Citation: | HU Haojie, TIAN Shuangqi, ZHAO Renyong, et al. Research Progress on the Extraction of Active Substances from New Resource Edible Microalgae and Its Application in Food[J]. Science and Technology of Food Industry, 2022, 43(2): 390−396. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020060048. |
[1] |
SPOLAORE P, JOANNIS C, DURAN E, et al. Commercial applications of microalgae[J]. Journal of Bioscience and Bioengineering,2006,101(2):87−96. doi: 10.1263/jbb.101.87
|
[2] |
王雪青, 苗惠, 翟燕. 微藻细胞破碎方法的研究[J]. 天津科技大学学报,2007,22(1):21−25. [WANG X Q, MIAO H, ZHAI Y. Study on the methods of alga cells fragmentation[J]. Journal of Tianjing University of Science & Technology,2007,22(1):21−25. doi: 10.3969/j.issn.1672-6510.2007.01.006
|
[3] |
邹树平, 吴玉龙, 杨明德, 等. 微藻的综合开发利用[J]. 水产科学,2007,26(3):179−181. [ZOU S P, WU Y L, YANG M D, et al. Comprehensive exploitation and utilization of microalgae[J]. Fisheries Science,2007,26(3):179−181. doi: 10.3969/j.issn.1003-1111.2007.03.015
|
[4] |
PHONG W N, SHOW P L, LING T C, et al. Mild cell disruption methods for bio-functional proteins recovery from microalgae—Recent developments and future perspectives[J]. Algal Research,2018,31:506−516. doi: 10.1016/j.algal.2017.04.005
|
[5] |
CHAVOSHI Z Z, SHARIATI M. Lipid production in Dunaliella salina under autotrophic, heterotrophic, and mixotrophic conditions[J]. Biologia,2019,74(12):1579−1590. doi: 10.2478/s11756-019-00336-6
|
[6] |
NUNES M C, GRA A C, VLAISAVLJEVIC S, et al. Microalgal cell disruption: Effect on the bioactivity and rheology of wheat bread[C]. Algal Research, 2020, 45: 101749.
|
[7] |
LJUBIC A, JACOBSEN C, HOLDT S L, et al. MicroalgaeNannochloropsis oceanica as a future new natural source of vitamin D3[J]. Food Chemistry,2020,320:126627. doi: 10.1016/j.foodchem.2020.126627
|
[8] |
卫生部关于新资源食品的公告汇总[J]. 食品与发酵工业, 2011, 37(8): 60.
Summary of announcements from the Ministry of Health on new resource foods[J]. Food and Fermentation Industries, 2011, 37(8): 60.
|
[9] |
MUBARAK M, SHAIJA A, SUCHITHAR T V. Flocculation: An effective way to harvest microalgae for biodiesel production[J]. Journal of Environmental Chemical Engineering,2019,7(4):103221. doi: 10.1016/j.jece.2019.103221
|
[10] |
NEHME R, ATIEH C, FAYAD S, et al. Microalgae amino acid extraction and analysis at nanomolar level using electroporation and capillary electrophoresis with laser-induced fluorescence detection[J]. Journal of Separation Science,2017,40(2):558−566.
|
[11] |
KHOO K S, LEE S Y, OOI C W, et al. Recent advances in biorefinery of astaxanthin from Haematococcus pluvialis[J]. Bioresource Technology,2019,288:121606. doi: 10.1016/j.biortech.2019.121606
|
[12] |
MORE P R, AAYA S S. A novel, green cloud point extraction and separation of phenols and flavonoids from pomegranate peel: An optimization study using RCCD[J]. Journal of Environmental Chemical Engineering,2019,7(5):103306.
|
[13] |
BHATTACHARYA M, GOSWAMI S. Microalgae–A green multi-product biorefinery for future industrial prospects[J]. Biocatalysis and Agricultural Biotechnology,2020,25:101580.
