HU Haojie, TIAN Shuangqi, ZHAO Renyong, et al. Research Progress on the Extraction of Active Substances from New Resource Edible Microalgae and Its Application in Food[J]. Science and Technology of Food Industry, 2022, 43(2): 390−396. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020060048.
Citation: HU Haojie, TIAN Shuangqi, ZHAO Renyong, et al. Research Progress on the Extraction of Active Substances from New Resource Edible Microalgae and Its Application in Food[J]. Science and Technology of Food Industry, 2022, 43(2): 390−396. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020060048.

Research Progress on the Extraction of Active Substances from New Resource Edible Microalgae and Its Application in Food

More Information
  • Received Date: June 03, 2020
  • Available Online: November 05, 2021
  • Compared with other microalgae, the edible algae as a new resource is rich in protein, algal polysaccharides, lipids, astaxanthin and carotenoids and other active substances. Therefore, it is of great significance to understand the new resource food algae active substance and its application in food health. This article mainly focuses on four types of microalgae: Haematococcus pluvialis, Dunaliella salina, Euglena, and Chlorella vulgaris, which can be used as new resource foods, to explain the components, extraction methods and applications of microalgae physiologically active substances and their applications and the development status in medicine, health care and food, as well as the expectations for the future, aim to provide a reference for scholars to study algae as a new resource food.
  • [1]
    SPOLAORE P, JOANNIS C, DURAN E, et al. Commercial applications of microalgae[J]. Journal of Bioscience and Bioengineering,2006,101(2):87−96. doi: 10.1263/jbb.101.87
    [2]
    王雪青, 苗惠, 翟燕. 微藻细胞破碎方法的研究[J]. 天津科技大学学报,2007,22(1):21−25. [WANG X Q, MIAO H, ZHAI Y. Study on the methods of alga cells fragmentation[J]. Journal of Tianjing University of Science & Technology,2007,22(1):21−25. doi: 10.3969/j.issn.1672-6510.2007.01.006
    [3]
    邹树平, 吴玉龙, 杨明德, 等. 微藻的综合开发利用[J]. 水产科学,2007,26(3):179−181. [ZOU S P, WU Y L, YANG M D, et al. Comprehensive exploitation and utilization of microalgae[J]. Fisheries Science,2007,26(3):179−181. doi: 10.3969/j.issn.1003-1111.2007.03.015
    [4]
    PHONG W N, SHOW P L, LING T C, et al. Mild cell disruption methods for bio-functional proteins recovery from microalgae—Recent developments and future perspectives[J]. Algal Research,2018,31:506−516. doi: 10.1016/j.algal.2017.04.005
    [5]
    CHAVOSHI Z Z, SHARIATI M. Lipid production in Dunaliella salina under autotrophic, heterotrophic, and mixotrophic conditions[J]. Biologia,2019,74(12):1579−1590. doi: 10.2478/s11756-019-00336-6
    [6]
    NUNES M C, GRA A C, VLAISAVLJEVIC S, et al. Microalgal cell disruption: Effect on the bioactivity and rheology of wheat bread[C]. Algal Research, 2020, 45: 101749.
    [7]
    LJUBIC A, JACOBSEN C, HOLDT S L, et al. MicroalgaeNannochloropsis oceanica as a future new natural source of vitamin D3[J]. Food Chemistry,2020,320:126627. doi: 10.1016/j.foodchem.2020.126627
    [8]
    卫生部关于新资源食品的公告汇总[J]. 食品与发酵工业, 2011, 37(8): 60.

    Summary of announcements from the Ministry of Health on new resource foods[J]. Food and Fermentation Industries, 2011, 37(8): 60.
    [9]
    MUBARAK M, SHAIJA A, SUCHITHAR T V. Flocculation: An effective way to harvest microalgae for biodiesel production[J]. Journal of Environmental Chemical Engineering,2019,7(4):103221. doi: 10.1016/j.jece.2019.103221
    [10]
    NEHME R, ATIEH C, FAYAD S, et al. Microalgae amino acid extraction and analysis at nanomolar level using electroporation and capillary electrophoresis with laser-induced fluorescence detection[J]. Journal of Separation Science,2017,40(2):558−566.
