. Food Research International,2016,87:204-210.
  • Cited by

    Periodical cited type(6)

    1. 张彪,杨晓宽. 纳豆菌发酵板栗渣工艺优化及其多糖的抗氧化性. 食品研究与开发. 2025(03): 160-166 .
    2. 胡鑫,杨若菊,吴丁兴,朱雪峰,吴小平,傅俊生. 一株血红栓孔菌的多糖抗氧化及抗Huh7肝癌细胞的活性. 菌物学报. 2023(03): 793-807 .
    3. 舒逸凡,宋克超,徐洁,吴小军,曾晓雄. 黑木耳发酵多糖酸奶的研制与工艺优化. 食品工业. 2023(04): 41-45 .
    4. 刘迎欣,伊娟娟,邵怡雯,崔燕,李雪,王金柱,郝利民,鲁吉珂. 布拉氏酵母发酵山药多糖的分离鉴定与体外生物活性探究. 食品工业科技. 2023(14): 154-162 . 本站查看
    5. 罗伟,杨立军,崔晨旭,王玉娇,陈琼,王锐丽,叶润. 内生菌协同发酵对半夏多糖及其生物活性的影响. 中南农业科技. 2023(08): 52-56+61 .
    6. 杨立军,花娇娇,崔晨旭,贾艳娇,陈琼,赫丁轩. 一株高产胞外多糖半夏内生真菌的鉴定、发酵条件优化及生物活性测定. 中国酿造. 2023(11): 109-114 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return