|
[14] |
刘新宁, 张建明. 可利用微藻的种类及其应用前景[J]. 资源开发,2005,21(1):65−66,80. [LIU X N, ZHANG J M. Varieties and application foreground of available microalgae[J]. Resource Development & Market,2005,21(1):65−66,80.
|
[15] |
YEN H W, HU I C, CHEN C Y, et al. Microalgae-based biorefinery from biofuels to natural products[J]. Bioresource Technology,2013,135:166−174. doi: 10.1016/j.biortech.2012.10.099
|
[16] |
张卫明, 张广伦, 肖正春, 等. 雨生红球藻中虾青素的研究与应[J]. 中国野生植物资源,2019,38(2):72−77. [ZHANG G L, XIAO Z C, ZHANG F L, et al. Study and application of astaxanthin in Haematococcus pluvialis[J]. Chinese Wild Plant Resources,2019,38(2):72−77. doi: 10.3969/j.issn.1006-9690.2019.02.016
|
[17] |
李春斌, 吴娇, 李杨, 等. 雨生红球藻的培养及虾青素的提取与检测[J]. 大连名族大学学报,2019,21(5):406−411. [WU J, DIAO Q Y, BAI X, et al. Cultivation of Haematococcus pluvialis and extraction and detection of astaxanthin[J]. Journal of Dalian Nationalities University,2019,21(5):406−411.
|
[18] |
MENDESPINTO M M, RAPOSO M F D J, BOWEN J, et al. Evaluation of different cell disruption processes on encysted cells of Haematococcus pluvialis: Effects on astaxanthin recovery and implications for bio-availability[J]. Journal of Applied Phycology,2001,13(1):19−24. doi: 10.1023/A:1008183429747
|
[19] |
张晔, 刘志伟, 谭兴和, 等. 响应面法优化复合酶提取雨生红球藻中虾青素的工艺[J]. 食品工业科技,2019,40(20):87−92. [ZHANG Y, LIU Z W, TAN X H, et al. Optimization of multi-enzymatic extraction of astaxanthin from Haematococcus pluvialis by response surface methodology[J]. Science and Technology of Food Industry,2019,40(20):87−92.
|
[20] |
钟玲, 余少冲, 李迎霞, 等. 超临界CO2流体萃取雨生红球藻中虾青素工艺研究及其脂肪酸GC-MS分析[J]. 中药材,2010,33(1):140−142. [ZHONG L, YU S C, LEE Y X, et al. Study on supercritical CO2 fluid extraction of astaxanthin from Haematococcus pluvialis and its fatty acid GC-MS analysis[J]. Chinese Medicinal Materials,2010,33(1):140−142.
|
[21] |
白曼利, 王海琪, 伍菱, 等. 高速逆流色谱分离雨生红球藻中虾青素的工艺优化[J]. 激光生物学报,2018,27(5):460−466. [BAI M L, WANG H Q, WU L. Optimization and separation of astaxanthin from Haematococcus pluvialis by high-speed counter-current chromatography[J]. Acta Laser Biology Sinica,2018,27(5):460−466. doi: 10.3969/j.issn.1007-7146.2018.05.011
|
[22] |
张言, 高定烽, 莫镜池, 等. 超声-低温双水相提取雨生红球藻中的虾青素[J]. 食品工业技术,2019,40(4):28−31. [ZHANG Y, GAO D F, MO J C. Ultrasonic-hypothermic aqueous phase extraction of astaxanthin from Haematococcus pluvialis[J]. The Food Industry,2019,40(4):28−31.
|
[23] |
郭文晶, 张守勤, 张格. 超高压提取雨生红球藻中虾青素的工艺优化[J]. 农业机械学报,2008,39(5):201−203. [GUO W J, ZHANG S Q, ZHANG G. Process optimization of ultra-high pressure extraction of astaxanthin from Haematococcus pluvialis[J]. Transactions of the Chinese Society for Agricultural Machinery,2008,39(5):201−203.