    [11]
    KHOO K S, LEE S Y, OOI C W, et al. Recent advances in biorefinery of astaxanthin from Haematococcus pluvialis[J]. Bioresource Technology,2019,288:121606. doi: 10.1016/j.biortech.2019.121606
    [12]
    MORE P R, AAYA S S. A novel, green cloud point extraction and separation of phenols and flavonoids from pomegranate peel: An optimization study using RCCD[J]. Journal of Environmental Chemical Engineering,2019,7(5):103306.
    [13]
    BHATTACHARYA M, GOSWAMI S. Microalgae–A green multi-product biorefinery for future industrial prospects[J]. Biocatalysis and Agricultural Biotechnology,2020,25:101580.
    [14]
    刘新宁, 张建明. 可利用微藻的种类及其应用前景[J]. 资源开发,2005,21(1):65−66,80. [LIU X N, ZHANG J M. Varieties and application foreground of available microalgae[J]. Resource Development & Market,2005,21(1):65−66,80.
    [15]
    YEN H W, HU I C, CHEN C Y, et al. Microalgae-based biorefinery from biofuels to natural products[J]. Bioresource Technology,2013,135:166−174. doi: 10.1016/j.biortech.2012.10.099
    [16]
    张卫明, 张广伦, 肖正春, 等. 雨生红球藻中虾青素的研究与应[J]. 中国野生植物资源,2019,38(2):72−77. [ZHANG G L, XIAO Z C, ZHANG F L, et al. Study and application of astaxanthin in Haematococcus pluvialis[J]. Chinese Wild Plant Resources,2019,38(2):72−77. doi: 10.3969/j.issn.1006-9690.2019.02.016
    [17]
    李春斌, 吴娇, 李杨, 等. 雨生红球藻的培养及虾青素的提取与检测[J]. 大连名族大学学报,2019,21(5):406−411. [WU J, DIAO Q Y, BAI X, et al. Cultivation of Haematococcus pluvialis and extraction and detection of astaxanthin[J]. Journal of Dalian Nationalities University,2019,21(5):406−411.
    [18]
    MENDESPINTO M M, RAPOSO M F D J, BOWEN J, et al. Evaluation of different cell disruption processes on encysted cells of Haematococcus pluvialis: Effects on astaxanthin recovery and implications for bio-availability[J]. Journal of Applied Phycology,2001,13(1):19−24. doi: 10.1023/A:1008183429747
    [19]
    张晔, 刘志伟, 谭兴和, 等. 响应面法优化复合酶提取雨生红球藻中虾青素的工艺[J]. 食品工业科技,2019,40(20):87−92. [ZHANG Y, LIU Z W, TAN X H, et al. Optimization of multi-enzymatic extraction of astaxanthin from Haematococcus pluvialis by response surface methodology[J]. Science and Technology of Food Industry,2019,40(20):87−92.
    [20]
    钟玲, 余少冲, 李迎霞, 等. 超临界CO2流体萃取雨生红球藻中虾青素工艺研究及其脂肪酸GC-MS分析[J]. 中药材,2010,33(1):140−142. [ZHONG L, YU S C, LEE Y X, et al. Study on supercritical CO2 fluid extraction of astaxanthin from Haematococcus pluvialis and its fatty acid GC-MS analysis[J]. Chinese Medicinal Materials,2010,33(1):140−142.
    [21]
    白曼利, 王海琪, 伍菱, 等. 高速逆流色谱分离雨生红球藻中虾青素的工艺优化[J]. 激光生物学报,2018,27(5):460−466. [BAI M L, WANG H Q, WU L. Optimization and separation of astaxanthin from Haematococcus pluvialis by high-speed counter-current chromatography[J]. Acta Laser Biology Sinica,2018,27(5):460−466. doi: 10.3969/j.issn.1007-7146.2018.05.011
    [22]
    张言, 高定烽, 莫镜池, 等. 超声-低温双水相提取雨生红球藻中的虾青素[J]. 食品工业技术,2019,40(4):28−31. [ZHANG Y, GAO D F, MO J C. Ultrasonic-hypothermic aqueous phase extraction of astaxanthin from Haematococcus pluvialis[J]. The Food Industry,2019,40(4):28−31.
    [23]
    郭文晶, 张守勤, 张格. 超高压提取雨生红球藻中虾青素的工艺优化[J]. 农业机械学报,2008,39(5):201−203. [GUO W J, ZHANG S Q, ZHANG G. Process optimization of ultra-high pressure extraction of astaxanthin from Haematococcus pluvialis[J]. Transactions of the Chinese Society for Agricultural Machinery,2008,39(5):201−203.
    [24]
    ZHU Y, ZHAO X, ZHANG X, et al. Extraction, structural and functional properties of Haematococcus pluvialis protein after pigment removal[J]. International Journal of Biological Macromolecules,2019,140:1073−1083. doi: 10.1016/j.ijbiomac.2019.08.209
    [25]
    冯以明, 李广生, 吴建东, 等. 雨生红球藻多糖的提取分离及理化性质研究[J]. 海洋科学,2012,36(1):17−22. [FENG Y M, LEE G S, WU J D, et al. Extraction and isolation of polysaccharides from Haematococcus pluvialis and their physicochemical characters study[J]. Marine Sciences,2012,36(1):17−22.
    [26]
    MOLINO A, RIMAURO J, CASELLA P, et al. Extraction of astaxanthin from microalga Haematococcus pluvialis in red phase by using generally recognized as safe solvents and accelerated extraction[J]. J Biotechnol,2018,283:51−61. doi: 10.1016/j.jbiotec.2018.07.010
    [27]
    KHOO K S, CHEW K W, OOI C W, et al. Extraction of natural astaxanthin from Haematococcus pluvialis using liquid biphasic flotation system[J]. Bioresource Technology,2019,290:121794. doi: 10.1016/j.biortech.2019.121794
    [28]
    CHENG X, QI Z, BURDYNY T, et al. Low pressure supercritical CO2 extraction of astaxanthin from Haematococcus pluvialis demonstrated on a microfluidic chip[J]. Bioresource Technology,2018,250:481−485. doi: 10.1016/j.biortech.2017.11.070
    [29]
    尹卫强, 刘颖芬, 李炳乾, 等. 国内杜氏盐藻综合利用的现状及发展趋势[J]. 盐业与化工,2013,42(12):1−3. [YIN W Q, LIU Y F, LEE B Q, et al. The status and prospects of comprehensive utilization of algae Dunaliella salina in china[J]. Salt and Chemical Industry,2013,42(12):1−3.
    [30]
    孙协军, 潘龙飞, 李秀霞, 等. 盐藻β-胡萝卜素提取及自由基清除能力研究[J]. 食品工业科技,2015,36(22):246−251. [SUN X J, PAN L F, LEE X X, et al. Extraction technique and antioxidant activity of β-carotenoid from Dunaliella salina[J]. Science and Technology of Food Industry,2015,36(22):246−251.
    [31]
    MARCHAL L, MOJAAT M, FOUCAULT A, et al. Centrifugal partition extraction of beta-carotene from Dunaliella salina for efficient and biocompatible recovery of metabolites[J]. Bioresource Technology,2013,134:396−400. doi: 10.1016/j.biortech.2013.02.019
    [32]
    MONTE J, BERNARDO J, MARTA S, et al. Development of an integrated process of membrane filtration for harvesting carotenoid-rich Dunaliella salina at laboratory and pilot scales[J]. Separation and Purification Technology,2020,233:116021. doi: 10.1016/j.seppur.2019.116021
    [33]
    戴军, 王旻, 尹鸿萍, 等. 杜氏盐藻多糖提取工艺的优化[J]. 食品与发酵工业,2007(3):123−127. [DAI J, WANG W, YIN H P, et al. Optimization of extraction technique of polysaccharides from Duanaliella salina[J]. Food and Fermentation Industries,2007(3):123−127. doi: 10.3321/j.issn:0253-990X.2007.03.032
    [34]
    郭金耀, 杨晓玲. 盐藻蛋白质的提取分离[J]. 食品科技,2010,35(8):232−235. [GUO J Y, YANG X L. Extraction and separation of Dunaliella salina protein[J]. Food Science and Technology,2010,35(8):232−235.
    [35]
    SECTION O A P, LABORATORY O P, INSTITUTE O H, et al. 裸藻中α-生育酚的提取和测定[J]. 水生生物学集刊,1975,5(3):354−359. [SECTION O A P, LABORATORY O P, INSTITUTE O H, et al. Extraction and determination of α-tocopherol in freshwater alga Euglena sanginea[J]. Acta Hyarobiologica Sinica,1975,5(3):354−359.