|
[24] |
ZHU Y, ZHAO X, ZHANG X, et al. Extraction, structural and functional properties of Haematococcus pluvialis protein after pigment removal[J]. International Journal of Biological Macromolecules,2019,140:1073−1083. doi: 10.1016/j.ijbiomac.2019.08.209
|
[25] |
冯以明, 李广生, 吴建东, 等. 雨生红球藻多糖的提取分离及理化性质研究[J]. 海洋科学,2012,36(1):17−22. [FENG Y M, LEE G S, WU J D, et al. Extraction and isolation of polysaccharides from Haematococcus pluvialis and their physicochemical characters study[J]. Marine Sciences,2012,36(1):17−22.
|
[26] |
MOLINO A, RIMAURO J, CASELLA P, et al. Extraction of astaxanthin from microalga Haematococcus pluvialis in red phase by using generally recognized as safe solvents and accelerated extraction[J]. J Biotechnol,2018,283:51−61. doi: 10.1016/j.jbiotec.2018.07.010
|
[27] |
KHOO K S, CHEW K W, OOI C W, et al. Extraction of natural astaxanthin from Haematococcus pluvialis using liquid biphasic flotation system[J]. Bioresource Technology,2019,290:121794. doi: 10.1016/j.biortech.2019.121794
|
[28] |
CHENG X, QI Z, BURDYNY T, et al. Low pressure supercritical CO2 extraction of astaxanthin from Haematococcus pluvialis demonstrated on a microfluidic chip[J]. Bioresource Technology,2018,250:481−485. doi: 10.1016/j.biortech.2017.11.070
|
[29] |
尹卫强, 刘颖芬, 李炳乾, 等. 国内杜氏盐藻综合利用的现状及发展趋势[J]. 盐业与化工,2013,42(12):1−3. [YIN W Q, LIU Y F, LEE B Q, et al. The status and prospects of comprehensive utilization of algae Dunaliella salina in china[J]. Salt and Chemical Industry,2013,42(12):1−3.
|
[30] |
孙协军, 潘龙飞, 李秀霞, 等. 盐藻β-胡萝卜素提取及自由基清除能力研究[J]. 食品工业科技,2015,36(22):246−251. [SUN X J, PAN L F, LEE X X, et al. Extraction technique and antioxidant activity of β-carotenoid from Dunaliella salina[J]. Science and Technology of Food Industry,2015,36(22):246−251.
|
[31] |
MARCHAL L, MOJAAT M, FOUCAULT A, et al. Centrifugal partition extraction of beta-carotene from Dunaliella salina for efficient and biocompatible recovery of metabolites[J]. Bioresource Technology,2013,134:396−400. doi: 10.1016/j.biortech.2013.02.019
|
[32] |
MONTE J, BERNARDO J, MARTA S, et al. Development of an integrated process of membrane filtration for harvesting carotenoid-rich Dunaliella salina at laboratory and pilot scales[J]. Separation and Purification Technology,2020,233:116021. doi: 10.1016/j.seppur.2019.116021
|
[33] |
戴军, 王旻, 尹鸿萍, 等. 杜氏盐藻多糖提取工艺的优化[J]. 食品与发酵工业,2007(3):123−127. [DAI J, WANG W, YIN H P, et al. Optimization of extraction technique of polysaccharides from Duanaliella salina[J]. Food and Fermentation Industries,2007(3):123−127. doi: 10.3321/j.issn:0253-990X.2007.03.032
|
[34] |
郭金耀, 杨晓玲. 盐藻蛋白质的提取分离[J]. 食品科技,2010,35(8):232−235. [GUO J Y, YANG X L. Extraction and separation of Dunaliella salina protein[J]. Food Science and Technology,2010,35(8):232−235.
|
[35] |
SECTION O A P, LABORATORY O P, INSTITUTE O H, et al. 裸藻中α-生育酚的提取和测定[J]. 水生生物学集刊,1975,5(3):354−359. [SECTION O A P, LABORATORY O P, INSTITUTE O H, et al. Extraction and determination of α-tocopherol in freshwater alga Euglena sanginea[J]. Acta Hyarobiologica Sinica,1975,5(3):354−359.