    [36]
    ALI M C, CHEN J, ZHANG H, et al. Effective extraction of flavonoids from Lycium barbarum L. fruits by deep eutectic solvents-based ultrasound-assisted extraction[J]. Talanta,2019,203:16−22.
    [37]
    BA F, URSU A V, LAROCHE C, et al. Haematococcus pluvialis soluble proteins: Extraction, characterization, concentration fractionation and emulsifying properties[J]. Bioresource Technology,2016,200:147−152. doi: 10.1016/j.biortech.2015.10.012
    [38]
    栗晓庆, 吕俊平, 刘琪, 等. 裸藻多糖碱提工艺优化及其体外抗氧化活性研究[J]. 食品科技,2019,44(9):209−215. [LI X Q, LU J P, LIU Q, et al. Optimization of algaEuglena sanginea extraction and antioxidant activities of paramylon in vitro[J]. Food Science and Technology,2019,44(9):209−215.
    [39]
    贾岩龙, 柴玉荣, 曲东京, 等. 杜氏盐藻完整叶绿体的分离及其蛋白提取[J]. 生物技术通报,2008(3):135−138. [JIA Y L, CAI Y R, QU D J, et al. Isolation of intact chloroplasts and comparison of methods for its protein extraction from Dunaliella salina[J]. Biotechnology Bulletin,2008(3):135−138.
    [40]
    汪世华, 胡开辉. 小球藻的研究开发进展[J]. 武汉工业学院学报,2005,24(3):27−30. [HU K H, WANG S H. Development and progress of Chlorella vutgaris[J]. Wuhan Polytechnic Univesity,2005,24(3):27−30.
    [41]
    刘学铭, 梁世中. 小球藻的保健和药理作用[J]. 中草药,1999,30(5):383−386. [LIU X M, LIANG S Z. Effects of Chlorellis use as a health care supplement[J]. Chinese Traditional and Herbal Drugs,1999,30(5):383−386. doi: 10.3321/j.issn:0253-2670.1999.05.029
    [42]
    孔维宝, 李龙囡, 张继, 等. 小球藻的营养保健功能及其在食品工业中的应用[J]. 食品科学,2010,31(9):323−328. [KONG W B, LI L N, ZHANG J, et al. Healthcare functions and applications in food industry of Chlorella[J]. Food Science,2010,31(9):323−328.
    [43]
    CHEN Y, LIU X, WU L, et al. Physicochemical characterization of polysaccharides from Chlorella pyrenoidosa and its anti-ageing effects in Drosophila melanogaster[J]. Carbohydrate Polymers,2018,185:120−126. doi: 10.1016/j.carbpol.2017.12.077
    [44]
    WAN X Z, LI T T, ZHONG R T, et al. Anti-diabetic activity of PUFAs-rich extracts of Chlorella pyrenoidosa and Spirulina platensis in rats[J]. Food and Chemical Toxicology,2019,128:233−239. doi: 10.1016/j.fct.2019.04.017
    [45]
    岳敏, 赵熙宁, 宋亚楠, 等. 蛋白核小球藻超声波破壁方法的优化[J]. 山西农业大学学报(自然科学版),2018,38(10):37−42. [YUE M, ZHAO X N, SONG YN, et al. Optimization study on the ultrasonic treatment for cell wall disruption of Chlorella pyrenoidosa[J]. Journal of Shanxi Agricultural University(Natural Science Edition),2018,38(10):37−42.
    [46]
    陈艺煊, 刘晓艳, 吴林秀, 等. 蛋白核小球藻多糖的酶解辅助提取及抗氧化活性[J]. 福建农业学报,2016,31(5):508−514. [CHEN Y X, LIU X Y, WU L X, et al. Hot-water extraction of polysaccharides from Chlorella pyrenoidosa with cellulase[J]. Fujian Journal of Agricultural Sciences,2016,31(5):508−514. doi: 10.3969/j.issn.1008-0384.2016.05.013
    [47]
    桂林, 李琳, 胡松青, 等. 蛋白核小球藻中叶黄素提取工艺的研究[J]. 食品研究与开发,2005,26(5):71−74. [GUI L, LI L, HU S Q, et al. Study on extraction process of lutein from Chlorella pyrenoidosa[J]. Food Research and Development,2005,26(5):71−74. doi: 10.3969/j.issn.1005-6521.2005.05.024
    [48]
    张薇, 吴虹, 宗敏华, 等. 蛋白核小球藻发酵产油脂的研究[J]. 微生物学通报,2008,35(6):855−860. [ZHANNG W, WU H, ZONG M H, et al. Study on microbial oil production with Chlorella pyrenoidosa[J]. Microbiology,2008,35(6):855−860. doi: 10.3969/j.issn.0253-2654.2008.06.004
    [49]
    黄星歆, 丘泰球. 小球藻中叶黄素的超声提取工艺研究[J]. 粮油加工,2010(2):99−102. [HUANG X Q, QIU T Q. Study on ultrasonic extraction technology of lutein from Chlorella[J]. Cereals and Oils Processing,2010(2):99−102.
    [50]
    胡守珍, 毕生雷, 黄丽丽, 等. 热碱法提取异养小球藻蛋白质工艺优化[J]. 食品与发酵工业,2018,44(9):212−217. [HU S Z, BI S L, HUANG L L, et al. Optimization of protein extraction from Heterotrophic chlorella using thermo-alkaline[J]. Food and Fermentation Industries,2018,44(9):212−217.
    [51]
    庄秀园, 黄英明, 张道敬, 等. 小球藻高附加值生物活性物质“小球藻热水提取物”的研究现状与展望[J]. 生物工程学报,2015,31(1):25−41. [ZHUANG X Y, HUANG Y M, ZHANG D J, et al. Research status and prospect on hot water extract of Chlorella: the high value-added bioactive substance from Chlorella[J]. Chinese Journal of Biotechnology,2015,31(1):25−41.
    [52]
    LAFARGA T, MAYRE E, ECHEVERRIA G, et al. Potential of the microalgae Nannochloropsis and Tetraselmis for being used as innovative ingredients in baked goods[J]. Lwt - Food Science and Technology,2019,115:108439.
    [53]
    李丽婷, 王蔡. 小球藻在食品中的应用研究进展[J]. 食品工业科技,2017,38(17):341−346. [LEE L T, WANG C. Applications of Chlorella in food industry[J]. Science and Technology of Food Industry,2017,38(17):341−346.
    [54]
    李家泳, 刘锐, 刘晖, 等. 蛋白核小球藻韧性饼干加工工艺研究[J]. 食品工业,2017,38(3):35−39. [LEE J Y, LIU R, LIU H, et al. The process technology of semi hard biscuit with Chlorella pyrenoidosa[J]. The Food Industry,2017,38(3):35−39.
    [55]
    罗柳茵, 刘晖, 刘锐, 等. 蛋白核小球藻面包的加工工艺研究[J]. 食品科技,2017,42(3):148−154. [LUO L Y, LIU H, LIU R, et al. Processing technology of the Chlorella pyrenoidosa bread[J]. Food Science and Technology,2017,42(3):148−154.
    [56]
    GRAA C, FRADINHO P, SOUSA I, et al. Impact of Chlorella vulgaris on the rheology of wheat flour dough and bread texture[J]. Lwt - Food Science and Technology,2018,89:466−474.
    [57]
    庞庭才, 胡上英, 熊拯, 等. 小球藻保健饮料的研制[J]. 食品工业科技,2015,36(7):252−256, 285. [PANG T C, HU S Y, XIONG Z, et al. Study on the health drink of Chlorella[J]. Science and Technology of Food Industry,2015,36(7):252−256, 285.
  • Cited by

    Periodical cited type(4)

    1. 黄碧飞,李洋,胡泽茜. 玻璃态液氮速冻对蓝莓品质特性的影响. 食品科学. 2024(06): 225-232 .
    2. 李国林,李丹丹,王成有,何扬波,李咏富,陈丽梅. 两种不同加工方式杨梅汤抗氧化及风味品质比较. 现代食品科技. 2024(05): 212-220 .
    3. 张泽雄,丘苑新,莫观连,陈彩云,柳建良,王琴,钟乐,谢宏峰. 鱼花生大豆废弃物发酵肥的制备及其对桃品质的影响. 园艺学报. 2024(10): 2386-2400 .
    4. 李宾,周显青,韩佳静. 实心麻球外观、内部结构及食用品质的影响因素与评价方法研究. 食品安全质量检测学报. 2023(19): 68-77 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (738) PDF downloads (96) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return