|
[36] |
ALI M C, CHEN J, ZHANG H, et al. Effective extraction of flavonoids from Lycium barbarum L. fruits by deep eutectic solvents-based ultrasound-assisted extraction[J]. Talanta,2019,203:16−22.
|
[37] |
BA F, URSU A V, LAROCHE C, et al. Haematococcus pluvialis soluble proteins: Extraction, characterization, concentration fractionation and emulsifying properties[J]. Bioresource Technology,2016,200:147−152. doi: 10.1016/j.biortech.2015.10.012
|
[38] |
栗晓庆, 吕俊平, 刘琪, 等. 裸藻多糖碱提工艺优化及其体外抗氧化活性研究[J]. 食品科技,2019,44(9):209−215. [LI X Q, LU J P, LIU Q, et al. Optimization of
|
[39] |
贾岩龙, 柴玉荣, 曲东京, 等. 杜氏盐藻完整叶绿体的分离及其蛋白提取[J]. 生物技术通报,2008(3):135−138. [JIA Y L, CAI Y R, QU D J, et al. Isolation of intact chloroplasts and comparison of methods for its protein extraction from Dunaliella salina[J]. Biotechnology Bulletin,2008(3):135−138.
|
[40] |
汪世华, 胡开辉. 小球藻的研究开发进展[J]. 武汉工业学院学报,2005,24(3):27−30. [HU K H, WANG S H. Development and progress of Chlorella vutgaris[J]. Wuhan Polytechnic Univesity,2005,24(3):27−30.
|
[41] |
刘学铭, 梁世中. 小球藻的保健和药理作用[J]. 中草药,1999,30(5):383−386. [LIU X M, LIANG S Z. Effects of Chlorellis use as a health care supplement[J]. Chinese Traditional and Herbal Drugs,1999,30(5):383−386. doi: 10.3321/j.issn:0253-2670.1999.05.029
|
[42] |
孔维宝, 李龙囡, 张继, 等. 小球藻的营养保健功能及其在食品工业中的应用[J]. 食品科学,2010,31(9):323−328. [KONG W B, LI L N, ZHANG J, et al. Healthcare functions and applications in food industry of Chlorella[J]. Food Science,2010,31(9):323−328.
|
[43] |
CHEN Y, LIU X, WU L, et al. Physicochemical characterization of polysaccharides from Chlorella pyrenoidosa and its anti-ageing effects in Drosophila melanogaster[J]. Carbohydrate Polymers,2018,185:120−126. doi: 10.1016/j.carbpol.2017.12.077
|
[44] |
WAN X Z, LI T T, ZHONG R T, et al. Anti-diabetic activity of PUFAs-rich extracts of Chlorella pyrenoidosa and Spirulina platensis in rats[J]. Food and Chemical Toxicology,2019,128:233−239. doi: 10.1016/j.fct.2019.04.017
|
[45] |
岳敏, 赵熙宁, 宋亚楠, 等. 蛋白核小球藻超声波破壁方法的优化[J]. 山西农业大学学报(自然科学版),2018,38(10):37−42. [YUE M, ZHAO X N, SONG YN, et al. Optimization study on the ultrasonic treatment for cell wall disruption of Chlorella pyrenoidosa[J]. Journal of Shanxi Agricultural University(Natural Science Edition),2018,38(10):37−42.
|
[46] |
陈艺煊, 刘晓艳, 吴林秀, 等. 蛋白核小球藻多糖的酶解辅助提取及抗氧化活性[J]. 福建农业学报,2016,31(5):508−514. [CHEN Y X, LIU X Y, WU L X, et al. Hot-water extraction of polysaccharides from Chlorella pyrenoidosa with cellulase[J]. Fujian Journal of Agricultural Sciences,2016,31(5):508−514. doi: 10.3969/j.issn.1008-0384.2016.05.013
|
[47] |
桂林, 李琳, 胡松青, 等. 蛋白核小球藻中叶黄素提取工艺的研究[J]. 食品研究与开发,2005,26(5):71−74. [GUI L, LI L, HU S Q, et al. Study on extraction process of lutein from Chlorella pyrenoidosa[J]. Food Research and Development,2005,26(5):71−74. doi: 10.3969/j.issn.1005-6521.2005.05.024
|
[48] |
张薇, 吴虹, 宗敏华, 等. 蛋白核小球藻发酵产油脂的研究[J]. 微生物学通报,2008,35(6):855−860. [ZHANNG W, WU H, ZONG M H, et al. Study on microbial oil production with Chlorella pyrenoidosa[J]. Microbiology,2008,35(6):855−860. doi: 10.3969/j.issn.0253-2654.2008.06.004
|
[49] |
黄星歆, 丘泰球. 小球藻中叶黄素的超声提取工艺研究[J]. 粮油加工,2010(2):99−102. [HUANG X Q, QIU T Q. Study on ultrasonic extraction technology of lutein from Chlorella[J]. Cereals and Oils Processing,2010(2):99−102.
|
[50] |
胡守珍, 毕生雷, 黄丽丽, 等. 热碱法提取异养小球藻蛋白质工艺优化[J]. 食品与发酵工业,2018,44(9):212−217. [HU S Z, BI S L, HUANG L L, et al. Optimization of protein extraction from Heterotrophic chlorella using thermo-alkaline[J]. Food and Fermentation Industries,2018,44(9):212−217.
|
[51] |
庄秀园, 黄英明, 张道敬, 等. 小球藻高附加值生物活性物质“小球藻热水提取物”的研究现状与展望[J]. 生物工程学报,2015,31(1):25−41. [ZHUANG X Y, HUANG Y M, ZHANG D J, et al. Research status and prospect on hot water extract of Chlorella: the high value-added bioactive substance from Chlorella[J]. Chinese Journal of Biotechnology,2015,31(1):25−41.
|
[52] |
LAFARGA T, MAYRE E, ECHEVERRIA G, et al. Potential of the microalgae Nannochloropsis and Tetraselmis for being used as innovative ingredients in baked goods[J]. Lwt - Food Science and Technology,2019,115:108439.
|
[53] |
李丽婷, 王蔡. 小球藻在食品中的应用研究进展[J]. 食品工业科技,2017,38(17):341−346. [LEE L T, WANG C. Applications of Chlorella in food industry[J]. Science and Technology of Food Industry,2017,38(17):341−346.
|
[54] |
李家泳, 刘锐, 刘晖, 等. 蛋白核小球藻韧性饼干加工工艺研究[J]. 食品工业,2017,38(3):35−39. [LEE J Y, LIU R, LIU H, et al. The process technology of semi hard biscuit with Chlorella pyrenoidosa[J]. The Food Industry,2017,38(3):35−39.
|
[55] |
罗柳茵, 刘晖, 刘锐, 等. 蛋白核小球藻面包的加工工艺研究[J]. 食品科技,2017,42(3):148−154. [LUO L Y, LIU H, LIU R, et al. Processing technology of the Chlorella pyrenoidosa bread[J]. Food Science and Technology,2017,42(3):148−154.
|
[56] |
GRAA C, FRADINHO P, SOUSA I, et al. Impact of Chlorella vulgaris on the rheology of wheat flour dough and bread texture[J]. Lwt - Food Science and Technology,2018,89:466−474.
|
[57] |
庞庭才, 胡上英, 熊拯, 等. 小球藻保健饮料的研制[J]. 食品工业科技,2015,36(7):252−256, 285. [PANG T C, HU S Y, XIONG Z, et al. Study on the health drink of Chlorella[J]. Science and Technology of Food Industry,2015,36(7):252−256, 285.
|